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Abstract

In this note we outline the derivation of the variational Kalman smoother, in the context of Bayesian
Linear Dynamical Systems. The smoother is an efficient algorithm for the E-step in the Expectation-
Maximisation (EM) algorithm for linear-Gaussian state-space models. However, inference approximations
are required if we hold distributions over parameters. We derive the E-step updates for the hidden states
(the variational smoother), and the M-step updates for the parameter distributions. We show that inference
of the hidden state is tractable for any distribution over parameters, provided the expectations of certain
quantities are available, analytically or otherwise.1

1 Introduction to variational Linear Dynamical Systems

The reader is referred to [1] and [2] for the theoretical framework and motivation for variational Bayesian
learning. The joint probability for the state of the hidden, x1:T , and observed, y1:T , variables for a Markov
process is given by

P (x1:T ,y1:T ) = P (x1)P (y1|x1)
T∏
t=2

P (xt|xt−1)P (yt|xt) (1)

In the case of a linear dynamical system with Gaussian noise, the state dynamics and output distributions
are governed by

xt = Axt−1 + wt, yt = Cxt + vt, with wt ∼ N(0, E), and vt ∼ N(0, R) (2)

where A is the transition matrix, C is the output matrix, and wt and vt are the Gaussian noise vectors
added at time t. Without loss of generality, the state noise E can be set to the identity (arbitrary rescaling
of the state noise can be achieved through changes to A, C and R, the latter a diagonal matrix with entries
1/ρ, although a full covariance version is not difficult to implement). Thus the full joint for parameters,
hidden variables and observed data is given by

P (A,C,ρ,x1:T ,y1:T ) = P (A|α)P (ρ|a, b)P (C|γ,ρ)P (x1|π)P (y1|x1, C,ρ) ·
T∏
t=2

P (xt|xt−1, A)P (yt|xt, C,ρ) . (3)

1Matlab code which fully implements the variational linear dynamical system model (with inputs) described in this report can
be obtained from the tar file at http://www.gatsby.ucl.ac.uk/~beal/papers/vks.tar.gz
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By applying Jensen’s inequality we can lower bound the log evidence

lnP (y1:T ) = ln
∫
dAdB dC dD dρ dx1:T P (A,B,C,D,ρ,x1:T ,y1:T ) (4)

≥
∫
dAdB dC dD dρ dx1:T Q(A,B,C,D,ρ,x1:T ) ln

P (A,B,C,D,ρ,x1:T ,y1:T )
Q(A,B,C,D,ρ,x1:T )

(5)

= F .

We make the approximation to the posterior Q(A,B,C,D,ρ,x1:T ) = Q(A,B)Q(C,D,ρ)Q(x1:T ). The
factorisation of the parameters from the hidden variables is the initial assumption to make inference
tractable, and the second factorisation, that of the parameters, falls out of the conditional independencies
in the graphical model (there are no terms in the parameter posterior that couple either A or B with either
C or B ρ). We choose to write the joint as Q(B)Q(A|B)Q(ρ)Q(D|ρ)Q(C|ρ, D)Q(x1:T ). The integral of
(5) then separates into

F =
∫
dB Q(B) ln

P (B|β)
Q(B)

+
∫
dB Q(B)

∫
dA Q(A|B) ln

P (A|α)
Q(A|B)

+
∫
dρ Q(ρ) ln

P (ρ|a, b)
Q(ρ)

+
∫
dρ Q(ρ)

∫
dD Q(D|ρ) ln

P (D|ρ, δ)
Q(D|ρ)

+
∫
dρ Q(ρ)

∫
dD Q(D|ρ)

∫
dC Q(C|ρ, D) ln

P (C|ρ,γ)
Q(C|ρ, D)

−
∫
dx1:T Q(x1:T ) lnQ(x1:T )

+
∫
dB Q(B)

∫
dA Q(A|B)

∫
dρ Q(ρ)

∫
dD Q(D|ρ)

∫
dC Q(C|ρ, D) ·

lnP (x1:T ,y1:T |A,B,C,D,ρ). (6)

For variational Bayesian learning F is the key quantity that we work with. Learning proceeds with iterative
updates of the variational posteriors. The optimum forms of these approximate posteriors can be found by
taking functional derivatives of F with respect to each distribution, Q(·). The forms for these are given in
Section 3 ; in the case of Q(x1:T ), there exists an efficient algorithm, the Kalman smoother, for finding the
expected statistics of the hidden state in time O(T ). The smoother is also known as the forward-backward
algorithm for Linear Dynamical Systems, and is similar in spirit to the E-step in the Baum-Welch algorithm
for HMMs. In the following section we rederive the filter (forward) and smoother (backward) recursions,
and then incorporate the variational methodology in to these results to obtain Q(x1:T ) in the Bayesian
framework.

