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Abstract

We present a model of an olfactory system that performs odor segmentation.
Based on the anatomy and physiology of natural olfactory systems, it consist-
s of a pair of coupled modules, bulb and cortex. The bulb encodes the odor
inputs as oscillating patterns. The cortex functions as an associative memory:
When the input from the bulb matches a pattern stored in the connections
between its units, the cortical units resonate in an oscillatory pattern char-
acteristic of that odor. Further circuitry transforms this oscillatory signal to
a slowly-varying feedback to the bulb. This feedback implements olfactory
segmentation by suppressing the bulbar response to the pre-existing odor,
thereby allowing subsequent odors to be singled out for recognition.
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1 Introduction

An olfactory system must solve the problems of odor detection, recognition, and segmenta-
tion. Segmentation is necessary because the odor environment often contains two or more
odor objects. The system must be able to identify these objects separately and signal their
presence to higher brain areas. An odor object is defined as an odor entity (which, e.g., the
smell of a cat, often contains fixed proportions of multiple types of odor molecules) that enters
the environment independently of other odors. Therefore, two odor objects usually do not
enter the environment at the same time although they often stay together in the environment
afterwards. In cases when different odors do enter the environment together as a mixture,
human subjects have great difficulty identifying the components[1]. In this paper we present
a model which performs odor segmentation temporally. First one odor object is detected and
recognized, then the system adapts to this specific odor so a subsequent one can be detected
and recognized.

The odor specificity of this adaptation is the key feature of the operation of the system. This
specificity can not be achieved with simple single-unit fatigue mechanisms [2, 3] because of
the highly distributed nature of odor pattern representations in the olfactory system: fatiguing
neurons that respond to one odor would strongly reduce their response to another one, thereby
distorting the pattern evoked by the second odor. In our model a delayed inhibitory feedback
signal is directed to the input units in such a way as to cancel out the current input, leaving
the system free to respond to new odors as if the first one were not there.

Our model is not intended as a faithful representation of any particular animal olfactory
system. Present anatomical and physiological knowledge do not permit such detailed mod-
elling. Rather, our focus is on the computations performed by different groups of neurons,
based on general biological findings, which we review briefly here.

In animals, different odor molecules produce different, distributed activity patterns across
the neurons of the olfactory nerve, which provide the input to the olfactory bulb [4, 5]. We do
not model this part of the processing. We will simply represent different odors as different but
overlapping input patterns to the bulb. They are temporally modulated by the animal’s sniff
cycle (typically 2-4 sniffs per second), i.e., active only during and immediately after inhalation.

The main cell types of the mammalian bulb are the excitatory mitral cells and the inhibitory
granule cells. The mitral cells receive the odor input and excite the granule cells, which in turn
inhibit them. The outputs of the bulb are carried to the olfactory cortex by the mitral cell axons.
In vertebrate animals, odors evoke oscillatory bulbar activity in the 35-90 Hz range, which
may be detected by surface EEG electrodes [6, 7]. Different parts of the bulb have the same
dominant frequency but different amplitudes and phases [7, 8], and this oscillation pattern



is odor-specific [8, 9]. These oscillations are an intrinsic property of the bulb, persisting after
central connections to the bulb are cut [10, 11]. (In invertebrates, oscillations exist without
odor input but are modulated by odors [12].) Upon repeated presentation of a conditioned
odor stimulus, the bulbar oscillations weaken markedly [13]. Since olfactory receptor neurons
exhibit only limited adaptation [14, 15], this adaptation must originate either in the bulb or in
cortical structures.

The pyriform or primary olfactory cortex receives bulbar outputs via the lateral olfactory
tract, which distibutes outputs from each mitral cell over many cortical locations [4]. The sig-
nals are conveyed to the (excitatory) pyramidal cells of the cortex, both directly and via feed-
forward inhibitory cells in the cortex. The pyramidal cells send axon collaterals to each other
and to feedback interneurons which, in turn, inhibit them. There is thus excitatory-inhibitory
circuitry as in the bulb, and oscillatory responses to odors are observed in the cortex, too.
However, the cortex differs from the bulb in the much greater spatial range of the excitatory
connections and in the presence (or at least the greater extent) of excitatory-to-excitatory con-
nections. This anatomical structure has led a number of workers to model the olfactory cortex
as an associative memory for odors [16, 17, 18, 19, 20, 21]. Furthermore, the oscillations in the
cortex require input from the bulb; they do not occur spontaneously. Cortical output, includ-
ing the feedback to the bulb, is from pyramidal cells [4]. Some of the feedback is direct, while
some of it is via other cortical centers, notably the entorhinal cortex. Most central feedback to
the bulb is to the granule cells [5]. Cooling the cortex, presumably reducing or removing the
central feedback, enhances the bulbar responses [22].

The basic features outlined here constrain our model: we employ coupled excitatory and
inhibitory populations in both bulb and cortex, we wire the network so that odors evoke oscil-
lations in the bulb, which drive similar cortical oscillations through excitatory and inhibitory
connections, and we send the central feedback to reduce the bulbar responses.

We will neglect many known features of animal olfactory systems, such as (to name a few)
the patterns of connectivity from receptors to mitral cells, the dendrodentritic character of the
mitral-granule synapses, and the differing spatial range of connectivity in bulb and cortex.
Indeed, the model has no geometry: “location” and “distance” have no meaning here. We
retain only the basic elements necessary to illustrate the basic operation of the system, in order
not to obscure the functions we focus on (detection, recognition, and segmentation).

We will also hypothesize features of the system, in particular the nature of the feedback
signal from the cortex to the bulb, for which there is not yet experimental evidence (though
they are not incompatible with present knowledge). These assumptions will be necessary
in order to make an explicit model that can be tested computationally. Some details of its
implementation are neither crucial to the computational function of the model nor intended
as explicit neurophysiological predictions. However, the basic framework of the model and
the dynamical properties we find for it are subject to experimental test.

In the next section we present the model: its equations of motion and how it detects, recog-
nizes, and segments odor inputs. The following section demonstrates how it works in simula-
tions. In the final section we discuss the implications of our work, including potential experi-
mental tests for this and related models and how they can help us understand the functioning
of the olfactory system.

