
Updating Great Expectations, Not Bad Ones 
Old wine in a new bottle? 

Ritwik 
Tea-talk: 22st August, 2013 

NATURE NEUROSCIENCE VOLUME 16 | NUMBER 5 | MAY 2013 639

A R T I C L E S

Given stock options A and B, which one do you choose? Considerable 
progress has been made in the field of decision making and neuroeco-
nomics on this problem of ‘action selection’1,2. Optimal behavioral 
selection, however, not only depends on the ability to choose which 
action to perform but also the appropriate vigor to perform. For 
example, it may be wise to flexibly adjust one’s motivation to invest 
according to the overall state of the stock market, such as investing 
with lower frequency during an economic crisis.

The importance of properly regulating response vigor becomes 
apparent when one considers costs associated with performing an 
action. A rapid response may increase the rate of obtaining rewards but 
may also increase energetic costs. Conversely, a slow response may be 
energetically efficient, yet it delays all future rewards. The cost of delay-
ing future rewards critically depends on the net expected future reward 
given the current state of the animal. It is thus proposed that selection 
of response vigor should depend on the average or net expected reward 
(or ‘state value’), whereas action selection depends on values specific 
to individual options (and the relative value between them)3–5. This 
idea echoes two aspects of motivation proposed in classic animal psy-
chology: the motivation to steer toward making a specific action (the 
‘directing’ effect or action-specific motivation) and the motivation to 
generally ‘arouse’ or speed up all prepotent actions in a nonspecific 
manner (the ‘energizing’ effect or action-general motivation)3,6,7. It 
should be noted that the directing effect may also speed up actions 
toward particular goals, but the energizing effect acts diffusely on a 
wider set of actions. Experimentally, many classical studies in animal 
psychology have shown that response vigor is modulated by the rate 
of reward, providing some limited support for the energizing effects of 
average reward rate8. More recently, it has been shown that manipula-
tions of the size or probability of rewards affect choice direction and 
latencies in various choice tasks, which highlights motivation’s directing 

effects9–11. However, whether response vigor is indeed regulated by 
average or net expected reward, that is, whether motivation energizes 
behavior in a global manner, remains controversial.

It is believed that the basal ganglia have important roles in action 
selection1,2,12,13. Some studies on individuals with Parkinson’s dis-
ease and lesion studies using animal models, however, have suggested 
that the basal ganglia also have a prominent role in the regulation of 
response vigor14. Mounting evidence suggests that specific areas of the 
striatum encode specific types of values and regulate distinct aspects 
of value-dependent behavior15–17. Historically, the striatum, particu-
larly the ventral striatum, has been linked to motivation18,19, although 
other studies implicate the role of dorsal striatum in motivation20–22. 
However, previous studies have not separated the directing versus 
energizing aspects of motivation; therefore whether these processes 
can be mapped onto specific parts of the striatum remains unknown.

To address these questions, we designed a task that allows us to 
study both the directing and energizing aspects of behavioral regula-
tion. We first examined whether response vigor is indeed modulated 
by net expected future rewards and how this process is separable from 
the directing effects that are specific to individual actions. Second, 
using lesions, we examined which part of the striatum is involved 
in the regulation of net value–dependent response vigor. Finally, we 
recorded the activity of single neurons in DMS and ventral stria-
tum. The results demonstrate a critical role of the DMS in net value–
dependent regulation of response vigor.

RESULTS
Self-paced decision task
We designed a self-paced, two-choice behavioral paradigm, where 
a rat self-initiated a trial by poking its snout into a central odor 
port. After a rat poked its snout into the odor port (trial initiation), 
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The dorsomedial striatum encodes net expected 
return, critical for energizing performance vigor
Alice Y Wang1,4, Keiji Miura1–3 & Naoshige Uchida1

Decision making requires an actor to not only steer behavior toward specific goals but also determine the optimal vigor of 
performance. Current research and models have largely focused on the former problem of how actions are directed while 
overlooking the latter problem of how they are energized. Here we designed a self-paced decision-making paradigm, which 
showed that rats’ performance vigor globally fluctuates with the net value of their options, suggesting that they maintain  
long-term estimates of the value of their current state. Lesions of the dorsomedial striatum (DMS) and, to a lesser degree,  
in the ventral striatum impaired such state-dependent modulation of vigor, rendering vigor to depend more exclusively on the 
outcomes of immediately preceding trials. The lesions, however, spared choice biases. Neuronal recordings showed that the 
DMS is enriched in net value–coding neurons. In sum, the DMS encodes one’s net expected return, which drives the general 
motivation to perform.
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Two Dimensions of Value: Dopamine
Neurons Represent Reward
But Not Aversiveness
Christopher D. Fiorillo
Whereas reward (appetitiveness) and aversiveness (punishment) have been distinguished as two
discrete dimensions within psychology and behavior, physiological and computational models of
their neural representation have treated them as opposite sides of a single continuous dimension
of “value.” Here, I show that although dopamine neurons of the primate ventral midbrain are
activated by evidence for reward and suppressed by evidence against reward, they are insensitive to
aversiveness. This indicates that reward and aversiveness are represented independently as two
dimensions, even by neurons that are closely related to motor function. Because theory and
experiment support the existence of opponent neural representations for value, the present results
imply four types of value-sensitive neurons corresponding to reward-ON (dopamine), reward-OFF,
aversive-ON, and aversive-OFF.

In our common use of language, we typically
treat “reward” and “punishment” as two qual-
itatively discrete categories. Many sensory

stimuli can be readily classified as either appet-
itive or aversive, and we distinguish between a
less-than-expected punishment and a greater-than-

expected reward. Likewise, reward and punish-
ment have often been considered as two distinct
dimensions within the study of psychology and
behavior, with appetitive and aversive stimuli
eliciting approach and avoidance behaviors, re-
spectively (1). If they constitute two distinct cat-
egories, then reward and punishment are not
opposites of one another. However, to decide on
motor outputs, the brainmust effectively evaluate
actions on a common scale in which evidence
of good is counterbalanced by evidence of bad.
Simple and elegant models have been based on
neurons that represent both good and bad along
a single continuum of value, analogous to light
and dark on the single dimension of light inten-
sity. Most previous work on the physiology and
computational function of dopamine (2–10) and
other value-sensitive neurons (11–15) has proposed,
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Figure 3. Results of linear model of seismicity based on a combina-
tion of injection and net production. (A) Sample seismicity rate and
model prediction of seismicity rate using the observed fluid data and the
best-fit linear model of Eq. 2. (B) Number of earthquakes per day trig-

gered per rate of net volume of fluid extracted or total fluid injection. Symbols
are best-fit coefficients for Eq. 2. The injection values are coefficient c1 in Eq. 2,
and net production values are c2. Error bars are 2 SD of model estimates based
on the linear regression.
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model prediction of seismicity rate using the observed fluid data and the
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Take Homes 
•  Are rewards (appetitive) and punishments (aversive) 

•  Along a continuum of a single dimension ? 
•  Two distinct categories: two discrete dimensions ? 

•  Potential confounds of past results: 
•   (1) “short latency activation of DA neurons to airpuff due to sensory 

intensity not aversiveness”.  
•  (2) “to characterize any single neuron both rewards and punishments 

must be provided in close proximity to one another”: highly aversive 
stimulus will interfere with reward; but mild punishment like airpuff 
may not be negative enough 

•  (3) punishment must be calibrated against reward to determine its 
magnitude 

•  DA neurons fire/suppressed phasically to (unpredicted) reward and its 
omission. What about to punishments and omission? 

•  Phasic DA appetitive RPE, not aversive RPE. [but we knew that already!]; 
however… 
 



Mid-brain DA neurons compute TD error 

no prediction prediction, reward prediction, no reward 

Reward Prediction Error 

Vt	  

US US CS 

tttt VVr −+= +1δ

)(tδ

Vt = Vt + ↵ �t (1)

2

CS 

Before After Reward Omission 

Schultz, Dayan & 
Montague (1997) 



Mid-brain DA neurons compute appetitive TD error 

prediction, reward prediction, no reward 

from the 95 neurons from DAT-Cre mice to the 92 neurons from Vgat-
Cre mice. This yielded 38 type I neurons, 34 type II neurons and 20
type III neurons. Using the same criteria for GABAergic neurons as we
used for dopaminergic neurons, we identified 17 GABAergic neurons
(Fig. 3d and Supplementary Fig. 4). All 34 type II neurons fell in the
upper cluster in Fig. 3d. We also found type I neurons that were
inhibited by optical stimulation, consistent with local GABAergic
stimulation (Supplementary Fig. 6).