2 The forward-backward algorithm

In the standard point-parameter linear-Gaussian dynamical system, given the settings of the parameters,
the hidden state posterior is jointly Gaussian over the time steps. Reassuringly, when we differentiate F
with respect to Q(x1:T ), the variational posterior for x1:T is also Gaussian:

lnQ(x1:T ) = − lnZ + 〈lnP (A,B,C,D,ρ,x1:T ,y1:T )〉Q(A,B,C,D,ρ)

= − lnZ ′ + 〈lnP (x1:T ,y1:T |A,B,C,D,ρ)〉Q(A,B,C,D,ρ) (7)

where Z ′ =
∫
dx1:T exp

[
〈lnP (x1:T ,y1:T |A,B,C,D,ρ)〉Q(A,B,C,D,ρ)

]
. (8)

In this expression, the expectations w.r.t the approximate parameter posteriors are performed on the
logarithm of the joint likelihood and, even though this leaves the coefficients on the xt terms in a somewhat
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unorthodox state, the approximate posterior for x1:T is still Gaussian. We can therefore use an algorithm
very similar indeed to the Kalman smoother for inference of the hidden states’ sufficient stastistics (the
E-like step). However we can no longer plug in parameters to the filter and smoother, but have to work
with the parameter sufficient statistics throughout the implementation.

The following derivations take us through the foward and backward recursions, without using sim-
plifying steps such as the matrix inversion lemma (see Appendix B), which would invalidate a Bayesian
approach. For the time being we will set aside the Bayesian implementational details and concentrate on
the derivations. We will incorporate the Bayesian scheme in Section 3 .

2.1 Filter: forward recursion

αt(xt) ≡ P (xt|y1:t) =
∫
dxt−1 P (xt−1|y1:t−1)P (xt|xt−1)P (yt|xt) · /P (yt|y1:t−1) (9)

=
1
ζt

∫
dxt−1 αt−1(xt−1)P (xt|xt−1)P (yt|xt) (10)

=
1
ζt

∫
dxt−1 N (xt−1;µt−1,Σt−1) N (xt;Axt−1, E) N (yt;Cxt, R) (11)

= N (xt;µt,Σt) (12)

where we have defined ζt = P (yt|y1:t−1) as the filtered output probability (we explain its usage a little
later). The marginal probability for xt is obtained by integrating out xt−1, by completing the square
within the exponent of the integrand. The quadratic terms in xt−1 form the Gaussian N(xt−1; xt−1,Σ∗t−1)
with

Σ∗t−1 =
(

Σ−1
t−1 +A>E−1A

)−1
(13)

xt−1 = Σ∗t−1

[
Σ−1
t−1µt−1 +A>E−1xt

]
. (14)

Marginalising out xt−1 gives the filtered estimates of the mean and covariance of the hidden state as

Σt =
[
E−1 + C>R−1C − E−1A

(
Σ−1
t−1 +A>E−1A

)−1
A>E−1

]−1

(15)

µt = Σt

[
C>R−1yt + E−1A

(
Σ−1
t−1 +A>E−1A

)−1
Σ−1
t−1µt−1

]
(16)

or rewritten as

Σt =
[
E−1 + C>R−1C − E−1AΣ∗t−1A

>E−1
]−1

(17)

µt = Σt

[
C>R−1yt + E−1AΣ∗t−1Σ−1

t−1µt−1

]
. (18)

At each step, the normalising constant obtained as the denominator in (9), ζt, contributes to the calculation
of the likelihood of the data

P (y1:T ) = P (y1)P (y2|y1) . . . P (yt|y1:t−1) . . . P (yT |y1:T−1) (19)

= P (y1)
T∏
t=2

P (yt|y1:t−1) ≡
T∏
t=1

ζt . (20)

It is not difficult to show that ζt is N(yt;$t, ςt) with

ςt =
(
R−1 −R−1CΣtC

>R−1
)−1

(21)

$t = ςtR
−1CΣtE

−1AΣ∗t−1Σ−1
t−1µt−1 . (22)
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With these distributions at hand we can evaluate the likelihood of each observation yt as the filter pro-
gresses, whilst taking into account previous observed data automatically. These distributions must obvi-
ously be recalculated to evaluate the likelihood of a different observation time series (a test set), unless we
want to clamp the hidden state from the training data. Further simplification of any of these results using
the matrix inversion lemma is not undertaken (with the exception of (21 )), as later we will be rewriting
these equations with the necessary averages in place, and certain averages cannot be inverted simply.