2 The model

Our model consists of two modules, a bulb and a cortex, with feedforward and feedback con-
nections between them. It is depicted schematically in Fig. 1. The bulb encodes odor inputs as
patterns of oscillation. These form the input to the cortex, which acts as an associative memo-
ry for odor objects, recognizing them by resonant oscillation in an odor-specific pattern when
the input from the bulb matches one of its stored odor memories. The odor-specific resonant
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Figure 1: The model. Odor inputs I are fed into the mitral units () in the bulb. These interact with the inhitory
granule units (y), both locally (vertical connection lines) and nonlocally, via the connection matrices H and W
(diagonal connection lines). The mitral units project their outputs to the cortex via the feedfoward matrix C*~¢.
The excitatory units in the cortex (u) receive these inputs both directly and indirectly via the feedforward inhibitory
units (z). In addition to the local excitatory-inhibitory connections (vertical lines) between the excitatory (u) and
the feedback inhibitory units (v), there are nonlocal connections among the excitatory units (J, solid lines) and from
excitatory to inhibitory units (W, dotted lines). The outputs of the excitatory units are fed back through a matrix
C°™® to the granule units in the bulb after rectification and low-pass filtering. (Details of the rectification/filtering
operation are shown in Fig. 6.)

cortical activity pattern is transformed to a feedback signal to the bulb, which approximately
cancels the effect of the odor input that elicited it. The system is then able to respond to a
newly arrived odor superposed on the previous one. In this way it segments temporally the
different odor objects in the environment.

The model is a rate-model network [23], in which we associate each unit with a local pop-
ulation of cells that share common synaptic input (mitral cells for the excitatory units, granule
cells for the inhibitory ones). The output (activation) of a unit, representing the average fir-
ing rate within the corresponding population, is modeled as a sigmoidal function of the net
synaptic input.

In both the bulb and cortex modules, the units occur in pairs, one unit excitatory and the
other inhibitory. In the absence of coupling between different such pairs, they form indepen-
dent damped local oscillators. The coupling between pairs leads to oscillation patterns across
the modules, with specific amplitudes for the individual local oscillators and specific phase re-
lations between them. The odor input makes these oscillatory patterns different from odor to
odor; thus, these patterns form the internal encoding of the odors. The sizes of the local popu-



lations corresponding to our formal units are different for excitatory and inhibitory units; this
difference is accounted for in the model by appropriate scaling of the synaptic strengths.

We turn now to the explicit mathematical description of the two modules and the coupling
between them.

2.1 the bulb

The bulb model we employ was introduced by Li and Hopfield (1989) [24, 25]. For complete-
ness, we review it here.

The odor input to (mitral) unit 7 is denoted I;. (We will also use a vector notation, in which
the entire input pattern is denoted I.) Adding to this the synaptic input from granule cells
within the bulb, we obtain an equation of motion

i = —az; — »_ Hjgy(y;) + i )
J

for the (local population average) membrane potential z;. Here o' is the membrane time
constant, g,(-) is the (sigmoidal) activation function of the granule units, y; is the membrane
potential for granule unit j, and Hzoj is the inhibitory synaptic strength from granule unit j
to mitral unit 4. All the H}; are non-negative; the inhibitory nature of the granule cells is
represented by the negative sign in the second term on the right-hand side. The signal the bulb
sends on to the cortex is carried by the mitral unit outputs g, (z;) (with g;(.) their activation
function). We have not included mitral-mitral connections here, because the experimental
evidence for them is weak, but including them would not change the properties of the model
qualitatively.
For the inhibitory units, representing local populations of granule cells, we have, similarly
to (1),
i = —ay; + Y Wigs(z)) + I, 2)
j

with the mitral-to-granule synaptic matrix WZ(; Here the external input Ij represents the cen-
trifugal input (from the cortex), which contains the feedback signal that implements the odor-
specific adaptation. In describing the response to an initial odor, it can be neglected or taken
as a constant background input.

To see how this network produces oscillatory excitation patterns in response to an odor,
start by taking the input I to be static. It determines a fixed point Z; and g; of the equations,
ie., #; = y; = 0 at z; and y;, which increase with odor input I. Taking the deviation from this
fixed point as z; — z; — z; and y; — y; — v, linearizing and eliminating the y; leads to

T; + 2ax; + OZZII?i + Z Aij.’Ej, =0, 3)
j

where the matrix A = HW, with H;; = H%g;(gj) and W;; = Wig-g’m(a‘:j). This equation de-
scribes a coupled oscillator system, with a coupling matrix A. Denoting the eigenvectors and
eigenvalues of this matrix by X, and A, respectively, (3) has solutions x = }°;, ¢, Xyexp[—at £
i(vV Akt + ¢k)], with ¢, and ¢y, the amplitude and phase of the k" mode. If A is not symmetric
(the general case), )y, is complex, and the mode has oscillation frequencies wy, = Re(v/Ag). The
amplitude for mode k will grow exponentially (in this linearized theory) if £Im(v/ ;) > . Its
growth will be limited by nonlinearities, and it will reach a steady-state saturation value. In
this spontaneously oscillating state, the fastest-growing mode, call it the 15* mode, will dom-
inate the output. The whole bulb will oscillate with a single frequency w; (plus its higher
harmonics), and the oscillation amplitudes and phases may be approximated by the complex
vector X1. Thus, the olfactory bulb encodes the olfactory input via the following steps: (1)



the odor input I determines the fixed point (X,¥), which in turn (2) determines the matrix A,
which then (3) determines whether the bulb will give spontanous oscillatory outputs and, if it
does, the oscillation amplitude and phase pattern X; and its frequency ws.

Strictly speaking, this description only applies to very small oscillations. For larger ampli-
tudes, nonlinearities make the problem in general intractable. However, we will suppose that
the present analysis gives a decent qualitative guide to the dynamics, checking this assump-
tion later with simulations of the network.

In this model, oscillations arise strictly as a consequence of the asymmetry of the matrix A.
The model could be generalized to add intrinsic single-unit oscillatory properties, and these
might enhance the network oscillations. However, a model with symmetric A and intrinsic
oscillatory properties only at the single-unit level can not support oscillation patterns in which
the phase varies across the units in the network. We will return to this point in the Discussion
section.

A word about timescales: The odor input varies on the timescale of a sniff: 300-500 ms.
The oscillations are in the 40 Hz range, so the input I hardly changes at all over a few oscilla-
tion periods (~ 25 ms). We may therefore treat periods of several oscillations as if the input
were static within them, and do the above analysis separately for each such period (adiabatic
approximation).

With inhalation, the increasing input I pushes the fixed point coordinates z; from an initial
position (where the activation function g(z) has low gain) through a range of increasing gains,
thereby increasing the size of some of the elements of the matrix A (recall the definition of A
above). This increases the magnitude of both the real and imaginary parts of the eigenvalues
Ak, until the threshold where |Tm(v/A;)| = —a, where oscillations appear. These oscillations
increase in amplitude as the input increases further, until the animal stops inhaling and the
input I decreases. Then the oscillations shrink and disappear as the system returns toward
its resting state. This rise and fall of oscillations within each sniff cycle give the bulb outputs
both a slowly-varying component (2-4 Hz) and a high frequency (25-60 Hz) one, as observed
experimentally [7].

