Flow contrastive estimation of energy based models

a tea talk, Jan 27

Gao et al., NuerIPS 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Background - EBM

focus on estimating energy based models (EBMs):

• express as density $p(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^d$ as:

$$p(\mathbf{x}) = rac{\exp\left(-E_{ heta}(\mathbf{x})
ight)}{Z(heta)}$$

where $E_{\theta} : \mathbb{R}^d \to \mathbb{R}$ is the energy function.

- ► so we can parameterize an energy based model with any function that maps ℝ^d to a scalar.
- but, computing $Z(\theta) = \int \exp(-E_{\theta}(\mathbf{x})) d\mathbf{x}$ is difficult
- ► ⇒ several approaches: contrastive divergence, score matching, noise contrastive estimation

Background - NCE

- setup:
 - observe $\mathbf{x}_1, \ldots, \mathbf{x}_n \sim p_d(\cdot)$.
 - wish to approximation p_d(·) with p_θ(·) which is an unnormalized EBM (i.e., Z(θ) difficult to compute).

Background - NCE

- setup:
 - observe $\mathbf{x}_1, \ldots, \mathbf{x}_n \sim p_d(\cdot)$.
 - wish to approximation p_d(·) with p_θ(·) which is an unnormalized EBM (i.e., Z(θ) difficult to compute).
- noise contrastive estimation (NCE; Gutmann & Hyvärinen, 2012):
 - ▶ propose a *noise* distribution $p_n(\cdot)$ and sample $\mathbf{y}_1, \ldots, \mathbf{y}_n \sim p_n(\cdot)$
 - ► learn to classify the mixture U ~ ¹/₂p_d(·) + ¹/₂p_n(·) based on the log-odds ratio:

$$r(\cdot) = \text{sigmoid}(\log p_{\theta}(\cdot) + c - \log p_{n}(\cdot))$$

Background - NCE

- setup:
 - observe $\mathbf{x}_1, \ldots, \mathbf{x}_n \sim p_d(\cdot)$.
 - wish to approximation p_d(·) with p_θ(·) which is an unnormalized EBM (i.e., Z(θ) difficult to compute).
- noise contrastive estimation (NCE; Gutmann & Hyvärinen, 2012):
 - ▶ propose a *noise* distribution $p_n(\cdot)$ and sample $\mathbf{y}_1, \ldots, \mathbf{y}_n \sim p_n(\cdot)$
 - ► learn to classify the mixture U ~ ¹/₂p_d(·) + ¹/₂p_n(·) based on the log-odds ratio:

$$r(\cdot) = \text{sigmoid}(\log p_{\theta}(\cdot) + c - \log p_{n}(\cdot))$$

- noise distribution must satisfy:
 - 1. easy to sample from (in order to get \mathbf{y}_i)
 - 2. easy to evaluate (log) density
 - 3. (somewhat) similar to data distribution, $p_d(\cdot)$

Flow contrastive estimation - FCE

• idea: use a deep net to parameterize noise, $p_n(\cdot)$

- use a flow model as they satisfy all requirements (can evaluate normalized density and easy to sample from)
- flow models are parameterized by a series of *invertible* transformations, designed to ensure Jacobian is tractable

$$\mathbf{y} = g_{lpha}(\mathbf{z}); \ \ \mathbf{z} \sim q_0(\cdot)$$

 $\log p_{lpha}(\mathbf{y}) = \log q_0(g_{lpha}^{-1}(\mathbf{y})) + \log \det \ \mathbf{J}g_{lpha}^{-1}$

Flow contrastive estimation - FCE

• idea: use a deep net to parameterize noise, $p_n(\cdot)$

- use a flow model as they satisfy all requirements (can evaluate normalized density and easy to sample from)
- flow models are parameterized by a series of *invertible* transformations, designed to ensure Jacobian is tractable

$$\mathbf{y} = g_{lpha}(\mathbf{z}); \ \ z \sim q_0(\cdot)$$

 $\log p_{lpha}(\mathbf{y}) = \log q_0(g_{lpha}^{-1}(\mathbf{y})) + \log \det \ \mathbf{J}g_{lpha}^{-1}$

flow contrastive estimation:

- sample $\mathbf{y}_1, \ldots, \mathbf{y}_n \sim p_{\alpha}(\cdot)$
- For θ, learn to classify the mixture U ~ ½p_d(·) + ½p_α(·) based on the log-odds ratio:

$$r(\cdot) = \text{sigmoid}(\log p_{\theta}(\cdot) + c - \log p_{\alpha}(\cdot))$$

 for α, learn to fool the EBM. Corresponds to learning a flow model via minimizing JSD instead of MLE.

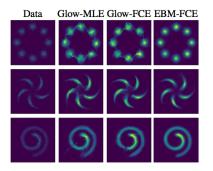
Why is this a reasonable idea?

Flow models:

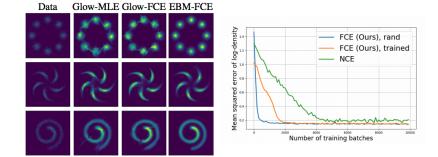
- ▶ popular because they allow for efficient evaluation of density and sampling ⇒ can train via MLE
- but must assume true density can be approximated via a series of invertible transformations

- energy based models:
 - ▶ parameterize the data density using only the energy (no assumptions implicit in the flow model) ⇒ more flexible
 - also easy to compute log-density (up to norm. constant)
 - but sampling from EBMs is very expensive

Experimental results



Experimental results



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで