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Abstract

We present a novel class of learning algorithms for undirected graphical
models, based on the contrastive free energy (CF). In particular we study
the naive mean field, TAP and Bethe approximations to the contrastive
free energy. The main advantage of CFlearning is the fact that it elim-
inates the need to infer equilibrium statistics for which mean field type
approximations are particularly unsuitable. Instead, learning decreases
the distance between the data distribution and the distribution with one-
step reconstructions clamped on the visible nodes. We test the learning
algorithm on the classification of digits.

1 Introduction

When learning undirected graphical models from data we change the parameters such that
the model distribution is matched with the data distribution. To compute the statistics of the
model distribution we need to perform inference in a network with no evidence clamped on
any of its nodes. However, for a large class of models inference is intractable and approxi-
mate methods need to be employed. A wide variety of approximate inference methods are
now available, like variational approximations, Markov Chain Monte Carlo (MCMC) sam-
pling and more recently loopy Belief Propagation. Unfortunately, these methods typically
fail when no external evidence is present (and the correlations are not weak), since the dis-
tribution is then likely to be highly multimodal. In this regime variational approximations
fail to capture the complicated dependencies between the random variables, MCMC meth-
ods suffer from extremely slow equilibration and Belief Propagation does not converge or
gives poor results. In this paper we argue therefore that instead of trying to (marginally)
improve our inference methods it may be more fruitful to look for alternative learning
objectives which avoid the need to compute equilibrium statistics. As one such learning
objective we advocate the contrastive free energy (CF), introduced by (Hinton 2000) in the
context of “restricted Boltzmann machines”. In this paper we will extend the use of CFfor
general undirected graphical models in the context of deterministic approximations like the
naive mean field (MF), TAP and Bethe approximations.



2 Undirected Graphical Models

Consider an undirected graphical model with visible nodes v i, hidden nodes hi and edges
eij . We will assume that each random variable associated with a node in the graph can
take values from a discrete alphabet. In the context of contrastive free energies it will be
natural to think in terms of the 4 classes of undirected graphical models shown in figure 1
(left). In the “Fully Connected Random Field” (FCRF) all nodes are connected and there
are no conditional independence relationships. In the “Product of Experts” (PoE) model
(Hinton 2000), the hidden nodes are independent given the observable nodes. The “Hidden
Random Field” is the opposite architecture where the visible nodes are independent given
the hidden nodes. Finally the “Bipartite Random Field” (BRF), has both the independence
properties of the PoE and the HRF.

A natural objective function for learning these graphical models from data is the KL-
divergence between the data distribution P0(v) and the equilibrium distribution P1(v).
The subscripts “0” and “1” will be clarified later, but can be understood by imagining run-
ning a Markov chain that is started at the data distribution (t = 0) and run until equilibrium
(t =1, see figure 1, right). This KL-divergence can be rewritten as follows,

KL[P0(v)jjP1(v)] = CF1 = F0 � F1 � 0 (1)

where F0 denotes the free energy of the distribution P0(v)P (hjv), while F1 = � log(Z)
denotes the free energy of the system at equilibrium. The free energy can be conveniently
expressed in terms of the energy and entropy of the system as follows,

F0 = hEi0 �H0 F1 = hEi1 �H1 (2)

where h:i0 denotes averaging with respect to the joint P (hjv)P0(v) and h:i1 denotes
averaging with respect to the equilibrium distribution P1(v;h). It is now easy to derive
gradient descent update rules for the parameters � of the model,
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In practice, we substitute the empirical distribution P̂0(v; v̂1:N ) for P0(v), and adjust the
learning rules accordingly.

Although appealing in theory, these learning rules are not particularly practical, since the
number of states we need to sum over in order to compute the averages scales exponentially
with the number of nodes. One solution is to apply Gibbs sampling, which samples one
node (or set of nodes) according to its posterior distribution, given the current values of
all the other nodes. This strategy can also become computationally demanding since at
every iteration of learning, Gibbs sampling must be performed for every data vector in
the ”clamped” phase (with the data clamped to the visible nodes) and once more in the
free phase (with all nodes unclamped). Moreover, at every run, we have to wait until the
Markov chain has reached equilibrium, and many independent samples are produced.