Our data set of identified dopaminergic neurons allows us to char-
acterize their diversity. We observed that some were excited by reward,
some were excited by a reward-predicting CS, and some were excited
by both (Fig. 4a–c). Although previous studies in non-human primates
found similar variability20,21 (Supplementary Fig. 7), this result may
suggest that some dopaminergic neurons do not strictly follow canonical
RPE coding. However, the US responses may be due to the delay
between CS and US, known to increase the US response due to temporal
uncertainty20. In addition, this diversity was correlated with the effect
of training that occurred over several days across the population of
dopaminergic neurons, even after animals had reached asymptotic
behavioural performance (Fig. 1b). Soon after reaching a behavioural
performance criterion, many dopaminergic neurons showed stronger
responses to US over CS but the preference gradually shifted to CS over
several days (Fig. 4d; Pearson correlation, r 5 0.42, P , 0.05). This is
consistent with a previous study in non-human primates that showed
US responses gradually disappear over .1 month of training21. Thus,
identified dopaminergic neurons appear to respond to CS and US
similarly to those reported in non-human primate studies.

Another important response property that supports RPE coding in
dopaminergic neurons is their decrease in firing rate when an expected
reward is omitted1,3. We thus omitted reward unexpectedly on 10% of
big-reward trials in some sessions. Fifteen of seventeen dopaminergic
neurons showed a decrease in firing rate upon reward omission rela-
tive to reward delivery (Fig. 4f, g). The two dopaminergic neurons that

were not modulated by reward omission were excited by big-reward
CS, but fired close to 0 spikes s21 otherwise; the low firing rate at the
time of reward left little room to ‘dip’ further. We obtained similar
results when we compared the firing rate upon reward omission to the
baseline firing rate (9 of 17 neurons P , 0.05, t-test; mean
auROC 5 0.407, t16 5 2.56, P , 0.05; Supplementary Fig. 8a, b).
Thus, most dopaminergic neurons coded RPE when expected reward
was omitted.

GABAergic neurons showed persistent activity during the delay
period, which parametrically encoded the value of upcoming out-
comes (paired t-tests between no-, small- and big-reward trials, all
P , 0.001 for 16 of 17 identified GABAergic neurons, Supplemen-
tary Fig. 7a; regression slopes, Supplementary Fig. 10i). This suggests
that these neurons encode expectation about rewards. If this is the case,
one prediction is that the activity of these neurons is not modulated by
delivery or omission of reward. Indeed, GABAergic (and unidentified
type II) and type III neurons were not significantly modulated by the
presence or absence of reward itself (Fig. 4f, g and Supplementary Fig. 8),
in contrast to identified dopaminergic neurons. None of the identified
GABAergic neurons, and only 2 of 17 unidentified type II neurons,
showed significant decreases in firing rate relative to when reward was
delivered. None of the 11 type III neurons showed significant modu-
lation by reward omission. Thus, the activity of type II and III neurons
was modulated predominantly by reward-predicting cues but not actual
reward.

Recent studies have revealed a diversity of responses of dopaminergic
neurons to aversive stimuli: some are excited, others inhibited15. To
test whether this diversity exists in dopaminergic and GABAergic
VTA neurons, we delivered air puffs in some sessions. Identified
dopaminergic neurons showed some diversity: although most signifi-
cant responses were inhibitory, some were excitatory (Fig. 4h, i and
Supplementary Fig. 9). In contrast, most type II and III neurons (and
13 of 14 identified GABAergic neurons) were excited by air puffs.
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DA neurons not activated by omitting aversive UCS 

explicitly or implicitly, that neurons represent “total
value” along a single dimension.

