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Background

• C(++) is very fast but often inconvenient for research (especially plotting)

• Interpreted languages (here: Python) are excellent for research but in some
cases very slow

• Common procedure: Where speed is needed, use a compiled language, then
wrap the code for use from Python



Background

Donald Knuth (1974)

“Programmers waste enormous amounts of time thinking about, or worrying
about, the speed of noncritical parts of their programs, and these attempts at
efficiency actually have a strong negative impact when debugging and
maintenance are considered. We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3%.”

• Re-writing code is often very time-consuming and prone to errors

• How to optimize the critical 3% efficiently?



Background

Donald Knuth (1974)

“Programmers waste enormous amounts of time thinking about, or worrying
about, the speed of noncritical parts of their programs, and these attempts at
efficiency actually have a strong negative impact when debugging and
maintenance are considered. We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3%.”

• Re-writing code is often very time-consuming and prone to errors

• How to optimize the critical 3% efficiently?



Background

• C(++) is very fast but often inconvenient for research (especially plotting)

• Interpreted languages (here: Python) are excellent for research but in some
cases very slow

• Common procedure: Where speed is needed, use a compiled language, then
wrap the code for use from Python

• Cython: combines the best of both worlds



Background

• C(++) is very fast but often inconvenient for research (especially plotting)

• Interpreted languages (here: Python) are excellent for research but in some
cases very slow

• Common procedure: Where speed is needed, use a compiled language, then
wrap the code for use from Python

• Cython: combines the best of both worlds



Cython at a glance

• Open-source project: www.cython.org

• An optimizing compiler for the Python language

• Very active development

• Rapidly growing user base (many from science)

Use-cases:

1 Compiling Python code to machine-code
• Supports a big subset of the Python language
• Runs about 30% faster than plain Python code

2 Add types for speedups (hundreds of times)
• Optimize, don’t re-write!

3 Easily use native libraries (C/C++/Fortran) directly
• There are better tools, e.g., SWIG

www.cython.org


Example
Ridge regression using stochastic gradient descent

Goal: minimize
1
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∑
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α‖w‖2

Pseudo code:

input: {xi , yi}, α, Niter

w← 0
for t = 1, 2, ...,Niter do

xi , yi ← draw random sample
γ ← 1

αt

w← w − γαw
w← w − γxTi

(
yi − xTi w

)
end



Naive Python implementation

def ridge_sgd_naive(X, y, w, alpha, perm):

D = X.shape[1]
for t, i in enumerate(perm):

gamma = 1. / (1 + alpha*t)

# regularization step
for j in range(D):

w[j] *= (1. - gamma * alpha)

# loss step
z = 0
for j in range(D):

z += w[j] * X[i, j]

for j in range(D):
w[j] += gamma * X[i, j] * (z - y[i])

• Python: approx. 135 s

• Cython: approx. 97 s

import pyximport

pyximport.install()

from cython_file import cython_function

...
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Vectorized (Numpy) implementation

import numpy as np

def ridge_sgd_vectorized(X, y, w, alpha, perm):

for t, i in enumerate(perm):

gamma = 1. / (1 + alpha*t)

# regularization step
w *= (1. - gamma * alpha)

# loss step
z = np.dot(w, X[i, :])
w += gamma * X[i, :] * (z - y[i])

• Python: approx. 1.65 s

• Cython: approx. 1.44 s
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Cython: adding static types to naive implementation

def ridge_sgd_cython_types(np.ndarray[np.float64 t, ndim=2] X,
np.ndarray[np.float64 t, ndim=1] y,
np.ndarray[np.float64 t, ndim=1] w, double alpha,
np.ndarray[np.int64 t, ndim=1] perm):

cdef int D = X.shape[1]
cdef int i, j, t
cdef double gamma, z

for t, i in enumerate(perm):

gamma = 1. / (1. + alpha*t)

# regularization step
for j in range(D):

w[j] *= (1. - gamma * alpha)

# loss step
z = 0
for j in range(D):

z += w[j] * X[i, j]

for j in range(D):
w[j] += gamma * X[i, j] * (z - y[i])

• Run time: approx. 0.33 s
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Cython: static types and C pointers

def ridge_sgd_cython_pointers(np.ndarray[np.float64 t, ndim=2] X,
np.ndarray[np.float64 t, ndim=1] y,
np.ndarray[np.float64 t, ndim=1] w, double alpha,
np.ndarray[np.int64 t, ndim=1] perm):

cdef int D = X.shape[1]
cdef int i, j, t
cdef double gamma, z

cdef double *Xp = <double*> X.data
cdef double *yp = <double*> y.data
cdef double *wp = <double*> w.data
cdef long *pp = <long*> perm.data

for t, i in enumerate(perm):

...

for j in range(D):
z += wp[j] * Xp[i*D + j]

for j in range(D):
wp[j] += gamma * Xp[i*D + j] * (z - yp[i])

• Run time: approx. 0.24 s

• Replacing loops by BLAS functions: approx. 0.18 s
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Numba JIT implementation

from numba.decorators import autojit

ridge_sgd_numba = autojit(ridge_sgd_vectorized)

• http://numba.pydata.org/

• Just-in-time (JIT) compiler

• Run time: approx. 0.22 s

http://numba.pydata.org/


Summary
Stochastic gradient descent
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• Cython about 400 – 1000 times faster than naive Python

• Cython about 5 – 10 times faster than (vectorized) Numpy

• Comparable to Numba



Example 2
Recurrent neural network

• Loebel & Tsodyks (2007)

• 15 coupled EI networks (cortical columns)

• Each column: NE = 100, NI = 100

• External stimulus input
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• Cython about 85 times faster than naive Python

• Cython about 7 times faster than (vectorized) Numpy

• JIT compiler (Numba) much slower than Cython version



What was that all about?

• Goal: writing fast code in interpreted language

• Avoid unneccessary re-writing of (working) code

• Cython: simply add static types to existing (Python) code

• Only a few extra lines (about 5 minutes ...)

• Speedup: 50-1000 times (naive Python), 1-250 times (vectorized Numpy)

• In some cases, JIT compilers (e.g., Numba) may help, too