3 Learning with Contrastive Free Energies

Recall that the expression for the KL-divergence between the data distribution and the
equilibrium distribution (1) can be written as a difference between free energies, and the
learning rule (3) as a difference of two averages. To get samples from the equilibrium
distribution we imagine running a Markov chain, starting at the data distribution P 0 and
eventually reaching equilibrium at t = 1. With hidden nodes, we first sample the hidden
nodes, given the data, then sample reconstructions of the data, given the sampled hidden
nodes, etc. (see figure 1, middle & right). It is not hard to show that at every step of Gibbs
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Figure 1: Left: Four classes of undirected graphical models; Fully Connected Random Fields
(FCRF), Products of Experts (PoE), Hidden Random Fields (HRF) and Bipartite Random Fields
(BRF). Middle & right: CF1-learning in pictures and words.

sampling the free energy will decrease,F0 � Fk � F1 8k. Moreover, it must therefore
be true that if the free energy hasn’t changed afterk steps of Gibbs sampling (for anyk),
eitherP0 = P1 or the Markov chain does not mix. Assuming that the Markov chain mixes
properly, the above suggests that we could use the following contrastive free energy,

CFk = F0 � Fk = KL [P0(v;h)jjP1(v;h)] �KL [Pk(v;h)jjP1(v;h)] � 0 (4)

as an objective to minimize. The big advantage is that we do not have to wait for the
chain to reach equilibrium. Also, at equilibrium, the distribution has forgotten everything
about the data and is therefore expected to be highly multimodal, which may cause slow
equilibration.

Learning proceeds by taking derivatives with respect to the parameters and performing
gradient descent onCFk. The derivative is given by,
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The last term is hard to evaluate, but small compared with the other two. Hinton (2000)
shows that it can be safely ignored.

It is important to note that brief Gibbs sampling of the reconstructions given the hidden
nodes is sufficientif we initialize the reconstuctions at the data. The subsequent sampling
of the hidden nodes given the reconstructions may also be brief provided they are initialized
at the (sampled) values of the hidden nodes of the clamped distribution. This procedure
works since it is guaranteed, even for brief Gibbs sampling, that the free energy with respect
to the clamped distribution decreases (if the chain mixes). It is unfortunately necessary to
sample the hidden states given the data from the exact posterior distribution.

In practice we will replace the data distributionP0(v) with the empirical distribution
P̂0(v; v̂1:N ) and start a Markov chain onevery data vector while the two derivatives in
the learning rule will be averaged over the data (att = 0) and the reconstructions of those
data respectively (att = 1).

Although some progress has been been made, the new learning rules are not very efficient
for general graphical models. For instance, for the HRF (and the FCRF) we still need to run
Gibbs sampling to equilibrium for the hidden nodes with the data clamped to the visible
nodes. The situation is significantly better for the PoE, since only brief Gibbs sampling
is required for the reconstructions. For the BRF we can sample both the visible and the
hidden nodes independently avoiding the costly Gibbs sampling altogether (Hinton 2000).
In the next section we will extend theCF-learning framework to include approximations of
the free energy.



4 Approximate Contrastive Free Energies

An alternative to Gibbs sampling is the use of variational approximations to the free energy.
A well known example of this is the mean field (MF) approximation (Peterson & Anderson
1987), where the variational parameters are the meansq 0 of the approximate (factorized)
posterior distributionQ0(hjv) and the meansfq1; r1g of the equilibrium distribution.
In the following we will always denote variational parameters associated with the hidden
nodes withq and parameters associated with the visible nodes withr. When the param-
eters define a probability distribution, like in the case of MF, the parameter settings can
be computed by minimizing the KL-divergenceKL[QjjP ] between the variational distri-
bution and the desired distribution. However, this need not be the case in general, since
there are many usefull approximations of the free energy which do not come in the form
F
ap = hEiQ �H(Q). The TAP and Bethe approximations are two such examples.