It is not known how the synaptic connections represented in the model by the matrices H°
and WY develop in the real olfactory bulb, and we do not attempt to model this process here.
Itis possible that the real bulb acts, to some degree, as an associative memory as a result of this
learning. However, our conclusions will not depend on this. Similarly, our analysis does not
depend on details of the synaptic matrices, such as their range and degree of connectivity. We
require only that the connections lead to distinct oscillation patterns for different odors, with
dissimilar patterns evoked by dissimilar odors.

2.2 the cortex

Our cortical module is structurally similar to that of the bulb. However, there are the following
significant differences: (1) The cortex receives an oscillatory input from the bulb, while the
bulb receives non-oscillatory (at the time scale of the cortical oscillation) input; (2) The cortex
has excitatory-to-excitatory connections, while our bulb module does not.

We focus on the local excitatory (pyramidal) and feedback inhibitory interneuron popula-
tions. The units that represent them obey equations of motion similar to those for the mitral
and granule units of the bulb:

U = —Qu; — ﬂogv(vi) + z Jiojgu(uj) - Zﬁ%gv(vj) + Izba (4)
J J

b o= —owi +70gu(ui) + Y Wigu(uj). (5)
J

Here u; represent the the average membrane potentials of the local excitatory populations

5



and v; those of the inhibitory populations. The synaptic matrix J° is excitatory-to-excitatory
connections, H? is inhibitory-to-excitatory connections, and WY is excitatory-to-inhibitory con-
nections. For later convenience, we have written the local terms (the effect of v; on u; and vice
versa) explicitly, so A? and W° have no diagonal elements. We also assume J$ = 0. IP are the
net inputs from the bulb, both directly and indirectly via the feedforward inhibitory units (see
later for the description of this pathway). Like the bulb activity itself, these contain in general
both a slow part Izbo, varying with the sniff cycle, and an oscillating (y-band) part 6Izb, ie.,
I = 10 + 61P.

We can carry out the same analysis as in the bulb, taking the fixed point as (@, ¥), which are
determined adiabatically by I?, i.e,, 1 = v = 0 at (@, ¥) when I? = I?° with §I? = 0. Taking
u — u— 1, v— v — ¥, linearizing and eliminating the v;, we obtain

uz + 2[2(1513 zy]

+ Z[ + IBz'Yz ang + 'YZHZJ + /BZVI/’L] + Z szWkJ]u] (at + )éjzb (6)

Here g; = ﬁogéj(lﬁi)/ Y = 70941(17'1')/ Ji] J]gu(uj) HZJ = ﬁ%g;(ﬁj)/ and WZ] - ngu(uj)
Thus this is a system of driven oscillators coupled by connections J, H, and W and driven by
an external oscillatory signal SIP + 1P, which is proportional to SIP for a purely sinusoidal
oscillation. A single dissipative oscillator driven by an oscillatory force will resonate to it if
the frequency of the driving force matches the intrinsic frequency of the oscillator. A system
of coupled oscillators has its intrinsic oscillation patterns — the normal modes determined
by the coupling. Analogously, it will also resonate to the input when the driving force, a
complex vector proportional to §I?, matches one of the intrinsic modes, also a complex vector,
in frequency and in its pattern of oscillation amplitudes and phases.

It is apparent from Eq. (6) that the matrices H and W play the same roles. Therefore, for
simplicity, we will drop the inhibitory-to-excitatory couplings H from now on, thinking of
the fact that the real anatomical long-range connections appear to come predominantly from
excitatory cells.

Odor selectivity and sensitivity

In our model, the olfactory cortex functions as an associative memory, as described and mod-
eled by a number of authors [16, 17, 18, 19, 20, 21]. It is similar to a Hopfield model, but instead
of stationary patterns it stores oscillating patterns which vary in phase as well as magnitude
across the units of the network. It stores the memory or information about the odors in the
synaptic weights J° and W0, or, effectively, the coupling between oscillators. It then recognizes
the input odors, as coded by the oscillating input patterns 6I° (which are linearly related to the
bulbar oscillatory outputs), by resonating to them, giving high-amplitude oscillatory respons-
es itself. If, however, the input §I° does not match one of the stored odor patterns &* closely
enough, the cortex will fail to respond appreciably.

In the present model the memory pattern ¢! for odors 4 = 1,2, ... are designed into the
synaptic connections J and W. Let w be the oscillation frequency, 6I° o e ™!, Once the
oscillation reaches a steady amplitude u; e~ W we have 4; = —iwu;, i; = —iwl;, SO we get

i i
= [-2a - ;(ﬁm + o) + Y [Jij — (5z adij)uj + E(—lw + a)dIy. 7)
J
The second term [...] on the right hand side gives an effective coupling between the oscillators.

From now on in this analysis we will make the approximation that the different local oscillators
have the same natural frequencies, i.e. 3;7; is independent of i. Assuming further that the
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oscillation frequencies for different odors are nearly the same, the odor patterns can then be
stored in the matrices in a generalized Hebb-Hopfield fashion as

My = [Ty = —(BW — aly)] = T Y elel”, ®)
uw

or, with ¢! expressed in terms of amplitudes and phases as |£!| exp(—ig!'),

Jij = Ty IELNIE] | cos(¢f — ¢F) ©)
w

By = T JEHIE wsin(¢ — ¢%) + acos(h — )] (10)
"

Note that here both kinds of connections, J (excitatory-to-excitatory) and W (excitatory-to-
inhibitory), are used to store the amplitude and phase patterns of the oscillation. J is symmet-
ric, while W is not.

These connections can be obtained by an online algorithm, a simplified version of the full
Hebbian learning treated by Liljenstrom and Wu [20, 21]. Suppose the cortex has effective os-
cillatory input 61° = ¢re~ 1wt 4 ¢r*elwt during learning of the u!* pattern. Here we make explicit
the real nature of the signals. Suppose also that the J and W connections inactive, consistent
with the picture proposed by Wilson, Bower and Hasselmo [17, 19], who suggested that learn-
ing occurs when the long-range intracortical connections are weakened by neuromodulatory

effects. Then the linearized (4) and (5) are simply

@ +ou; = —Pu;+ eIV 4 ghrelvt
Ui tav;g = yug, (11)
with solution
—iw+a .
i(t) = fe ' +c.c.
wi(?) —w2+a2+ﬂ7—2iaw§’e Hec
vi(t) = i et 4 cc. (12)

—w? + a? + fy — 2ioaw ™
where c.c. denotes complex conjugate. In other words, the cortical activities are clamped by
the inputs.