Prior studies supported the proposition that
dopamine neurons are activated or suppressed
by anything that is better or worse than expected,
respectively (2, 8). They have been proposed to
signal a “reward prediction error” that drives re-
inforcement learning, teaching dopamine-recipient
neurons both what is good and what is bad (2, 9).
One would expect that if dopamine represents
both reward and aversiveness on a single di-
mension of total value, so too may dopamine-
recipient neurons throughout much of the brain.
However, it has not been shown that either do-
pamine or any other reward-sensitive neuron is
also sensitive to aversiveness, as required by the
“single-dimension” hypothesis. The alternative
“two dimensions” hypothesis is that such neu-
rons are sensitive only to reward, and that other
neurons should be sensitive to only aversiveness.

Testing these alternatives is more challenging
than it may initially appear. First, neuronal re-
sponses are not necessarily related to motivation-
al value. Short latency activation (<100 ms) of
dopamine neurons by aversive air puff is related
to its high sensory intensity, not its aversive-
ness (16, 17). This sensory-related activation is
to be expected of any neuron that represents
value in a general manner (16), and it appears to
have been misattributed to aversiveness in at least
one study (6), as shown previously (17). Second,
to characterize any single neuron both appeti-
tive and aversive stimuli must be presented in
temporal proximity to one another. This creates
challenges because if a stimulus is overly
aversive, it will interfere with performance of an
appetitive task. The aversive stimulus must
therefore be mild (such as an air puff to the face),
and a low cost-avoidance response (such as eye
blink) does not insure a net aversive value (as in

the case of blinking in response to a cool breeze
on a hot day). It is questionable whether the
stimuli tested in some previous studies did in
fact have net aversive value. Third, we need to
estimate the subjective value of aversive stimuli
(aversiveness) on a common scale with subjec-
tive reward value and to then compare neuronal
responses to stimuli of approximately equal but
opposite values. If aversiveness is too low it may
be ineffective in modulating neurons, especially
if it is overshadowed in the context of a reward
stimulus with much greater absolute value [as ex-
pected given principles of predictive (optimal)
coding exemplified by dopamine neurons (18)].
Studies that have examined responses to both
appetitive and aversive stimuli in the same neu-
rons have generally not addressed these issues and
are thus inconclusive with respect to the present
hypotheses (4, 6, 11–15, 19–21). None of the past
studies discussed the possibility that reward and
aversiveness could be two discrete dimensions to
be represented by discrete neurons.

Data are from electrophysiological single-
unit recordings of 195 dopamine neurons in two
rhesus macaques (22, 23). Previous analyses of
this same data set characterized the multiphasic
temporal dynamics of neuronal responses, as
well as their dependence on anatomical location
within the ventral midbrain, among other issues
(16, 17, 24). A critical and distinguishing feature
of these experiments was the use of a choice task
to quantify how much juice reward a monkey
would sacrifice in order to avoid an aversive
stimulus (air puff to the nose or oral delivery of
saline or bitter solution). The subjective value
of each stimulus was repeatedly measured and
adjusted in intensity until it was eventually fixed
to have an aversiveness comparable with a typical
drop of juice (130 ml), with average values of –70
to –110 ml for each stimulus (except –200 ml in the

case of concentrated bitter solution) (16). The
aversiveness of the air puff was at least an order
of magnitude greater than that necessary to elicit
conditioned eye blink, and it is thus likely to have
beenmuch greater than that used in previous studies
(16). Neurons were not recorded during the choice
task, but in simple Pavlovian tasks that used iden-
tical aversive stimuli (fig. S1). Eye position was
measured, and gaze toward or away from Pavlovian
conditioned stimuli demonstrated that monkeys
had learned to expect the appetitive or aversive
outcomes, respectively (fig. S2).