An approximate objective function for training undirected graphical models is simply to re-
place the exact free energies by their approximations,F

ap

0
(v̂;q0) � F

ap

1
(r1;q1) where

v̂ denotes the data. The key observation about this objective is thatF1 is always lower
thanF0 since its value is determined by minimizing over a larger set of parameters. In
other words, the equilibrium distribution has more degrees of freedom since there are no
data clamped on its visible nodes. Indeed, we can think of computingF1 by performing
coordinate descent in the parametersfq1; r1g, initializing the parameters at their opti-
mal values for the data distribution, so that the initial free energy is simplyF 0 (see also
Movellan 1991 for a similar idea). Next consider the free energy obtained afterk rounds
of coordinate descent and call thisFk. Trivially, we now haveF ap

0
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argued before, variational approximations for the equilibrium distribution are unlikely to be
accurate since no evidence is clamped on the visible nodes resulting in a highly multimodal
distribution. By analogy to the previous section we will now propose to cut the sequence of
coordinate descent at “depth k” and define the following contrastive free energy objective
to be minimized,

CFapk = F
ap

0
(v̂;q0)� F

ap

k (rk ;qk) (6)

Taking derivatives with repsect to parameters� we get,
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The last two terms in this expression are difficult to compute, since we don’t have explicit
expressions forrk andqk in terms of�. Fortunately, they are small and rarely in conflict
with the other terms in the gradient so they can be safely ignored (Hinton 2000). No-
tice also that towards the end of learning@Fk=@rk and@Fk=@qk are expected to become
vanishingly small.

When the paramersq andr define a probablity distribution, we can rewriteCF ap

k as

CFapk = KL[Q0jjP1]�KL[QkjjP1] (8)

whereQ0 = Q(hjv)P0(v). This is the analogue of expression (4). Similarly, we can
write the learning rule analogous to (5) where we replace all occurances ofP k with Qk

andh�i denotes averaging overQ. In this case we may also decide tosample from the MF
distribution after every step of coordinate descent instead of using the mean values directly.

In practice we will start coordinate descent at every data vector seperately, i.e. we assign
each data vector a seperate set of variational parametersfq

n
0
;q

n
k ; r

n
kg, and average the

learning rule over all data vectors. Since for all data vectors the free energy is guaranteed
to decrease during settling, so is the average free energy. In our experiments we always
used a depth value ofk = 1, and only a few steps of updates forfq 1; r1g in the direction
of the negative gradient ofF , which increases the efficiently greatly. Note however that the
minimization overq0 has to be run until convergence.



Figure 2:Left: All visible to visible connections for the16� 16 digit “8”. Every patch corresponds
to the visible weights for one visible node at the corresponding location in the image (i.e. the top
left patch corresponds to the top left pixel). These weights may be interpreted as a local decorre-
lating filter, removing first and second order statistics from the data. The higher order statistics are
modelled by the hidden nodes, whose “projective fields” (hidden-to-visible weights) are shown on
the right. Every row depicts the weights from10 randomly chosen hidden nodes to all visible nodes
for one particular digit-model These features contain edge-like elements and are rather global. From
a generative perspective, they can be interpreted as small deformations of one digit into another, just
like edges are generators of small translations. From a recognition perspective, these features are
sensitive to the boundaries of a digit (or parts of a digit).

5 Bolzmann Machines

Boltzmann Machines (Ackley et al. 1985) are binary undirected graphical models with
pairwise interactions. We will propose three approximations to be used in conjunction with
theCFobjective: MF, TAP and the Bethe approximation. We will call the weights between
the hidden nodesW, the weights between the hidden and visible nodesJ and the weights
between the visible nodesV. We will also assume that there is one node with value always
1, whose weights to all other nodes represent the biases. The fixed point equations and
CF-learning rules (atk = 1) for the MF approximation are given below,
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The fixed point equations (left) must be runsequentially. The last argument in the sigmoid
is fixed and acts as an external evidence (bias) term. Also, damping may be necessary to
avoid oscillations.

For the TAP approximation (Galland 1993) additional terms appear which can be imple-
mented by the following substitutions,

Wq Wq+ (1� q)
X
j

1

2
W

2

�j qj(1� qj) qiqj  qiqj + qi(1� qi)Wij qj(1� qj)

(12)
and similarly for the other equations (notice that the extra terms disappear on a data vector,
which is assumed binary).



MF� MF1 MF1 TAP Bethe

BRF 8:7� 0:4% 5:5� 0:3% 5:0� 0:3% IDEM MF1 IDEM MF1

HRF 9:6� 0:5% 6:2� 0:2% 5:1� 0:2% 5:1 � 0:3% 5:2� 0:3%

POE 6:1� 0:5% 4:5� 0:2% 4:5� 0:2% 4:4 � 0:2% 4:5� 0:2%

FCRF 5:9� 0:3% 4:5� 0:3% 4:4� 0:1% 4:4 � 0:2% 4:5 � 0:2%

Table 1:Classification results for the8 � 8 binary digits. In this table we compare5 approximate
methods for learning the Boltzmann machine.MF� uses a single MF-distribution to approximate
the equilibrium distribution.MF1 uses a separate MF-distribution for each data vector, initialized
at the data and run until convergence.MF1, TAP andBethe useCF1-learning (see figure 1). These
5 different methods were compared on4 architectures with25 hidden nodes: BRF, PoE, HRF and
FCRF. The table shows the mean and standard deviation for10 runs of the algorithms.