For Hebbian learning, J;; o u;(t)u;(t), and, after time averaging, d.J;; o< fOQW/ “ui(t)u;(t)dt,
leading to

w? + a? .
5Ji]’ X |_w2+a2+’37_2iaw|2(§f§§t +§ZN gf)
w? + o?
= 2| — W2 I 2 +ﬁ’)’ _ 21aw|2|£f“£;|cos(¢f - ¢§L) (13)

Similarly, 6W;; f02”/ “ v;(t)u;(t)dt leading to

Wi g 167 il + &G+ (Fiw + )G ]
2
R +757 “ianp WIEIE sin(@F - ¢) + alelllef cos(e — g1 (14)

Then, if the relative learning rates for J and W are tuned appropriately, we simply recover the
formulae (9) and (10). In actual online learning, we can use high-pass versions of u and v to



learn J and W to remove the baseline value, i.e., the operation point u and v, which does not
contain odor information.

To see the selective resonance explicitly, suppose that different patterns £# are orthogonal to
each other. Let us denote the overlap (1/N) 3, §IPE} of the input §IP with the stored pattern
&) by 6I*. Then, multiplying (7) by £ and summing on 4, we find that at steady oscillatory
state, the response u* = (1/N) ¥, u;£} to pattern &* obeys

i = —(20 = Tyt = = (B + o?u + = (~iw + a)51* (15)

This is like an oscillator with oscillation frequency (8;y; + o?)/w and an effective oscillation
decay rate 2« — J. It resonates to external oscillatory input of frequency w ~ /f;y; + a? with
a steady state amplitude

A (—iw + a)6I* _ (14 ia/w)oI

= ~ 1
By +a? —w? —iw(2a — J) 20 —J (16)

However, for an input §IP orthogonal to all the stored patterns, 6* = 0 for all ), and the res-
onance will be washed out when J < 2. For J > 2q, the network will support spontaneous
oscillations analogous to those in the bulb, but not as observed in the cortex. The effect of the
long-range couplings, through the parameter .J, is to reduce the damping in the circuit from
20 to 2a — J when the input matches a stored pattern, thereby sharpening the resonance as
J — 2a while we keep J < 2a. On the other hand, the resonant driving frequency depends
only on the single-oscillator parameters «, § and 7.

This oscillatory associative memory enjoys the usual properties that characterize Hopfield
networks [26], including rapid convergence (a few oscillation cycles if the presented pattern
has reasonable overlap with a stored one), robustness with respect to noise and corrupted
input, and a storage capacity of the order of N random patterns, where N is the network size.

2.3 Coupling between bulb and cortex

The model has both feedforward (bulb-cortex) and feedback (cortex-bulb) connections. The
former transmit the bulbar encoding of the input odors to the cortex for recognition, while the
latter permit segmentation by producing adaptation to recognized odor objects.

bulb to cortex

As mentioned in the Introduction, in the real cortex, the excitatory cells receive input from
the bulb both directly from the fibers of the lateral olfactory tract and in a slower pathway
via feedforward inhibitory interneurons in the cortex. We model this in the following way.
The synapses from local bulb populations j to local cortical populations 7 are specified by a
matrix C}’jﬁc. The values of these connections are not important in the model, and very little
is know about them, so we will take them to be random. The resulting signals are then fed
to the excitatory cells, both directly and, with the opposite sign, through a parallel low-pass
tilter, representing the effect of the feedforward inhibitory cells; see Fig. 1. Details are given in
the appendix.

The combination of the direct excitatory and low-pass filtered inhibitory signals makes the
feedforward pathway act as a high-pass filter, partially cancelling the slow part I*® of the bulb
output from the cortical input. Consequently, the net input to the cortical excitatory units
is dominated by the oscillatory component of the bulb activity, which encodes information
about the odor input. (We do not know how well such a cancellation is actually achieved in
real olfactory systems, but this could be tested experimentally.)



cortex to bulb

The odor-specific adaptation that forms the basis for odor segmentation in our model is im-
plemented using a feedback signal from the cortex to the granule units of the bulb. We do not
know how such a signal is generated in animals, or even whether it is, although anatomically
such a pathway exists. If the signal does exist, it likely also involves areas such as entorhi-
nal cortex, which contributes to the centrifugal input to the bulb. These areas lie outside the
scope of the present model, so we will simply construct a suitable signal and explore the con-
sequences.

In exploratory computations, we have found that this form of feedback control only works
if the signal is slowly varying in time (on the order of the sniff cycle time or slower). Merely
feeding back the oscillating cortical activities does not appear to permit any kind of robust
stimulus-specific adaptation.

Thus, we generate the feedback signal in the following ad hoc fashion: First each excitatory
cortical output g, (u;) is run through a threshold-linear element to remove its non-oscillatory
part, which carries no odor information. Then the output of this element is run through a
low-pass filter. The time constants of this filter are on the order of the sniff cycle or longer. The
net result is a signal pattern which takes a sniff-cycle time or so to grow to full strength. The
signal component from excitatory unit ¢ will be proportional to the amplitude of the oscillation
of that unit, so this signal will contain information about the odor that evoked the cortical
oscillation pattern. The explicit form of the equations used to generate the feedback signal in
the simulations is given in the Appendix.

Since we rectify and low-pass only the excitatory cortical outputs g, (u;), the feedback sig-
nal includes only the odor information coded in the amplitude but not in the phase pattern
of the cortical oscillation. Phase information could be included by (for example) feeding the
difference signals g, (u;) — gu(u;) through the rectification and low-pass processes. However,
we have not explored such mechanisms in this work.

The granule units in the bulb respond to the feedback signals by changing their activities
proportional to it. These changes are then transmitted to the mitral cells by the synaptic matrix
H. As shown by Li [25], a feedback signal

F o H'I, (17)

will, when transmitted onward to the mitral units, cancel the odor inputs to the bulb (in linear
approximation).

In our model we want to make this cancellation work for all the odor patterns stored in
the cortex. Denoting by Gé-‘ the rectified and low-passed cortical output when the system is
stimulated by odor pattern I F this can be achieved by a Hebbian feedback connection matrix
CP that maps G* to feedback signal F# for each odor y in a single layer network:

CiP o Y FIGE =3 H' S IEGY. (18)
7 k 7

3 Simulations

We have simulated a network with bulb and cortical modules each consisting of 50 excitatory
and 50 inhibitory units. They were coupled as described in Sect. 2.3 and the Appendix. The
coupled differential equations were integrated using a fourth-order Runge-Kutta routine from
Numerical Recipes [27].

We used three random odor input patterns I, Z“ . Their elements were drawn independently
for each 7 and p from a uniform distribution on (0,1]. The elements of the granule-to-mitral
synaptic matrix H were taken to have the form H;; = const. - J;;. We designed the mitral-
to-granule matrix W so as to make the bulb oscillate in response to the three input patterns,
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taking W;; oc Im 35 _; (¢!, Here the (/' are complex, with amplitudes resembling the input
odor patterns I and with random phases. Since W should have non-negative elements, we
simply zeroed out the negative W;; in the construction.! This dilution did not affect the bulb
oscillations qualitatively. Other parameters were set as in [24], so the evoked oscillations were
in the 40-Hz range.