2.2 Smoother: backward recursion

The Kalman smoother makes use of the backward recursion

γt(xt) ≡ P (xt|y1:T ) =
∫
dxt+1

[
P (xt|y1:t)P (xt+1|xt)∫
dx′t P (x′t|y1:t)P (xt+1|x′t)

]
P (xt+1|y1:T ) (23)

γt(xt) =
∫
dxt+1

[
αt(xt)P (xt+1|xt)∫
dx′t αt(x′t)P (xt+1|x′t)

]
γt+1(xt+1) . (24)

Once the integral in the denominator is done, the terms in the exponent of the integrand are (multiplied
by −2)

(xt − µt)>Σ−1
t (xt − µt) + (xt+1 −Axt)>E−1(xt+1 −Axt) + (xt+1 − ηt+1)Ψ−1

t+1(xt+1 − ηt+1) +

(Σ−1
t µt +A>E−1xt+1)>

(
Σ−1
t +A>E−1A

)−1
(Σ−1

t µt +A>E−1xt+1)− x>t+1E
−1xt+1 . (25)

Integrating out xt+1 yields Gaussian distributions for the smoothed estimates of the hidden state at each
time step

defining Σ∗t =
(

Σ−1
t +A>E−1A

)−1
and Kt =

(
Ψ−1
t+1 + E−1AΣ∗tA

>E−1
)−1

(26)

Ψt =
[
Σ∗t
−1 −A>E−1KtE

−1A
]−1

(27)

ηt = Ψt

[
Σ−1
t µt +A>E−1Kt

(
Ψ−1
t+1ηt+1 − E−1AΣ∗tΣ

−1
t µt

)]
. (28)

This result differs from the traditional β-pass, in that it does not require any more information of the data
y1:T — in essence all necessary information carried in the observed data has already been assimilated into
the α1:T messages in the filter’s forward recursion. This method is useful in online scenarios because we
can throw away past observations once they have been filtered.

2.3 Cross-time covariance

For learning the parameters of the transition matrix, or equivalently for the calculation of the variational
posterior for Q(A), we require the cross-time covariance. This can best be calculated by looking at the
inverse covariance terms in the joint in (25), and making use of Schur complements. Prior to the integration
over xt+1 in (23) we have

P (xt,xt+1|y1:T ) =
P (xt|y1:t)P (xt+1|xt)∫
dx′t P (x′t|y1:t)P (x′t+1|xt)

P (xt+1|y1:T ) . (29)

Terms that couple xt and xt+1 are best represented with the product

− lnP (xt,xt+1|y1:T ) +=
(

x>t x>t+1

)( Σ∗t
−1 −A>E−1

−E−1A K−1
t

)(
xt

xt+1

)
. (30)
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Defining Υt,t+1 to be the cross-covariance between the hidden states at times t and t+ 1, we can make use
of Schur complements in (93) and (94) to give

Υt,t+1 ≡ 〈(xt − ηt)(xt+1 − ηt+1)>〉Q(x1:T ) (31)

= Σ∗tA
>E−1Ψt+1 using (94) (32)

= ΨtA
>E−1Kt using (93) (33)

The second expression is the standard result, the first an equivalent expression, together giving a recursion
relation for Ψt. Up to this point we have followed the standard procedures to derive the forward and
backward elements of the smoother, only stopping short of using matrix inversion lemmas.