Coordinate descent on the Bethe free energy is more difficult since it is parameterized in
terms of both one-node marginals and pairwise marginals which should all be consistent. In
the binary case, we can solve the pairwise marginals analytically in terms of the one-node
marginals and insert them back into the Bethe free energy. Since the Bethe free energy
is now a function of the one-node marginals alone, coordinate descent proceeds similarly
as in MF or TAP, by fixing a subset of the one-node marginals and minimizing over the
remaining set using gradient descent or fixed point equations. It was shown that these fixed
point equations have the same fixed points as loopy BP and reduce to the TAP equations
up to second order in the weights and to the MF equations up to first order in the weights.
We refer to the paper (Welling & Teh, 2001) for further details of the implementation.
For more general undirected graphical models we developed the “Unified Propagation and
Scaling” algorithm (UPS), which descends on the Bethe free energy by combining belief
propagation and iterative scaling (Teh & Welling 2001). Finally, the learning rule uses the
estimates of the pairwise marginals to change the weights.

6 Learning Digit Models with CF

-Binary Digits (8� 8)
In this experiment8 � 8 real valued digits from the “br” set on the CEDAR cdrom were
thresholded to produce binary images. There are 11000 digits available equally divided
into 10 classes. The first6000 were used for training, the next2000 for validation and
the last3000 for testing. Separate models were trained for each digit, using600 training
examples. A total of1500 weight updates were performed per digit model on minibatches
of 10 data vectors. The updates included a small weight-decay term and a momentum term.
When training was completed, we computed the free energyF

mf

0
for all data on all models

(including validation and test data). Since we do not compute the termF
mf

1
= � log(Z)

(which is much harder), we have no direct access to the log-likelihood. Instead, we
fit a multinomial logistic regression model to the training dataplus the validation data,
using the10 free energiesFmf

0
for each model as “features”. The prediction of this

logistic regression model on the test data is finally compared with ground truth, from
which a confusion matrix is calculated. The results of5 different methods on a variety of
architectures is shown in table (1). The results for1-nearest-neighbour and multinomial
logistic regression are6:3% and9:2% respectively.

-Real Valued Digits (16� 16)
In this experiment we used the16� 16 real valued digits from the USPS Cedar ROM. The
first 7000 were used for training, while we cycled through the last4000, using3000 as a
validation set and testing on the remaining1000 digits. The final test-error was averaged
over the 4 test-runs. All digits were separately scaled (linearly) between0 and1, before
presentation to the algorithm. Each model was a binary FCRF with pairwise interactions



consisting of50 hidden nodes. The training and classification procedures were similar as
for the binary digits. The total averaged classification error is2:5% on this data set, which
is a significant improvement over simple classifiers such as a1-nearest-neighbour (5:5%)
and multinomial logistic regression (6:4%). Figure 2 shows the visible-to-visible weights
for the digit ”8” and the hidden-to-visible weights for some sampled hidden nodes (see
figure caption for explanation).

The conclusion from these experiments is thatCF-learning improves considerably on the
naive implementation of MF Boltzmann machines, where a single MF distribution is used
to model the equilibrium distribution. Moreover, the performance of theCF 1 algorithm
seems to be no worse than theCF1 algorithm but much more efficient. Additional im-
provements over MF, like TAP or Bethe do not seem to further improve performance. The
most significant gain was achieved by connecting the visible nodes. The PoE is therefore
the preferred model for the digit classification task, since it has good performance (4:5%)
and can be implemented efficiently.

7 Conclusion

In this paper we have argued that we can improve the effectivity of approximate inference
algorithms by avoiding the need to compute equilibrium statistics. To achieve this we
proposed to replace the usual maximum likelihood objective by the contrastive free energy.
In experiments we have shown that in combination with the mean field approximation this
provides an efficient algorithm to learn the weights (including the lateral weights between
the hidden nodes) of a Boltzmann machine.
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