The cortical design followed Sect. 2.2. The local couplings % and v° were chosen so that the
cortical oscillation frequency roughly matched the bulbar one, i.e., 3%y +a? ~ @? (see equation
(16), where @ is the average oscillation frequency in the bulbar outputs. The inhibitory units
had the sigmoidal activation function used in the model of the bulb [24]. In some of our
simulations, the activation function of the excitatory units also had this form. In obtaining the
results presented here, however, we used a piecewise linear activation function with gains of 1
and 2, respectively, in the low- and high-input regions above threshold. This choice was made
only for convenience in analyzing the nonlinear dynamics and is not essential for the function
of the network.

The cortical synaptic matrices J and W were designed to store oscillation patterns for two of
the three odor input patterns, in the following way. For each of the two odors, we stimulated
the bulb with its input pattern I} and fed the resulting oscillatory bulb output through the
bulb-to-cortex matrix Cz-bj_’C and the subsequent high-pass filtering operation to the cortex,
with the intracortical connections J° and WO set to zero. The resulting oscillation patterns in
the cortical units for the two odors were then used as & in constructing J and W.

We modified the Hebb rule (eq. (8) or egs. (9) and (10)) slightly, using, instead, a pseudoin-
verse formula

My = J Y €nh”, (19)
o

where 3, n"*¢¥ = Né,,. This was done only to reduce finite-size effects due to mutual over-
laps (of order v/N) between patterns, and would be inessential in sufficiently large networks.

As explained in section 2.3 and the Appendix, the slowly-varying feedback signal used
for the odor-specific adaptation was generated by a threshold-linear rectification, followed by
a pair of simple linear filters. The time constants of these (3 and 0.3 sec respectively) would
made it take 10-12 256-ms sniff cycles to generate a full strength feedback signal if the cortical
signal were held constant. Similarly, the adaptation takes just as long to wear off after the
stimulus is removed.

Like the intracortical M matrix, the cortex-to-bulb matrix C°~" was modified using the
projection-rule algorithm to eliminate finite-size overlap effects between the cortical oscillation
patterns of different odors. Thus, in the formula (18), we replaced the rectified and low-pass-
filtered cortical patterns G by éé-‘ , where G* are vectors such that G* - G¥ = N§*.

Fig. 2 shows the bulbar and cortical oscillatory response patterns evoked on 5 of the 50
mitral or cortical excitatory units by three odors: A, B, and C. Only odors A and B are stored
in the cortical memory in the J and W matrices. Different amplitude response patterns to
different odors are apparent. The cortex resonates appreciably to only odors A or B, but not to
C, demonstrating the selectivity of the cortical response.

Fig. 3 demonstrates odor adaptation to odor A. The response amplitudes decay quicky
in successive sniffs, although the oscillation patterns do not change appreciably before the
amplitudes decay to zero. The way this comes about is that the feedback signal generated by

'In the bulb model of Li and Hopfield[24, 25], the idea was that extensive asymmetric random synapses would,
for a large network, automatically generate a distributed encoding of odors in the amplitudes and phases of os-
cillation patterns in the network. Here we will be more concerned with how these patterns are processed by the
cortex, so, for convenience, we have engineered particular amplitude patterns in through the bulbar W matrix
in this fashion. However, the particular forms used for H and W are not important for the problem that we are
studying here, as long as A = HW is sufficiently asymmetric.
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Figure 2: A, B, C: bulbar and cortical oscillation patterns for odors A, B (stored in the associative memory in
the cortex) and C (not stored). In each pattern, we plot temporal traces of outputs from 5 of the 50 mitral or
cortical excitatory units during one sniff cycle lasting 370 milliseconds, roughly the first half of which is inhalation.
Note the modulating of oscillation by the sniff cycle, and the different oscillation amplitudes for different units.
Oscillation phases also differ between units, though they are not apparent in the figure. The same format is used
to display bulbar and cortical responnses in the following figures. Cortex-to-bulb feedback is turned off for the
results shown in this figure. Note that the cortex responds little to odor C, since the input does not match any of
the stored oscillation patterns.

:
tee e
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A, when relayed by the granule cells to the mitral ones, creates an effective extra input signal
A (anti-A), and by the third sniff A + A = 0.

To quantify the similarity between oscillation patterns, we extract an N=50 dimensional
complex vector O from the temporal Fourier transform of the activity of the cortical excitatory
units during the sniff cycle, with the component O; specifying the amplitude and phase of the
oscillations in excitatory unit s. We can measure the similarity between O and O’ by the nor-
malized overlap Soor = [(0]|O')/(|O| - |O'|), which is 1 for O « O’ and near zero (O(1/v/'N))
for two unrelated patterns. Calling the pattern vectors A% Al A2 and A3 for cortical response
to odor A without adaptation and during the first, second, and third sniff cycles of the adap-
tation respectively, we find Spop1 = 0.9997, Spop2 = 0.992, and Spoxs = 0.74, with response
amplitudes |A'|/|A%| = 0.97, |A?|/|A% = 0.3, |A3]/|A%] = 0.08. Thus, the strength of the
response is already significantly weakened after one sniff, but its cortical pattern of variation
remains undistorted through several sniffs.

The way this adaptation varies in successive sniffs depends on both the time constants
in the feedback circuitry (as discussed above) and the strength of the filtered signal fed back
to the bulb. In the simulations shown here, the latter was strong enough that even after one
sniff, a large fraction of the input signal is cancelled by the feedback, and after two sniffs the
cancellation was nearly complete. A smaller feedback strength and a correspondingly longer
time constant of the feedback circuitry would make it take longer for the adaptation to set in.
Similarly, the time it takes for the adaptation, once established, to wear off is set by the same
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Figure 3: Demonstrating the adaptation to odor A, with the feedback from cortex to bulb active. Plotted are the
responses to odor A alone during three successive sniffs. Note that the response magnitudes decay in successive
sniffs, but the response pattern, in particular, the relative amplitude pattern, stays roughly the same from the first
to second sniff before responses disappear at the third sniff.

time constants (for the values used here, around 3 s or 12 sniff cycles).

Fig. 4a demonstrates the segmentation capability of the system. The response B*® to the
odor mixture A+B at the third sniff after the first 2 sniffs of odor A is quite similar to that, BY,
to odor B alone: Sgseggo = 0.993, and |B%%8|/|B°| = 0.91. Thus, although A is still present, so
is the anti-A, so the net signal to the mitral units is A + A + B = B. This demonstrates odor-
specific adaptation in the model. The system responds with the activity pattern characterizing
the new odor, essentially undistorted by the existing odors in the environment, thus effectively
achieving odor segmentation. Odor B can be segmented as long as it enters after the adaptation
to A is established, in this model at the 3rd or any subsequent sniffs.