2.4 Required hidden state sufficient statistics

We will need to use the results of inference over the hidden states to update the distributions over param-
eters. The hidden state sufficient statistics and some related quantities are defined as

S =
T−1∑
t=1

〈xtx>t+1〉 =
T−1∑
t=1

(
Υt,t+1 + ηtη

>
t+1

)
(34)

W =
T−1∑
t=1

〈xtx>t 〉 =
T−1∑
t=1

(
Ψt + ηtη

>
t

)
(35)

W ′ =
T∑
t=1

〈xtx>t 〉 =
T∑
t=1

(
Ψt + ηtη

>
t

)
(36)

M =
T−1∑
t=1

ηtu
>
t+1 (37)

Uµ =
T∑
t=1

utη>t (38)

M̃ = Uµ − u1η
>
1 + u1 (η1 − π0)>Σ−1

0 (39)

Ỹ =
T∑
t=1

ηty
>
t . (40)

3 Bayesian implementation

In the last term of (6), the log-likelihood terms are averaged over distributions of the variational posteriors.
Therefore in the E-step of learning, the effective parameters are just their expectations as they appear in
the exponent of this likelihood term.

3.1 Parameter priors

In the analysis so far we have not yet needed to specify our prior distributions over the parameters, which
appear in the full joint of (3 ), and consequently in our evidence lower bound F of (6 ). The forms we
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choose are conjugate, in that they have the same functional form as the likelihood:

A : Ai ∼ N(Ai; 0,diag (α)) (41)

B : Bi ∼ N(Bi; 0,diag (β)) (42)

C : Ci ∼ N(Ci; 0, ρi diag (γ)) (43)

D : Di ∼ N(Di; 0, ρi diag (δ)) (44)

ρ : ρi ∼ Ga(ρi; a, b) (45)

where the single subscript index i on a matrix denotes the transpose of its ith row, i.e. a column vector. The
effect of the Gaussian priors on the transition (A) and output (C) matrices will be to perform automatic
relevance determination (ARD) on the hidden states; i.e. during learning only those hidden dimensions that
are required to model the data will remain active (with corresponding non-zero weights). If a dimension
is not required then to increase the likelihood its emanating weights to both the next hidden state (A)
and to the data (C) will move towards the zero mean of the prior, and they can be removed from the
model. Similarly the Gaussian priors on the input matrices (B) and (D) should prune those inputs that
are irrevelant to predicting the data.

Below we provide pseudocode for an implementation of Bayesian Linear Dynamical Systems, which
uses the variational Kalman smoother as a subroutine for the E-step of inference. As the parameters have
distributions rather than being point estimates, we calculate these distributions’ sufficient statistics. The
〈·〉 notation denotes expectation under the relevant variational posterior(s). The parameter expectations
(sufficient statistics) are given below. As mentioned above, without loss of generality we can set the hidden
state noise E to the identity.

3.2 Parameter posterior approximations

Given the approximating factorisation of the posterior distribution over hidden variables and parame-
ters, the approximate posterior over the parameters can be factorised without further assumption into
Q(A,B,C,D,ρ) =

∏k
j=1Q(Bj)Q(Aj |Bj)

∏p
i=1Q(ρi)Q(Di|ρi)Q(Ci|ρi, Di). Note there is no need for the

prior on Ci to be a function of Di, even though the posterior distribution factorisation involves this de-
pendence.

Q(Bi) = N
(
Bi; ΣBṀi, ΣB

i

)
(46)

Q(Ai|Bi) = N
(
Ai;

[
S> −B>M

]
ΣA, ΣA

)
(47)

Q(ρi) = Ga
(
ρi; a+

T

2
, b+

1
2
Gi

)
(48)

Q(Di|ρi) = N
(
Di; Ÿ >ΣD, ρ−1

i ΣD
)

(49)

Q(Ci|ρi, Di) = N
(
Ci;

[
Ỹ > −D>Uµ

]
ΣC , ρ−1

i ΣC
)

(50)
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where

Û =
T∑
t=1

utu>t (51)

Ũ = Û + u1 (V0 − 1) u>1 (52)

ΣA−1
= diag (α) +W (53)

ΣB−1
= Ũ + diag (β)−M>ΣAM (54)

ΣC−1
= diag (γ) +W ′ (55)

ΣD−1
= Û + diag (δ)− UµΣCU>µ (56)

Ŷ =
T∑
t=1

uty>t (57)

Ẏ =
T∑
t=1

yty>t (58)

and

Ÿ = Ŷ − UµΣC Ỹ (59)

Y̆ = Ỹ − U>µ ΣDŸ (60)

Ṁ = M̃ −M>ΣAS (61)

Gi =
[
Ẏ − Ỹ >ΣC Ỹ − Ÿ >ΣDŸ

]
ii

(62)

3.3 Required parameter sufficient statistics

We require the following parameter sufficient statistics for the implementation of the variational Kalman
smoother:

〈A〉 =
[
S> − Ṁ>ΣBM>

]
ΣA (63)

〈A>A〉 = kΣA + ΣA
[
SS> − SṀ>ΣBM> −MΣBṀS>

+MΣBM> +MΣBṀṀ>ΣBM>
]

ΣA (64)

〈B〉 = Ṁ>ΣB (65)

〈A>B〉 = ΣA
[
S〈B〉 −M

{
kΣB + 〈B〉>〈B〉

}]
(66)

〈R−1〉 = diag (ρ) (67)

〈C>R−1C〉 = pΣC + ΣC
(
pU>µ ΣDUµ + Y̆ diag (ρ) Y̆ >

)
ΣC (68)

〈R−1C〉 = diag (ρ) Y̆ >ΣC (69)

〈C>R−1D〉 = ΣC
(
Ỹ diag (ρ) Ÿ > − pU>µ − U>µ ΣDŸ diag (ρ) Ÿ >

)
ΣD (70)

〈R−1D〉 = diag (ρ) Ÿ >ΣD (71)

〈ρi〉 = ρi =
aρ + T/2
bρ +Gi/2

(72)

〈ln ρi〉 = ln ρi = ψ(aρ + T/2)− ln(bρ +Gi/2) (73)

The following are not required but are useful to look at

〈C〉 =
[
Ỹ > − Ÿ >ΣDUµ

]
ΣD (74)

〈D〉 = Ÿ >ΣD (75)
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3.4 Hyperparameter updates

The hyperparameters {α,β,γ, δ, a, b} and the prior parameters, Σ0 and µ0, as point estimates can be
updated so as to maximise the lower bound on the evidence (6). The following four updates are only valid
if we have an isotropic variance prior on the hidden state, such that ΣB

j = ΣB for every j.

α−1
j = ΣA

jj +
1
k

ΣA
j
> [
SS> − 2MΣBṀS> + kMΣBM> +MΣBṀṀ>ΣBM>

]
ΣA
j (76)

β−1
j = ΣB

jj +
1
k

ΣB
j
>
ṀṀ>ΣB

j (77)

γ−1
j =

1
p

{
pΣC

jj + ΣC
j
> [
Ỹ diag (ρ) Ỹ > − 2Ỹ diag (ρ) Ÿ >ΣDUµ

+ pU>µ ΣDUµ + U>µ ΣDŸ diag (ρ) Ÿ >ΣDUµ

]
ΣC
j

}
(78)

δ−1
j =

1
p

{
pΣD

jj + ΣD
j
>
Ÿ diag (ρ) Ÿ >ΣD

j

}
(79)

Provided we have calculated the expectations of B and D, simpler forms for the hyperparameter updates
are given by

α−1
j =

1
k

[
kΣA + ΣA

[
SS> − 2M〈B〉>S> +M

{
kΣB + 〈B〉>〈B〉

}
M>

]
ΣA
]
jj

(80)

β−1
j =

1
k

[
kΣB + 〈B〉>〈B〉

]
jj

(81)

γ−1
j =

1
p

[
pΣC + ΣC

[
Ỹ diag (ρ) Ỹ > − 2Ỹ diag (ρ) 〈D〉Uµ

+pU>µ ΣDUµ + U>µ 〈D〉>diag (ρ) 〈D〉Uµ
]

ΣC
]
jj

(82)

δ−1
j =

1
p

[
pΣD + 〈D〉>diag (ρ) 〈D〉

]
jj

(83)

where again the subscript indexing Σ·j denotes the jth column of Σ·, or equivalently the transpose of its
jth row, and Σ·jj denotes the (j, j)th element of Σ·. The hyperparameters a and b are set to the fixed point
of the equations

ψ(a) = ln b+
1
p

p∑
i=1

ln ρi (84)

1
b

=
1
pa

p∑
i=1

ρi (85)

where ψ(x) = ∂/∂x ln Γ(x) is the digamma function. These fixed point equations can be easily solved using
gradient following techniques (Newton’s method etc.) in just a few iterations.

3.5 Calculation of F

Some of the nested integrals in (6) can be removed as in most cases the inner Kullback-Leibler divergence
is not a function of the outer integration variables, thanks partly to the parameter priors having conjugate
forms. This makes the first 5 terms simpler evaluations, leaving

F = −KL(B)−KL(A|B)−KL(ρ)−KL(D|ρ)−KL(C|ρ, D)

−
∫
dx1:TQ(x1:T ) lnQ(x1:T ) + 〈lnP (x1:T ,y1:T |A,B,C,D,ρ)〉Q(A,B,C,D,ρ)Q(x1:T ) (86)

= −KL(B)−KL(A)−KL(ρ)−KL(D)−KL(C) +H(x1:T )

+〈lnP (x1:T ,y1:T |A,B,C,D,ρ)〉Q(A,B,C,D,ρ)Q(x1:T ) (87)
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where KL(s) is the Kullback-Leibler divergence between the variational posterior and the prior distributions
of variable s, and H(s) is the entropy of the variational posterior over s. Calculating F at each iteration
still looks problematic due to the entropy term of the hidden state, H(x1:T ) in (87). Fortunately, straight
after a variational E-Step, we know the form of Q(x1:T ) from (7). This gives

H(x1:T ) = −
∫
dx1:T Q(x1:T ) lnQ(x1:T ) (88)

= −
∫
dx1:T Q(x1:T )

[
− lnZ ′ + 〈lnP (x1:T ,y1:T |A,B,C,D,ρ)〉Q(A,B,C,D,ρ)

]
(89)

= lnZ ′ − 〈lnP (x1:T ,y1:T |A,B,C,D,ρ)〉Q(A,B,C,D,ρ)Q(x1:T ) . (90)

Substituting this into (87 ) cancels both equations’ last terms to yield a simple expression for the lower
bound

F = −KL(B)−KL(A)−KL(ρ)−KL(D)−KL(C) + lnZ ′ . (91)

We still have to be able to evaluate the partition function for x1:T , Z ′. It is not as complicated as the
integral in equation (8 ) purports: at least in the point-parameter scenario we showed that this was just∏T
t=1 ζt, (see (20 )). With some care we can translate the required calculations from (21 ) and (22 ) over

into the Bayesian scheme; the expressions that evaluate this Bayesian ζt at each time step are given in
the variational filter pseudocode; to summarise each ζt is a slightly modified Gaussian. In the Matlab
code accompanying this report, F is calculated after the variational E-Step, at which point equation (91
) is correct. To be precise F is actually computed immediately after the filter (foward pass). The KL
divergence terms are also surprisingly simple to calculate: each row of A contributes the same to KL(A);
KL(C,ρ) factorises into KL(C)+KL(ρ) as a result of the divergence between two Gaussian densities being
only a function of the ratio of covariance determinants, thus cancelling the dependence of KL(C|ρ) on ρ
(this requires the prior on C to have ρ dependence).

4 Extensions and further work

Unfortunately, as it currently stands, the Bayesian scheme is not as complete as it could be. It is true
that for a proposed hidden state dimension the algorithm above does perform ARD and can reveal an
appropriate hidden state-space dimensionality with some success [2]. However, we cannot at this stage
compare two models’ lower bounds on the evidence. The reason for this is that we have not yet integrated
out all those variables whose cardinality increases with model complexity. The ARD parameters, α and γ,
are such variables and so we introduce prior distributions and variational posteriors over these variables.
Incorporating this further level in the hierarchy requires changes and additions to the terms in F (6 ),
yielding the following fully Bayesian F :

F = −
∫
dA Q(A) lnQ(A) +

∫
dα Q(α)

[∫
dA Q(A) lnP (A|α)− ln

Q(α)
P (α|aα, bα)

]
−
∫
dρ Q(ρ) ln

Q(ρ)
P (ρ|aρ, bρ)

−
∫
dρ Q(ρ)

∫
dC Q(C|ρ)

[
lnQ(C|ρ)−

∫
dγ Q(γ) lnP (C|γ,ρ)

]
−
∫
dγ Q(γ) ln

Q(γ)
P (γ|aγ , bγ)

−
∫
dx1:T Q(x1:T ) lnQ(x1:T )

+
∫
dA Q(A)

∫
dC dρ Q(C,ρ)

∫
dx1:T Q(x1:T ) lnP (x1:T ,y1:T |A,C,ρ) . (92)
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To create this F from (6) we have just placed integrals around any expressions involving α or γ, and also
introduced KL-divergence penalties for these distributions. All the existing updates remain essentially the
same, except that we can now also optimise the hyperparameters aα, bα, aγ and bγ as well. These updates
will follow the usual moment matching theme: the variational posteriors Q(α) and Q(γ) are products of
Gamma distributions with their first and first logarithmic moments matching those of the entries in A

and C respectively. With this cost function we can be sure that we are penalising over-parameterisation
of the state-space with more than just an ARD scheme. The authors have yet to implement this “more
Bayesian” model, for the moment simply leaving it to rest as theoretically desirable.

