# Gatsby Tea: Infinite cardinals 

Ilyes

6 June 2019

## Question

Q: Consider a mapping $S$ that, to each $x \in[0,1]$, associates a countable subset $S(x) \subset[0,1]$. Can we choose $S$ s.t. for any $(x, y) \in[0,1]^{2}$, either $x \in S(y)$ or $y \in S(x)$ ?

## Set theory

- foundation of modern mathematics initiated by Georg Cantor (1870s).
- formulated in terms of Zermelo-Fraenkel (ZF) axiom system + axiom of choice (C).
- it is not possible to prove or disprove the axiom of choice from ZF.


## Cardinality

- finite sets: number of elements; same number of elements $\Rightarrow$ same cardinality.


## Cardinality

- finite sets: number of elements; same number of elements $\Rightarrow$ same cardinality.
- infitie sets? bijection between sets $\Rightarrow$ same cardinality (Cantor).
- a set $A$ is bigger than a set $B(|B| \leq|A|)$ if there is a bijection from a subset of $A$ to $B$.
- how many different infinite cardinals?


## The smallest infinity

- the set of positive integers $\mathbb{N}$ is infinite; let $\aleph_{0}:=|\mathbb{N}|$.
- are there bigger sets?


## The smallest infinity

- the set of positive integers $\mathbb{N}$ is infinite; let $\aleph_{0}:=|\mathbb{N}|$.
- are there bigger sets?
- we know that $\mathbb{R}$ is bigger than $\mathbb{N}$ (uncountable); let $\mathfrak{c}:=|\mathbb{R}|$.


## The smallest infinity

- the set of positive integers $\mathbb{N}$ is infinite; let $\aleph_{0}:=|\mathbb{N}|$.
- are there bigger sets?
- we know that $\mathbb{R}$ is bigger than $\mathbb{N}$ (uncountable); let $\mathfrak{c}:=|\mathbb{R}|$.
- how about $\mathcal{P}(\mathbb{N})$ ? Is it bigger than $\mathbb{N}$ ? how does $2^{\aleph_{0}}:=|\mathcal{P}(\mathbb{N})|$ compare to $\mathfrak{c}$ ?


## The power set is bigger

- let $S$ be a non-empty set; suppose there exists a surjective $\operatorname{map} f: S \rightarrow \mathcal{P}(S)$ (bijective from a subset of $S$ )


## The power set is bigger

- let $S$ be a non-empty set; suppose there exists a surjective map $f: S \rightarrow \mathcal{P}(S)$ (bijective from a subset of $S$ )
- let $B=\{a \in S \mid a \notin f(a)\} \in \mathcal{P}(S)$, and let $b \in S$ s.t. $f(b)=B$.


## The power set is bigger

- let $S$ be a non-empty set; suppose there exists a surjective map $f: S \rightarrow \mathcal{P}(S)$ (bijective from a subset of $S$ )
- let $B=\{a \in S \mid a \notin f(a)\} \in \mathcal{P}(S)$, and let $b \in S$ s.t. $f(b)=B$.
- if $b \in B \Rightarrow b \notin f(b)=B$ ??
- if $b \notin B=f(b) \Rightarrow b \in B$ ????


## The power set is bigger

- let $S$ be a non-empty set; suppose there exists a surjective map $f: S \rightarrow \mathcal{P}(S)$ (bijective from a subset of $S$ )
- let $B=\{a \in S \mid a \notin f(a)\} \in \mathcal{P}(S)$, and let $b \in S$ s.t. $f(b)=B$.
- if $b \in B \Rightarrow b \notin f(b)=B$ ??
- if $b \notin B=f(b) \Rightarrow b \in B$ ????
- $\Rightarrow$ such $f$ does not exist $\Rightarrow|\mathcal{P}(S)|>|S|$.
- in particular: $2^{\aleph_{0}}>\aleph_{0}$.
$2^{\aleph_{0}}=c ?$


## $2^{\aleph_{0}}=\mathfrak{c} ?$

$$
\begin{aligned}
& f \text { : } \\
& \mathcal{P}(\mathbb{N})-\varnothing \rightarrow] 0,1] \\
& A \mapsto \sum_{i \in A} 10^{-i} \\
& g \text { : } \\
& \begin{aligned}
10,1] & \rightarrow \mathcal{P}(\mathbb{N})-\varnothing \\
0 . d_{1} d_{2} d_{3} \ldots & \mapsto\left\{10^{i} d_{i}, i \in \mathbb{N}\right\}
\end{aligned}
\end{aligned}
$$

- $f$ and $g$ are injective $\Rightarrow 2^{\aleph_{0}} \leq \mathfrak{c}$ and $\mathfrak{c} \leq 2^{\aleph_{0}}$.