However, if odor A is suddenly withdrawn at the start of the 3rd sniff, when odor B is
introduced, the system response to odor B is weakened and distorted (this is particularly not-
icable in the bulbar responses). The reason for this is that the effective total input is now
B+ A =~ B— A, which is not at all like B (Fig. 4, b and c). This corresponds to the psychophysi-
cally observed cross-adaptation — after sniffing one odor, another odor at next sniff smells less
strong than it normally would and may even smell different [14]. In the normal olfactory en-
vironment, however, such sudden and near complete withdrawal of an odor seldom happens.
Let B and B be the cortical response vectors to cross adapted odor B and odor 1.5B.
Comparing with the response to odor B alone, we find Sgogeross = 0.94, [B%5|/|B%| = 0.23;
Spoeross = 0.97, |B5|/|B®| = 0.74. We can understand these results in the following way.
The feedback input A ~ —A acts to move the bulb operating point Z; to lower gain values
(for units where I* is strong), thereby weakening the overall response. For normal-strength
B, most of the mitral units in the bulb do not respond much, so the cortical response is corre-
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Figure 4: a: Segmenting odors A and B. After two sniffs of A as in Fig. 3, odor B is added, so the net input is
A+B. The response is almost the same as that to B alone (Fig. 2, middle). b: Cross-adaption: response to odor B
after odor A was present in two previous sniffs and then withdrawn. The response is weak and distorted. c: Same
as b, except that an odor B 1.5 times as strong is used. This strength is sufficient to evoke a stronger, less distorted
response.

spondingly weak and distorted relative to that to B in the absence of adaptation. The stronger
input 1.5B evokes a stronger bulb response, however, and the cortical response is stronger and
better (but still imperfectly) correlated with the unadapted pattern.

Since the olfactory bulb is nonlinear, the odor mixture A+B does not induce a bulbar re-
sponse equal to the sum of the responses to A and B individually. Consequently, the unadapt-
ed cortical response to it (Fig. 5, left panel) is weaker than that to A or B (the bulb response
to the mixture is not embedded in the cortical connections) and not strongly correlated with
the responses to the pure odors. The situation is similar to that for any other unstored odor,
such as C (Fig. 2, panel C), to which there is almost no adaptation in the bulb because there
is almost no cortical signal to feed back. The unadapted cortical response to A+B is stronger
than that to C because the nonlinearity in the bulb here is not strong enough to completely
destroy correlations between its reponses to the individual odors A and B and that to their
mixture. Nevertheless, the weakness of the cortical response reduces the feedback to the bulb
significantly, and the system does not adapt to the mixture as effectively as to individual odor-
s, as shown in the middle and right panels of Fig. 5. We also note that because the feedback
is weak, the attenuation of the signals in both bulb and cortex, is also weaker than for pure
stored odors (cf Fig. 3). Thus, the cortical response to the mixed odor, while initially weaker
than that to pure stored ones, lasts longer.
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Figure 5: This figure illustrates how adaptation in the model is not effective for the mixture odor (A+B)/2.
Responses to this odor are shown for 3 successive sniff cycles. The cortical response, although initially weaker
than that to pure A or B (Fig. 2) is still appreciable at the 3rd sniff (compare with adaptation to odor A in Fig. 3).

4 Discussion

We have presented a computational model for an olfactory system that can detect, recognize
and segment odors. Detection is performed in the bulb, which encodes odors in oscillatory
activity patterns. Recognition is carried out by the cortex using a resonant associative memory
mechanism. Finally, segmentation is implemented by a slowly-varying feedback signal which
acts to cancel the specific input that evoked the resonant cortical response.

The model is constrained by a few basic anatomical and physiological facts: Odors evoke
oscillatory activity in populations of excitatory and inhibitory neurons in both bulb and cortex,
these two structures are coupled by both feedforward and feedback connections, reducing the
cortical feedback enhances the bulbar responses, and the system exhibits odor-specific adap-
tation. Within these constraints, we have tried to build a minimal model. We have taken the
bulb module from earlier work by one of us [24, 25] and augmented it with a model of the
pyriform cortex and with feedforward and feedback connections between it and the bulb. We
have ignored many further known details of real olfactory systems that do not bear directly
on the fundamental property of stimulus-specific adaptation, and when we have had to go be-
yond current knowledge (as in constructing the feedback signal) we have done so in a purely
phenomenological way, avoiding hypothesizing specific details unrelated to the function of
the system. From the analysis of the model and the simulations we can see how the basic com-
putations necessary for olfactory segmentation might be carried out by the neural networks of
the bulb and cortex.

But do real olfactory systems actually function in this way? This can be tested at the level
of both the assumptions we put into the model and the properties we find for it. First of all, we
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have assumed that the feedback from cortex to bulb is slowly varying (i.e. that firing rates for
the feedback fibers vary on the timescale of the sniff cycle, but not of the oscillations found in
both the bulb and cortex). Furthermore, we have assumed that this feedback is odor-specific.
While the existence of some feedback is well-established, neither of these specific hypotheses
has been tested experimentally. However they both could be.

Properties we find in the model, beyond the fact that it successfully implements segmen-
tation, can also be tested. These include the following:

First, the fact that the feedback signal requires strong cortical activity to drive it means that
unfamiliar (unlearnt) odors will not be adapted to as strongly as familiar ones, so they will not
be so easily segmented from subsequently presented ones. As we saw in Fig. 5, this expecta-
tion also applies to unfamiliar mixtures of familiar odors. Furthermore, as we also noted, we
expect the weakening of the (initially weaker) responses with adaptation to be slower for such
mixtures than for familiar odors.

Second, cross-adaptation, as illustrated in Fig. 4, is a necessary consequence of the slow
feedback: The effective bulb input A ~ —A, from the previous presence of the adapting stim-
ulus, will be present for some time (depending on the time constants of the feedback circuitry)
whether odor A remains in the environment or not. Thus the total input to the bulb with A
still present will be very different from that with A suddenly removed. If there is odor-specific
adaptation of the kind necessary to perform segmentation when A remains in the environ-
ment (A cancelled by A), then a different response must occur when A is withdrawn. Present
evidence on cross-adaptation is rather limited, but psychophysical and electrophysiological
investigation of this phenomenon would be helpful in pinning down quantitatively the time
constants of the circuitry involved in segmentation.

