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Motivation

» Suppose we want to sample from a given distribution 7 on a
finite state space S.

» Standard approach is to construct an ergodic markov chain
which has 7 as its stationary distribution.

> After running the chain for M steps for some large M, the
distribution over states tends to m, but hard to determine how
large M needs to be to get within a given distance.

» The coupling-from-the-past algorithm determines M
dynamically, in order to return exact samples from 7.



Forward simulation

Suppose we start in state /* at time —M and we have access to a
random subroutine Markov() which given state i produces state j
according to the chain’s transistion probabilities p;.

Fixed-time forward simulation:

i_pr <1 (start chain in state i* at time —M)
fort=—-M to —1
irr1 — Markov(iy)

return &g



Backward simulation

» Start by running the chain from time -1 to time 0. As we don’t
know the state of the chain at time -1, we must run the chain
from -1 to O for each of the n states which might occur at
time -1, i.e. we define a random function f_1(i) = Markov(i)
for i =1,...,n, which we denote by f; = RandomMap().

» Define F®,, =f10fp0---0f mi10fpy

» Then F?,,(i*) has the same distribution as in forward
simulation.



Coalescence

» F? can be updated through the equation F? = Ft0+1 of

» If FO becomes constant, i.e. F2(i) = F2(j) for all i,j, then
this remains true for all subsequent t’ (i.e. Vt' < t).

» When F? is constant say coalescence occurs from time t.
When this occurs there is no need to continue the backward
simulation to —M, as we must have F°,, = F.

» This is true for any M, so in particular if coalescence occurs
from time t, F°_ = F? and the sample returned comes from
the equilibrium distribution 7.

» Coupling-from-the-past is the procedure of working backwards
until t is large enough so that F? is constant, and then
returning the unique value in the range of that map.



Coupling-from-the-past

t<0
F? « the identity map
repeat
t+—t—1
ft < RandomMap()
Fp < Flyof;
until F(-) is constant

return the unique value in the range of F(-)



Theorem 1 With probability 1 the coupling-from-the-past protocol returns a value, and this value
is distributed according to the stationary distribution of the Markov chain.

Proof: Since the chain is ergodic, there is an L such that for all states i and j, there is a
positive chance of going from i to j in L steps. Hence for each t, F} ;(-) has a positive chance
of being constant. Since each of the maps FEL(~),F__2LL(~), ... has some positive probability € > 0
of being constant, and since these events are independent, it will happen with probability 1 that
one of these maps is constant, in which case F©,, is constant for all sufficiently large M. When
the algorithm reaches back M steps into the past, it will terminate and return a value that we will
call FO_OO. Note that F(loo is obtained from F:; by running the Markov chain one step, and that
F(ioo and F:éo have the same probability distribution. Together these last two assertions imply

that the output F(im is distributed according to the unique stationary distribution =. O



Why from the past?

> If we run the chain from time 0 into the future, finding the
smallest t such that F}(x) is constant and outputting that
value, the samples obtained are biased.

» To see this imagine a chain in which some states have a
unique predecessor, such states can't occur at the time of
coalescence.

> So must have FY = F, o f; rather than FP = fy o F, ;.

» Also must keep all random number used so far the same, each
time we decrement t.



Monotonicity

» For most models of interest, the number of states n is too
large to check coalescence by simulating a chain starting in
each state.

» Suppose S has a partial ordering <, and that there exist
elements 0 and 1 such that 0 < x <1 for all x € S.

» Set fy(x) = ¢i(x, ur) where ¢, is a deterministic function and
u; is a random variable. Suppose that ¢; has the property
that x <y = ¢¢(x, ut) < é+(y, ur) almost surely w.r.t. ue.

» Then rather than consider trajectories starting in all possible
states, we can check coalescence by just looking at
trajectories starting from 0 and 1.



Example: random walk

Example 2.1 A random walk: Suppose we have three balls which are dis-
tributed over two urns. With probability 1/2 we pick a ball from the left urn and
put it into the right urn. Alternatively, we take a ball from the right urn and
put it into the left wrn. If we find a chosen urn empty we do nothing. What is
the long-run average number M of balls in the right urn?
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Figure 1: State-flow diagram for the Markov chain in Example 2.1.

» The update rule for this example is monotonic, and can be
written as follows:

0y = {EZ;(&tll?g) ifgz? ne{0,1,2,3) (31
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Figure 10: CFTP for Example 2.1. The paths started in state 0 and in state 3
are shown as solid lines. The dotted lines are the paths started from interme-
diate states. However we do not need to monitor these to determine complete
coalescence. Note how the coin toss realisations of the previous iteration are
reused! Complete coalescence occurs at time —1, however we continue till time

0 and sample state 2.



Example: Attractive Ising model

wr) = e (- H@),
H(z) = 7%[J2mjwk7Bmek]
ook k
_ _ w(x, =41, 2_y)
P('T" =+l ’ I_") T on@a =41 wopn) (= -1, 1_y)’

More speciﬁcally7 at each step k& we independently draw a random number
U} which is uniform on the interval (O, 1) and a random number N which is
uniform on the lattice A. We then assign an upward spin to the site Ny, if

U < [P(J;Nk =+1 )LN,C),

First consider the case when J > 0, that is the ferromagnetic Ising model. Then
the probability P(zx = +1 | z_x) is the greater the more neighbours of N have
an upward spin. We may exploit this fact by equipping the state space of the

Ising model with an appropriate partial order <. We say the spin configuration
z is smaller than y, that is z <y if

z;j <y for all j € A.
Now, if # < y then

]P’(zN =+1 ’:LN) < P(yN =+1 ‘ ny) for any N € A.