## $2^{\aleph_{0}}=\mathfrak{c} ?$

$$
\begin{aligned}
& f \text { : } \\
& \mathcal{P}(\mathbb{N})-\varnothing \rightarrow] 0,1] \\
& A \mapsto \sum_{i \in A} 10^{-i} \\
& g \text { : } \\
& \begin{aligned}
10,1] & \rightarrow \mathcal{P}(\mathbb{N})-\varnothing \\
0 . d_{1} d_{2} d_{3} \ldots & \mapsto\left\{10^{i} d_{i}, i \in \mathbb{N}\right\}
\end{aligned}
\end{aligned}
$$

- $f$ and $g$ are injective $\Rightarrow 2^{\aleph_{0}} \leq \mathfrak{c}$ and $\mathfrak{c} \leq 2^{\aleph_{0}}$.
- $\Rightarrow 2^{\aleph_{0}}=\mathfrak{c}$ (Cantor-Bernstein Th).


## $2^{\aleph_{0}}=c ?$

$$
\begin{aligned}
& f \text { : } \\
& \mathcal{P}(\mathbb{N})-\varnothing \rightarrow] 0,1] \\
& A \mapsto \sum_{i \in A} 10^{-i} \\
& g \text { : } \\
& \begin{aligned}
10,1] & \rightarrow \mathcal{P}(\mathbb{N})-\varnothing \\
0 . d_{1} d_{2} d_{3} \ldots & \mapsto\left\{10^{i} d_{i}, i \in \mathbb{N}\right\}
\end{aligned}
\end{aligned}
$$

- $f$ and $g$ are injective $\Rightarrow 2^{\aleph_{0}} \leq \mathfrak{c}$ and $\mathfrak{c} \leq 2^{\aleph_{0}}$.
- $\Rightarrow 2^{\aleph_{0}}=\mathfrak{c}$ (Cantor-Bernstein Th).
- is $2^{\aleph_{0}}$ the smallest infinity after $\aleph_{0}$ ?


## Another infinity

- let's "redefine" $\mathbb{N}$ :

$$
\begin{aligned}
0 & =\{ \} \\
n+1 & =n \cup\{n\}
\end{aligned}
$$

we call these sets ordinal numbers.

## Another infinity

- let's "redefine" $\mathbb{N}$ :

$$
\begin{aligned}
0 & =\{ \} \\
n+1 & =n \cup\{n\}
\end{aligned}
$$

we call these sets ordinal numbers.

- e.g.: $1=\{0\}=\{\{ \}\}, 2=\{0,1\}=\{\{ \},\{\{ \}\}\}$,
$3=\{0,1,2\}=\{\{ \},\{\{ \}\},\{\{ \},\{\{ \}\}\}\}, 4=\{0,1,2,3\} \ldots$
- $n<m \Leftrightarrow n \in m$.


## Another infinity

- let's "redefine" $\mathbb{N}$ :

$$
\begin{aligned}
0 & =\{ \} \\
n+1 & =n \cup\{n\}
\end{aligned}
$$

we call these sets ordinal numbers.

- e.g.: $1=\{0\}=\{\{ \}\}, 2=\{0,1\}=\{\{ \},\{\{ \}\}\}$, $3=\{0,1,2\}=\{\{ \},\{\{ \}\},\{\{ \},\{\{ \}\}\}\}, 4=\{0,1,2,3\} \ldots$
- $n<m \Leftrightarrow n \in m$.
- in reality, those are successor ordinals: can be written as $n+1$ for some $n$.


## Another infinity

- let's "redefine" $\mathbb{N}$ :

$$
\begin{aligned}
0 & =\{ \} \\
n+1 & =n \cup\{n\}
\end{aligned}
$$

we call these sets ordinal numbers.

- e.g.: $1=\{0\}=\{\{ \}\}, 2=\{0,1\}=\{\{ \},\{\{ \}\}\}$, $3=\{0,1,2\}=\{\{ \},\{\{ \}\},\{\{ \},\{\{ \}\}\}\}, 4=\{0,1,2,3\} \ldots$
- $n<m \Leftrightarrow n \in m$.
- in reality, those are successor ordinals: can be written as $n+1$ for some $n$.
- there are other ordinals: limit ordinals; for instance supremums of sets of ordinals that have no upper bounds.
- e.g.: $\omega:=\sup \mathbb{N}$ (guaranteed to exist by ZF).