In accord with the single-dimension hypoth-
esis, it is well known that aversive stimuli sup-
press the firing of dopamine neurons. However,
that hypothesis also proposes that aversive or
neutral stimuli that are not as bad as (“better
than”) expected should cause activation. Given
a simple and well-established experimental de-
sign, we can be very precise about the amplitude
of the activation. When a Pavlovian conditioned
stimulus (CS) (or instrumental action) predicts
subsequent reward or no reward with equal prob-
ability, reward delivery causes strong activation,
and its omission causes suppression of firing
rate, as shown here (Fig. 1A) and elsewhere
(6, 18, 22). In fact, the amplitude of this acti-
vation was previously found not to depend on
the value of the reward, at least over a range of
50 to 500 ml of juice (this may appear strange,
but it is evidence of optimally efficient coding)
(18). All of the aversive stimuli studied here
had absolute values greater than 50 ml. There-
fore, the single-dimension hypothesis makes the
strong prediction that the omission of any of the
aversive stimuli in this task will cause virtually
the same activation as the delivery of juice re-
ward shown in Fig. 1A.

However, no activation was observed (Fig. 1,
B to D). Of 72 neurons testedwith saline or bitter,
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Fig. 1. Dopamine neurons are not activated by omission of an expected
aversive stimulus. Monkeys were conditioned with audiovisual Pavlovian
stimuli to expect a stimulus (after a 1.0-s delay) that was either neutral sound
or had appetitive or aversive value [(A) inset and fig. S1A). (A) Juice (black)
and its absence (red) caused an increase and decrease in average firing rate,
respectively, across a population of 88 neurons. Neuronal discrimination of
value was best at 150 to 250 ms after stimulus onset (shaded region) (16). All
peri-stimulus time histograms (bin size, 50 ms) are averages across all recorded
neurons, some of which were unresponsive. (B) Both air (black) and its absence
(red) caused suppression. Unlike (A), (C), and (D), data are only from monkey F.

(C) Both saline or bitter (black) and its absence (red) caused suppression. (D)
Firing rates (150 to 250 ms, baseline rates subtracted) of each neuron to saline
(or bitter) and neutral outcomes. The arrow indicates a single neuron in which the
neutral stimulus caused activation, which is consistent with the single-dimension
hypothesis. Symbols indicate results of t tests: activation or suppression to saline-
bitter (green squares), to the neutral stimulus (blue triangles), both (red dia-
monds), or neither (black circles). The diagonal line indicates identity. Pearson’s
correlation r = 0.63; P < 10−8. Of these 72 neurons, 8, 2, and 62 were from the
ventral tegmental area, retrorubral field, and substantia nigra, respectively;
35 were from the dorsal tier, and 37 were from the ventral tier.
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Fig. S1.  Design of experiments (Figs. 
1-3, S2) with Pavlovian conditioned 
stimuli (CSs).  The visual icons shown 
here are for illustration only; a diversity of 
distinct images were used in the 
experiments.  (A) Design of experiments 
shown in figure 1 in which a CS was 
followed (with probability of 0.5) by 
either an “unconditioned” stimulus (US) 
of value (appetitive or aversive) or a 
neutral sound.  As shown on the timeline, 
CS onset was 1.0 s before US onset, 
which was at time “0” in figure 1.  The 
inter-trial interval (ITI) varied randomly 
between 2 and 6 s.  (B) Design of 
experiments shown in figure 2.  One 
block of trials consisted of repeated 
delivery of a US with a long and variable 
ITI (2-16 s), in the absence of any explicit 
CS.  In a second block of trials, the same 
US was preceded 1.0 s earlier by onset of 
a CS.  (C) Design of experiments shown 
in figures 3A,B and S2A-C.  Each trial 
started with a “cue” which was followed 
1.0 s later by onset of either a CS 
predicting juice alone, or a CS predicting 
juice plus an aversive stimulus.  The use 
of the cue made the onset of the CSs more 
predictable, which in principle should 
facilitate the ability of dopamine neurons 
to discriminate between the values of the 
two CSs (18).  The experiments of figure 
3C were analogous but no cue was 
presented prior to CS onset.  (D) In the 
experiment of figure 3D, one of the three 
CSs (shown in figure 3C) was followed 
by air on 50% of trials, and the peri-
stimulus time histogram is aligned to US 
onset at time ‘0’ (juice or juice plus air).

NB: CS forms used in 
appetitive (vis) and aversive 
(audio+vis) experiments were 
different 



No difference in phasic suppression for predicted 
and unpredicted aversive UCS 

only one was significantly activated by the
neutral outcome, whereas 40 and 49% (29 and
35 neurons) were significantly suppressed by
the neutral and aversive outcomes, respectively,
and 32% (23 neurons) were suppressed by both
(Fig. 1D) (P < 0.05, unpaired t tests). Even among
12 neurons tested with a high concentration of
bitter having an aversiveness of –0.2 ml of juice
(a greater absolute value than that of the juice
in Fig. 2A and in most primate studies), six were
significantly suppressed by omission of bitter,
and none were activated. Similarly, not one of
35 neuronswas significantly activated by omission
of air, whereas 11 were significantly suppressed.
The lack of activation to a neutral outcome was
not due to a lack of sensory stimulation because
omission of the aversive stimulus was signaled
by the onset of a distinct sound (72 dB, similar
intensity to the sound caused by the opening
of valves that deliver juice, saline, and bitter
solutions).

The single-dimension hypothesis implies
that dopamine neurons should signal prediction
errors for aversiveness in the same manner that

they do for appetitiveness. However, whereas
reward stimuli only caused substantial activa-
tion when they are unpredicted (Fig. 2A),
prediction had at most a marginal effect on
suppression by aversive stimuli (Fig. 2, B to
D). Across the population of neurons, there was
no significant difference between responses to
predicted versus unpredicted air or saline-bitter
(P > 0.5 for each stimulus in each monkey;
paired t tests across 30 to 47 neurons in each of
the four groups). Among 67 neurons, 11 had sig-
nificantly higher firing rates (less suppression)
to predicted versus unpredicted saline or bitter,
and eight had the opposite relationship (Fig. 2D).
Similarly, 15 and 7 of 77 neurons had higher
firing rates for predicted and unpredicted air,
respectively.

These data clearly contradict the single-
dimension hypothesis but can be explained if re-
ward and aversiveness are represented as two
dimensions. It is proposed that dopamine neu-
rons add together evidence for (excitation) and
against (“opponent” inhibition) reward (16) but
are not directly influenced by aversiveness. In

this view, aversive and neutral stimuli suppress
firing because they provide evidence against
reward. Stimuli explicitly conditioned to predict
absence of reward have been shown to suppress
activation of dopamine neurons (25). The aver-
sive and neutral stimuli studied here became
familiar through conditioning, and they predicted
an absence of reward within a general context
that was associated with reward (indeed, there is
a chance of reward in any context).

As a final test, aversive stimuli were delivered
together with juice. The single-dimension hy-
pothesis states that the only important factor is
net value, the sum of reward and aversive values.
The two-dimensions hypothesis predicts that a
purely aversive stimulus will affect dopamine
neurons only if it alters the value of a reward
stimulus. Because concentrated saline and bitter
solutions were delivered into the mouth together
with juice, they would be expected to strongly
devalue it. In contrast, simultaneous delivery of
air to the nose would be expected to have little
interaction with juice and thus should be less
effective in devaluing it.
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Fig. S1.  Design of experiments (Figs. 
1-3, S2) with Pavlovian conditioned 
stimuli (CSs).  The visual icons shown 
here are for illustration only; a diversity of 
distinct images were used in the 
experiments.  (A) Design of experiments 
shown in figure 1 in which a CS was 
followed (with probability of 0.5) by 
either an “unconditioned” stimulus (US) 
of value (appetitive or aversive) or a 
neutral sound.  As shown on the timeline, 
CS onset was 1.0 s before US onset, 
which was at time “0” in figure 1.  The 
inter-trial interval (ITI) varied randomly 
between 2 and 6 s.  (B) Design of 
experiments shown in figure 2.  One 
block of trials consisted of repeated 
delivery of a US with a long and variable 
ITI (2-16 s), in the absence of any explicit 
CS.  In a second block of trials, the same 
US was preceded 1.0 s earlier by onset of 
a CS.  (C) Design of experiments shown 
in figures 3A,B and S2A-C.  Each trial 
started with a “cue” which was followed 
1.0 s later by onset of either a CS 
predicting juice alone, or a CS predicting 
juice plus an aversive stimulus.  The use 
of the cue made the onset of the CSs more 
predictable, which in principle should 
facilitate the ability of dopamine neurons 
to discriminate between the values of the 
two CSs (18).  The experiments of figure 
3C were analogous but no cue was 
presented prior to CS onset.  (D) In the 
experiment of figure 3D, one of the three 
CSs (shown in figure 3C) was followed 
by air on 50% of trials, and the peri-
stimulus time histogram is aligned to US 
onset at time ‘0’ (juice or juice plus air).
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Fig. S1.  Design of experiments (Figs. 
1-3, S2) with Pavlovian conditioned 
stimuli (CSs).  The visual icons shown 
here are for illustration only; a diversity of 
distinct images were used in the 
experiments.  (A) Design of experiments 
shown in figure 1 in which a CS was 
followed (with probability of 0.5) by 
either an “unconditioned” stimulus (US) 
of value (appetitive or aversive) or a 
neutral sound.  As shown on the timeline, 
CS onset was 1.0 s before US onset, 
which was at time “0” in figure 1.  The 
inter-trial interval (ITI) varied randomly 
between 2 and 6 s.  (B) Design of 
experiments shown in figure 2.  One 
block of trials consisted of repeated 
delivery of a US with a long and variable 
ITI (2-16 s), in the absence of any explicit 
CS.  In a second block of trials, the same 
US was preceded 1.0 s earlier by onset of 
a CS.  (C) Design of experiments shown 
in figures 3A,B and S2A-C.  Each trial 
started with a “cue” which was followed 
1.0 s later by onset of either a CS 
predicting juice alone, or a CS predicting 
juice plus an aversive stimulus.  The use 
of the cue made the onset of the CSs more 
predictable, which in principle should 
facilitate the ability of dopamine neurons 
to discriminate between the values of the 
two CSs (18).  The experiments of figure 
3C were analogous but no cue was 
presented prior to CS onset.  (D) In the 
experiment of figure 3D, one of the three 
CSs (shown in figure 3C) was followed 
by air on 50% of trials, and the peri-
stimulus time histogram is aligned to US 
onset at time ‘0’ (juice or juice plus air).

Learning (reduced) Value for saline-bitter “not 
airpuff”  

only one was significantly activated by the
neutral outcome, whereas 40 and 49% (29 and
35 neurons) were significantly suppressed by
the neutral and aversive outcomes, respectively,
and 32% (23 neurons) were suppressed by both
(Fig. 1D) (P < 0.05, unpaired t tests). Even among
12 neurons tested with a high concentration of
bitter having an aversiveness of –0.2 ml of juice
(a greater absolute value than that of the juice
in Fig. 2A and in most primate studies), six were
significantly suppressed by omission of bitter,
and none were activated. Similarly, not one of
35 neuronswas significantly activated by omission
of air, whereas 11 were significantly suppressed.
The lack of activation to a neutral outcome was
not due to a lack of sensory stimulation because
omission of the aversive stimulus was signaled
by the onset of a distinct sound (72 dB, similar
intensity to the sound caused by the opening
of valves that deliver juice, saline, and bitter
solutions).

The single-dimension hypothesis implies
that dopamine neurons should signal prediction
errors for aversiveness in the same manner that

they do for appetitiveness. However, whereas
reward stimuli only caused substantial activa-
tion when they are unpredicted (Fig. 2A),
prediction had at most a marginal effect on
suppression by aversive stimuli (Fig. 2, B to
D). Across the population of neurons, there was
no significant difference between responses to
predicted versus unpredicted air or saline-bitter
(P > 0.5 for each stimulus in each monkey;
paired t tests across 30 to 47 neurons in each of
the four groups). Among 67 neurons, 11 had sig-
nificantly higher firing rates (less suppression)
to predicted versus unpredicted saline or bitter,
and eight had the opposite relationship (Fig. 2D).
Similarly, 15 and 7 of 77 neurons had higher
firing rates for predicted and unpredicted air,
respectively.