There are a few other areas and aspects of the model that can be improved, at no serious cost to the
methodology. One of these is to incorporate inputs into the system, as an autonomous linear dynamical
system is not nearly as representationally powerful as a driven one. The dynamics would then obey
xt = Axt−1 +But + wt, and yt = Cxt +Dut + vt, where ut is the user input to the system at time t. By
augmenting the inputs with a constant bias the dynamics can then be displaced if need be. Similar priors
could be placed on the entries of B and D, and even ARD for these matrix elements might be meaningful
by showing which inputs to the system are relevant to predicting the output and which are noise. This
extension is quite trivial, and will be included in a revision of this note shortly.

Additionally it is possible for the 1st order Markov model to emulate the dynamics of a higher order
model by feeding back concatenated observed data yt−n:t−1 into the future input ut. By generalising this
and using an ARD construction we should be able to shed light on the order of the system that actually
generated the data.

Tests with gene expression micro-array data are anticipated.
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6 Appendices

A Schur complements and inverting partitioned matrices

Inverting partitioned matrices can be quite difficult. If A is of 2 by 2 block form, we can use Schur com-
plements to obtain the following results for the partitioned inverse, and the determinant of A in terms of
its constituents.
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Pseudocode: Bayesian linear dynamical systems

Initialise parameters. Initialise hidden variables and state priors Σ0, µ0

for n = 1 : max its

Variational M-Step

• parameter Q(A) suff. stats.

S =
∑T−1

t=1 〈xtx>t+1〉 =
∑T−1

t=1

(
Υt,t+1 + ηtη

>
t+1

)
W =

∑T−1
t=1 〈xtx>t 〉 =

∑T−1
t=1

(
Ψt + ηtη

>
t

)
• parameter Q(B)

update

• parameter Q(ρ) suff. stats. ∀ i
G : Gi =

∑T
t=1 y2

ti − U>i (diag (γ) +W ′)−1Ui

• parameter Q(C|ρ) suff. stats.

W ′ =
∑T

t=1〈xtx>t 〉 =
∑T

t=1

(
Ψt + ηtη

>
t

)
U =

∑T
t=1 ηty

>
t

• parameter Q(D)

update

• calculate parameter sufficient statistics

{pss} ← parameter suff. stats. (see (??) - (??))

Variational E-Step

• hidden variables Q(x1:T ) suff. stats.

{η1:T ,Ψ1:T ,F} ← variational Kalman smoother(y1:T , pss)

Hyperparameters

• hyperparameters α and γ, ∀ k
α : αk = K/〈A>A〉kk
γ : γk = D/〈C>diag (ρ)C〉kk
• hyperparameters a and b, at fixed point of

ψ(a) = ln b+ 1
D

∑D
i=1〈ln ρi〉

1
b

= 1
aD

∑D
i=1〈ρi〉

• state priors

Σ0 =

µ0 =

end for
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Pseudocode: variational Kalman smoother

• hidden variables Q(x1:T ) suff. stats.

• Foward recursion

Σ∗0 =
(
Σ−1

0 + 〈A>A〉
)−1

for t = 1 : T

Σt =
(
I + 〈C>R−1C〉 − 〈A〉Σ∗t−1〈A〉>

)−1

µt = Σt

(
〈C>R−1〉yt + 〈A〉Σ∗t−1Σ−1

t−1µt−1

)
Σ∗t =

(
Σ−1
t + 〈A>A〉

)−1

ςt =
(
〈R−1〉 − 〈R−1C〉Σt〈R−1C〉>

)−1

$t = ςt〈R−1C〉Σt〈A〉Σ∗t−1Σ−1
t−1µt−1

end for

Calculate F

Set ηT = µT and ΨT = ΣT

• Backward recursion

for t = (T − 1) : 1

Kt =
(
Ψ−1
t+1 + 〈A〉Σ∗t 〈A〉>

)−1

Ψt =
(
Σ∗t
−1 − 〈A〉>Kt〈A〉

)−1

Υt,t+1 = Ψt〈A〉>Kt

ηt = Σ∗tΣ
−1
t µt + Υt,t+1Ψ−1

t+1ηt+1

end for
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Pseudocode: variational Kalman smoother with inputs u1:T

• hidden variables Q(x1:T ) suff. stats.