## Another infinity

- let's "enumerate" the ordinals: $1,2,3, \ldots, \omega, \omega+1, \omega+2, \ldots$.


## Another infinity

- let's "enumerate" the ordinals: $1,2,3, \ldots, \omega, \omega+1, \omega+2, \ldots$.
- we can define the next limit ordinal: $2 \cdot \omega:=\sup \{\omega+\mathbb{N}\}$, and then the one after that, etc...
- $1,2,3,4, \ldots, \omega, \omega+1, \ldots, 2 \cdot \omega, \ldots, 3 \cdot \omega, \ldots, \omega^{2}, \ldots, \omega^{3}, \ldots$, $\omega^{\omega}, \ldots, \omega^{\omega^{\omega}}, \ldots$


## Another infinity

- let's "enumerate" the ordinals: $1,2,3, \ldots, \omega, \omega+1, \omega+2, \ldots$.
- we can define the next limit ordinal: $2 \cdot \omega:=\sup \{\omega+\mathbb{N}\}$, and then the one after that, etc...
- $1,2,3,4, \ldots, \omega, \omega+1, \ldots, 2 \cdot \omega, \ldots, 3 \cdot \omega, \ldots, \omega^{2}, \ldots, \omega^{3}, \ldots$, $\omega^{\omega}, \ldots, \omega^{\omega^{\omega}}, \ldots$
- limit ordinals are strictly greater than all the preceding ordinals.
- all these sets are countable.


## Another infinity

- can we construct a set bigger than $\mathbb{N}$ from ordinals?


## Another infinity

- can we construct a set bigger than $\mathbb{N}$ from ordinals?
- let $\omega_{1}=\sup \left\{\right.$ ordinals $\mu$ s.t. $\left.|\mu|=\aleph_{0}\right\}$; what's $\left|\omega_{1}\right|$ ?
- suppose $\left|\omega_{1}\right|=\aleph_{0} \Rightarrow \omega_{1} \in \omega_{1}$ a.k.a $\omega_{1}<\omega_{1}$ ??


## Another infinity

- can we construct a set bigger than $\mathbb{N}$ from ordinals?
- let $\omega_{1}=\sup \left\{\right.$ ordinals $\mu$ s.t. $\left.|\mu|=\aleph_{0}\right\}$; what's $\left|\omega_{1}\right|$ ?
- suppose $\left|\omega_{1}\right|=\aleph_{0} \Rightarrow \omega_{1} \in \omega_{1}$ a.k.a $\omega_{1}<\omega_{1}$ ??
- $\Rightarrow\left|\omega_{1}\right|>\aleph_{0}$; let's call it $\aleph_{1}$. $\omega_{1}$ is the smallest uncountable ordinal.


## Continuum hypothesis

We've seen two different infinities greater that $\aleph_{0}$ :

- $2^{\aleph_{0}}$ the cardinal of $\mathbb{R}$ (equal to the cardinal of the power set of $\mathbb{N}$ ).
- $\aleph_{1}$ the cardinal of the set of all countable ordinals

Q: Is $2^{\aleph_{0}}=\aleph_{1}$ ? This is the Continuum Hypothesis (CH) (Cantor).

## Continuum hypothesis

We've seen two different infinities greater that $\aleph_{0}$ :

- $2^{\aleph_{0}}$ the cardinal of $\mathbb{R}$ (equal to the cardinal of the power set of $\mathbb{N}$ ).
- $\aleph_{1}$ the cardinal of the set of all countable ordinals

Q: Is $2^{\aleph_{0}}=\aleph_{1}$ ? This is the Continuum Hypothesis (CH) (Cantor).
A: CH is independent of ZFC: it can be neither proven nor disproven within the context of the ZFC axioms. (Gödel and Cohen).

## Back to our question

Q: Consider a mapping $S$ that, to each $x \in[0,1]$, associates a countable subset $S(x) \subset[0,1]$. Can we choose $S$ s.t. for any $(x, y) \in[0,1]^{2}$, either $x \in S(y)$ or $y \in S(x)$ ?

## Back to our question

Q: Consider a mapping $S$ that, to each $x \in[0,1]$, associates a countable subset $S(x) \subset[0,1]$. Can we choose $S$ s.t. for any $(x, y) \in[0,1]^{2}$, either $x \in S(y)$ or $y \in S(x)$ ?
A: The answer depends on CH !

- $\mathrm{ZFC}+\mathrm{CH} \Rightarrow$ yes
- $\mathrm{ZFC}+\operatorname{not}(\mathrm{CH}) \Rightarrow$ no