If odor-specific adaptation is not implemented using our cortical feedback mechanism,
how else might it be done? One possibility to consider is single-unit-level adaptation (or fa-
tigue), which can be implemented in a network like ours by making the threshold for each
unit dependent on its own recent activity. In a model with the structure of ours (with bul-
b and cortical modules) but without feedback, such fatigue would have to be implemented
in the bulb; otherwise the activity there would not exhibit adaptation. This presents a prob-
lem if the activity patterns of different odors overlap significantly — it is not evident that one
can avoid changing the response to a new odor when some of the units active in the normal
response to it are to be fatigued. Indeed, in investigations of simple oscillatory associative
memories with such adaptation [29], temporal segmentation has been found only for patterns
with rather weak mutual overlap. This overlap will be weak for sparse patterns, but it is not
clear how sparse real evoked bulb and cortical activity patterns are, when looked at at the level
of resolution of the units in our model.

This problem is not present for the mechanism we propose, in which bulb units themselves
are not fatigued. Rather, the mechanism cancels the input to bulb units in exactly the degree
that they receive input from the adapting odor. It is as if every receptor activated by an odor
became adapted by an amount exactly equal to its initial response.

In our model, the feedback connections to the inhibitory bulb units have to have just the
right values to produce the necessary cancellation. In real olfactory systems, the strengths of
the centrifugal synapses on granule cells are presumably determined by some learning mech-
anism, and for our model to apply it is necessary that this mechanism find the right values
for them. As we know nothing about this mechanism, here in our model we just assumed the
necessary form. This form has a degree of plausibility because it is Hebbian, but very little is
known yet about learning in these synapses. Investigations could shed important light on the
validity of this key element of the model.

Another plausible mechanism, which could implement odor-specific adaptation in the bul-
b in more or less the right manner, is adaptation of receptor-bulb synapses in such a way that
the inputs to bulb capture mainly the transient but not static odor inputs. This would reduce
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the input signal for the adapting odor directly, at just the right places, and so does not suffer
from the problems that single-unit fatigue in the bulb does. However, there is a simple differ-
ence between the predictions of such a model and ours, since in ours the cortex, functioning as
an associative memory, only sends its feedback to the bulb (or only sends it at full strength) for
learnt odors. The receptor-mitral synaptic adaptation model would exhibit the same degree
of odor-specific adaptation for all odors, learnt or not. Of course, both mechanisms could be
present, and the difference could be large or small according to the relative size of the two
contributions.

The fact that we have employed both excitatory-to-excitatory (J) and excitatory-to-inhibitory
(W) cortical connections enhances the associative memory function by permitting oscillation
patterns which differ in phase as well as amplitude. This is of no help for selective adapta-
tion in the model as described here, since phase information is lost in the generation of the
teedback signal, but this information could be retained using more elaborate mechanisms, as
mentioned in Sect. 2.3.

It is not clear whether real olfactory systems code odors in the phases of their oscillation
patterns. However, in any case, a restricted version of our cortex, without W, could func-
tion with only amplitude-modulated patterns, similarly to the model of Wang et al [29]. The
addition of intrinsic oscillatory properties for individual units or, implicitly, the individual
neurons in the populations they represent, would not change the properties of such a network
qualitatively.

The three tasks carried out by the system — detection, recognition, and segmentation — are
computationally linked. For example, even if an ambiguous or weak odor is “recognized” by
the pyriform cortex in the sense that a characteristic oscillatory response is evoked there, that
response may be too weak to suppress further bulbar response. Then the system will continue
to respond to the odor in the same way as if it had not recognized it; that is, the odor-specific
adaptation necessary for segmentation can be seen as part of the recognition process.

While our units correspond to functional groups of neurons in real olfactory systems, our
model is of higher resolution than that of Ambros-Ingerson et al [18]. While we emphasize the
coding of odor information in distributed oscillation patterns, their model contains no explicit
treatment of dynamics on the 40-hz timscale or of the temporal segmentation problem. They
address instead a higher-level problem (hierarchical odor classification) with a higher-level
model. In such more complex situations, cortex-to-bulb feedback could be a more general,
active phenomenon than in the limited-scope problem we consider, but we do not address
such issues here.

Our network performs what might be called “the simplest cognitive computation”. It is
natural to expect that evolution has employed elaborations on this structure in other sensory
systems and in central processing. For example, hippocampal processing also employs oscilla-
tions, long-range intra-area associative connections, and feedback [30, 31]. In another context,
work by one of us [32] on visual processing suggests a function for slow feedback to inhibitory
neurons from higher areas in modulating the computations carried out in area V1. Our hope
is that studying and modeling the olfactory system in the way we have done here will lead to
insights into aspects of top-down/bottom-up interactions in other cognitive computations.

Appendix: Bulb-cortex coupling: implementation details

Feedforward

In the feedforward pathway from bulb to cortex, the mitral unit outputs g,(z;) are fed both
directly to the excitatory cortical units and in parallel, indirectly via feedforward inhibitory
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units. The process, as indicated schematically in Fig. 1, is described by the equations

L, = Z C’b_mgw (z5) (20)
2 = —oagzi+ L (21)
I} = Li—o0g.(2) (22)

Here L; is the input signal to the cortical location 4, C®™¢ is the connection matrix that trans-
forms the mitral outputs to the cortical inputs, z; are the membrane potentials of the feedfor-
ward inhibitory units, g,(.) is their activation function and az' is their time constant. IP is
then the total input signal to the i-th cortical excitatory unit in Eqn. (4). In general, this in-
put contains both slowly-varying and rapidly-oscillating components. The pathway via the
inhibitory feedforward units acts like a low-pass filter. Thus, the net effect is that the rapidly-
varying or high frequency components, which contain the odor information, are transmitted
to the cortex.

In the simulations reported in Sect. 3, we took g,(.) to have two regions of different gain
values, with a smaller gain at smaller input. We designed ¢ and the parameters of g,(.) so
that the net slow component of IZ-b pushed the cortical operation points u; and v; to stable
values close to, but below, their high gain region. Thus the cortex had a stable operating
point, enabling it to carry out its associative memory function more cleanly that without this
engineering refinement.

We make no claims about biological realism for the details of the feedfoward mechanis-
m. However, some kind of effective high-pass filter is essential to the robust functioning of
the model. Further experimental investigation of the dynamical properties of the feedfoward
pathway would be important for understanding how it actually works.

Feedback

To generate the half-wave rectified, low-passed feedback signal to the bulb from the cortical
excitatory unit outputs, we use three successive groups of units followed by a synaptic matrix,
as shown in Fig. 6:

Pi = —QpastPi + 9u(Wi)y Gi = —siow@i + 9p(Pi)y  Ti = —CgowTi + Gs (23)

I = m(t) Y Cf5 g (ry), (24)
j
where m(t) is a modulating signal that synchronizes with breathing, increasing during inhala-
tion and decreasing during exhalation.

With a short time constant 1/as,s and a strong nonlinear gy, the p; unit has a output g,(p;)
which is effectively g, (u;) thresholded above the average signal level. This “rectified” out-
put is then transformed by the two subsequent units ¢; and r;, both with long time constants
1/aglow and 1/a,,,, into a slowly-varying signal, which is modulated by a function m(t) (rep-
resenting the breathing rhythm of the animal) and fed back via the connections C**® to pro-
duce the centrifugal input I¢ to the granule units in the bulb.

It is not necessary to use two low-pass filter operations; the model works qualitatively the
same with just one. However, adding the second one delays the feedback signal somewhat,
giving the oscillations time to establish themselves before the feedback begins to act.

In a more complete model, the large time constants 1/agiow and 1/c) . could emerge as a
dynamic network property of secondary olfactory areas. Similarly, the modulating signal m ()
could arise from additional signals from other parts of the brain.

17



Pyramidal

output g(u)
Cortical output g(u) g(u) g(u)
g(u)
t
Effectively
thresholded output g(p)
Fast p units
effectively <® <§ <®
thresholds g(u)
t
owly integrated
Slow g units
integrating q q q
9(p)
t
Additional Even more
integration --- r r r slowly integrated
Slow r units outpuit g(r)
integrating g(q)
Effective
synaptic b
-
transform C Breath modulation
e signa m(t)

Feedback signal to bulb
onto the granule cells

Figure 6: Details of the feedback route. Only the oscillatory components of the cortical outputs g, (u) contain
the odor information. This component is extracted by half-wave rectification by the p units. The oscillatory g,(p)
is converted to slowly varying signals by two successive slow temporal integrating units ¢ and r. The resulting
signal r(t) is fed through the matrix C°~" and modulated with the breathing cycle by a signal m(t) to produce
the odor-specific feedback signal to the bulbar granule units. The temporal characteristics of signals from different
units are depicted schematically on the right.

References
[1] D.G. Laing Perception of odor mixtures. in Handbook of olfaction and gustation Ed. R. L. Doty, Marcel
Dekker, Inc. 1995. p 283-298.

[2] D. Horn and M . Usher, Parallel activation of memories in an oscillatory neural network, Neural
Comp 3 31-43 (1991)

[3] D. Horn, D. Sagi and M. Usher, Segmentation, binding and illusory conjunctions, Neural Comp 3
510-525 (1991)

[4] G. M. Shepherd, Computational structure of the olfactory system, in Olfaction — A Model System
for Computational Neuroscience Ed ] L Davis and H Eichenbaum, p 225-250, MIT Press (1990)

[5] G M Shepherd The Synaptic Organization of the Brain, 3rd edition, Oxford University Press (1990)

[6] W] Freeman, Spatial properties of an EEG event in the olfactory bulb and cortex, Electroencephalogr
Clin Neurophysiol 44, 586-605 (1978)

[71 W J Freeman and W Schneider, Changes in spatial patterns of rabbit olfactory EEG with condi-
tioning to odors, Psychophysiology 19, 44-56 (1982)

18



[8] W] Freeman and K A Grajski, Relation of olfactory EEG to behavior: factor analysis, Behav Neurosci
101, 766-77 (1987)

[9] E D Adrian, Sensory discrimination with some recent evidence from the olfactory organ, Br Med
Bull 6, 330-331 (1950).

[10] W ] Freeman and C A Skarda, Spatial EEG patterns, non-linear dynamics and perceptio: the Neo-
Sherrington view, Brain Res Rev 10, 147-175 (1985).

[11] A Gelperin and D W Tank, Odour-modulated collective network oscillations of olfactory interneu-
rons in a terrestrial mollusc, Nature 345, 437-40 (1990)

[12] K R Delaney, A Gelperin, M S Fee, ] A Flores, R Gervais, D W Tank and D Kleinfeld, Waves and
stimulus-modulated dynamics in an oscillating olfactory network, Proc Natl Acad Sci USA 91, 669-
73 (1994)

[13] S L Bressler, Changes in electrical activity of rabbit olfactory bulb and cortex to conditioned odor
stimulation, Behav Neurosci 102, 740-747 (1988)

[14] R W Moncrieff, The Chemical Senses, 3rd edition, CRC Press (1967)

[15] M Ma, T Leinders-Zufall, G M Sheperd, and F Zufall, Two forms of odor adaptation in single
olfactory receptor neurons, Soc Neorosci Abstr 23,741 (1997)

[16] L B Haberly, Neuronal circuitry in olfactory cortex: anatomy and functional implications, Chem
Senses 10, 219-238 (1985)

[17] M A Wilson and J D Bower, Cortical oscillations and temporal interactions in a computer simula-
tion of piriform cortex, ] Neurophysiol 67, 981-995 (1992)

[18] J Ambros-Ingerson, R Granger and G Lynch, Simulation of Paleocortex Performs Hierarchical
Clustering, Science 247, 1344-1348 (1990)

[19] M. E. Hasselmo, Acetylcholine and learning in a cortical associative memory, Neural Computation
5, 32-44 (1993)

[20] H Liljenstrém and X-B Wu, Noise-enhanced performance in a cortical associative memory model,
Int ] Neural Systems 6, 19-29 (1995)

[21] H Liljenstrém, Autonomous learning with complex dynamics, Int | Intelligent Systems 10, 119-153
(1995)

[22] C M Gray and ] E Skinner, Centrifugal regulation of neuronal activity in the olfactory bulb of the
waking rabbit as revealed by reversible cryogenic blockade, Exp Brain Res 69, 378-386 (1988)

[23] H R Wilson and ] D Cowan, Biophys ] 12, 1-24 (1972)

[24] Z Li and ] Hopfield, A model of the olfactory bulb and its oscillatory processing, Biol Cybern 61,
379-392 (1989)

[25] Z Li, A model of odor adaptation and sensitivity enhancement in the olfactory bulb, Biol Cybern
62, 349-361 (1990)

[26] JHopfield, Proc Nat Acad Sci USA 79 2554-2558 (1982), 81 3088-3092 (1984)

[27] W H Press, B P Flannery, S A Teukolsky, and W T Vetterling, Numerical Recipes in C, Cambridge
University Press (1988)

[28] H Liljenstrom, Modeling the dynamics of olfactory cortex using simplified network units and
realistic architecture, Int | Neural Systems 2, 1-15 (1991)

[29] D Wang, ] Buhmann and C van der Malsburg, Pattern segmentation in associative memory, Neural
Computation 2, 94-106 (1990)

[30] E T Rolls and A Treves, Neural Networks and Brain Function Ch 6, Oxford University Press (1998)

[31] M E Hasselmo, Neuromodulation and cortical function: modeling the physiological basis of be-
havior, Behav Brain Res 67, 1-27 (1995)

[32] Zhaoping Li, A neural model of contour integration in the primary visual cortex, Neural Comp 10,
903-940 (1998)

19