These data clearly contradict the single-
dimension hypothesis but can be explained if re-
ward and aversiveness are represented as two
dimensions. It is proposed that dopamine neu-
rons add together evidence for (excitation) and
against (“opponent” inhibition) reward (16) but
are not directly influenced by aversiveness. In

this view, aversive and neutral stimuli suppress
firing because they provide evidence against
reward. Stimuli explicitly conditioned to predict
absence of reward have been shown to suppress
activation of dopamine neurons (25). The aver-
sive and neutral stimuli studied here became
familiar through conditioning, and they predicted
an absence of reward within a general context
that was associated with reward (indeed, there is
a chance of reward in any context).

As a final test, aversive stimuli were delivered
together with juice. The single-dimension hy-
pothesis states that the only important factor is
net value, the sum of reward and aversive values.
The two-dimensions hypothesis predicts that a
purely aversive stimulus will affect dopamine
neurons only if it alters the value of a reward
stimulus. Because concentrated saline and bitter
solutions were delivered into the mouth together
with juice, they would be expected to strongly
devalue it. In contrast, simultaneous delivery of
air to the nose would be expected to have little
interaction with juice and thus should be less
effective in devaluing it.
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Fig. 3. In the context of juice, dopamine neurons are highly sensitive
to saline and bitter, but not air. One CS predicted juice alone (180 ml), and
another predicted simultaneous delivery of juice plus an aversive stimulus (insets
and fig. S1, C and D). (A) Prediction of saline (or bitter) suppressed activation to
CS onset in 92 neurons from monkeys O and F. (B) Prediction of air caused only
a modest suppression of activation to CS onset in monkey F. (C) Prediction of air

in monkey O had no effect. Unlike (A) and (B), no cue predicted CS onset. (D)
After the “blue” CS in (C), firing rates did not discriminate delivery of air plus
juice from juice alone during the period of 150 to 250 ms after unconditioned
stimulus (US) onset, in which reward value is best discriminated. The short
latency activation to air (40 to 100 ms) is due to its high sensory intensity and
was more prominent in monkey O than in monkey F (16).
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Fig. 2. Suppression by aversive stimuli is insensitive to prediction.
Predicted stimuli occurred 1.0 s after a CS, whereas “unpredicted” stimuli
were delivered once every 2 to 16 s with no CS (fig. S1B). There are dif-
ferences in scales of y axes across (A) to (D). (A) Unpredicted (red) but
not predicted (black) juice reward caused strong activation. (B) Prediction
only marginally diminished the sensory-related activation, and subsequent

suppression, to air. (C) Prediction of saline or bitter had little or no effect
on suppression. (D) Firing rate [150 to 300 ms; shaded region in (C)] of
each neuron to predicted and unpredicted saline or bitter (with baseline
rates subtracted). The diagonal indicates identity. Red triangles indicate a
significant difference between responses to predicted and unpredicted
saline-bitter.
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No reduction for 
Juice + airpuff 

NB: no cue preceding CS in C and D 



Take Homes 
•  C. Fiorillo claims 

•  Phasic DA appetitive RPE, not aversive RPE. 

•  Four types of neurons: RON, ROFF, AON, AOFF 

•  RON is DA. 
•  Other 3 may be other neuromodulators 

•  BUT: ROFF (omission of R) is also DA 
•  Subset/spatially segregated region of VTA DA neurons which respond 

to aversiveness (Ungless). 

 



[R7’s] Outstanding questions 
•  Phasic DA appetitive RPE, not aversive RPE. [but we knew that already!]; 

however… 
•  Unpredicted vs predicted juice+ bitter (is r reduced directly)? 

•  Punishments are not the only costs (or R7 would not have a thesis!) 

•  What are the natural statistics of rewards and costs? How are they 
represented?  

•  What makes a reward +ve, cost –ve? Is the distribution over motivational 
UCSs integrated to yield a [|r|,sign(r)] representation? Implementation? 

•  Punishments (or other costs) need not involve TD based learning 

•  DA neurons could carry (not compute) the punishments (not punishment 
pred errors) computed by upstream (eg. Habenula) neurons 