• Foward recursion

Σ∗0 =
(
Σ−1

0 + 〈A>A〉
)−1

for t = 1 : T

Σt =
(
I + 〈C>R−1C〉 − 〈A〉Σ∗t−1〈A〉>

)−1

µt = Σt

[
〈C>R−1〉yt + 〈A〉Σ∗t−1Σ−1

t−1µt−1

+
(
〈B〉 − 〈A〉Σ∗t−1〈A>B〉 − 〈C>R−1D〉

)
ut
]

Σ∗t =
(
Σ−1
t + 〈A>A〉

)−1

ςt =
(
〈R−1〉 − 〈R−1C〉Σt〈R−1C〉>

)−1

$t = ςt
[
〈R−1C〉Σt〈A〉Σ∗t−1Σ−1

t−1µt−1

+
(
〈R−1D〉+ 〈R−1C〉Σt

{
〈B〉 − 〈C>R−1D〉 − 〈A〉Σ∗t−1〈A>B〉

})
ut
]

end for

Calculate F

Set ηT = µT and ΨT = ΣT

• Backward recursion

for t = (T − 1) : 1

Kt =
(
Ψ−1
t+1 + 〈A〉Σ∗t 〈A〉>

)−1

Ψt =
(
Σ∗t
−1 − 〈A〉>Kt〈A〉

)−1

Υt,t+1 = Ψt〈A〉>Kt

ηt = Σ∗t
[
Σ−1
t µt − 〈A>B〉ut+1

]
+ Υt,t+1Ψ−1

t+1ηt+1

end for
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The partitioned inverse is given by(
A11 A12

A21 A22

)−1

=

(
F−1

11 −A−1
11 A12F

−1
22

−F−1
22 A21A

−1
11 F−1

22

)
(93)

=

(
A−1

11 +A−1
11 A12F

−1
22 A21A

−1
11 −F−1

11 A12A
−1
22

−A−1
22 A21F

−1
11 A−1

22 +A−1
22 A21F

−1
11 A12A

−1
22

)
(94)

and the determinant by ∣∣∣∣∣ A11 A12

A21 A22

∣∣∣∣∣ = |A22| · |F11| = |A11| · |F22|

where

F11 = A11 −A12A
−1
22 A21, F22 = A22 −A21A

−1
11 A12.

Notice that inverses of A12 or A21 do not appear in these results. There are other Schur complements
that are defined in terms of these “off-diagonal” terms, but for our purposes it is inadvisable to use them
(Cemgil, private communication).

B Matrix inversion lemma

This proof, or derivation, is included for reference only and is not used in the above work. It plainly shows
that the expectations cannot be carried through a matrix inversion in any reasonable way. The lemma is
most useful when A is a large diagonal matrix and B has few columns.

(A+BCB>)−1 = A−1 −A−1B(C−1 +B>A−1B)−1B>A−1 .

To derive this lemma we use the Taylor series expansion of the matrix inverse

(A+M)−1 = A−1(I +MA−1)−1 = A−1
∞∑
i=0

(−1)i(MA−1)i ,

where the series is only well-defined when the spectral radius of MA−1 is less than unity. We can easily
check that this series is indeed the inverse by directly multiplying by (A+M), yielding the identity,

(A+M)A−1
∞∑
i=0

(−1)i(MA−1)i = AA−1
[
I −MA−1 + (MA−1)2 − (MA−1)3 + . . .

]
+MA−1

[
I − MA−1 + (MA−1)2 − . . .

]
= I .

In the series expansion we find an embedded expansion, which forms the inverse matrix term on the right
hand side, as follows

(A+BCB>)−1 = A−1
∞∑
i=0

(−1)i(BCB>A−1)i

= A−1

(
I +

∞∑
i=1

(−1)i(BCB>A−1)i
)

= A−1

(
I −BC

[ ∞∑
i=0

(−1)i(B>A−1BC)i
]
B>A−1

)
= A−1

(
I −BC(I +B>A−1BC)−1B>A−1

)
= A−1 −A−1B(C−1 +B>AB)−1B>A−1 .
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In this proof we have had to put constraints on A and M for the Taylor expansion to be well-defined.
However straight multiplication of the expression by its proposed inverse does in fact yield the identity.
This suffices as a proof in itself.
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