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Abstract We frame behavior in classical conditioning
experiments as the product of normative statistical infer-
ence. According to this theory, animals learn an internal
model of their environment from experience. The basic
building blocks of this internal model are latent causes—
explanatory constructs inferred by the animal that partition
observations into coherent clusters. Generalization of con-
ditioned responding from one cue to another arises from the
animal’s inference that the cues were generated by the same
latent cause. Through a wide range of simulations, we
demonstrate where the theory succeeds and where it fails
as a general account of classical conditioning.
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A normative theory of behavior is one that takes as its
starting point the question “What is the ecological problem
facing the animal?” and, once this question has been suit-
ably formalized, characterizes its optimal (or “rational”)
solution. The value of such a rational analysis (cf. Anderson,
1990) lies not in its prescription for behavior, but rather in
the functional organization of behavior that it makes explic-
it. Marr (1982) expressed this point eloquently in the context
of visual perception: “[T]rying to understand perception by
studying only neurons is like trying to understand bird flight
by studying only feathers: It just cannot be done. In order to
understand bird flight, we have to understand aerodynamics;

only then do the structure of feathers and the different shapes
of birds’wingsmake sense” (p. 27).While it is natural to think
of wings in terms of flight, the logic of behavior in classical
(Pavlovian) conditioning experiments is less obvious. Only a
relatively small number of theories have attempted to answer
this question directly (e.g., Courville et al., 2006; Dayan,
Kakade, & Montague, 2000; Dayan & Long, 1998; Gallistel
& Gibbon, 2000; Sutton & Barto, 1990).

This article explores a simple normative theory of classi-
cal conditioning, first presented in Gershman, Blei, and Niv
(2010). Unlike most associative-learning theories, which
describe how animals learn to associate observed events to
each other, our theory postulates that animals attempt to
learn the hidden (latent) structure of the environment from
their experience and that they employ this internal model of
the environment to make predictions about unobserved or
future variables (see also Schmajuk, Lam, & Gray, 1996;
Sokolov, 1960). Following the seminal work of Courville,
Daw, Gordon, and Touretzky (2003) and Courville, Daw,
and Touretzky (2004, 2006), we assume that the basic
building blocks of the animal’s internal model are latent
causes—variables inferred by the animal that partition trials
into different clusters. As applied to classical conditioning
experiments, we frame the conditioned response (CR) to a
conditioned stimulus (CS) as resulting from a prediction
about the unconditioned stimulus (US), given the other
stimuli present. Generalization of conditioned responding
from one cue to another arises from the animal’s inference
that the cues were generated by the same latent cause.

In the next section, we first describe the essence of the
theory, and then present a formal mathematical description.1

Following that, we report a wide range of simulations that
are intended to illustrate the theory’s strengths, as well as its

1 MATLAB code implementing the model is available at the first
author’s webpage: www.princeton.edu/~sjgershm.

Electronic supplementary material The online version of this article
(doi:10.3758/s13420-012-0080-8) contains supplementary material,
which is available to authorized users.

S. J. Gershman (*) :Y. Niv
Department of Psychology and Princeton Neuroscience Institute,
Princeton University,
Princeton, NJ 08540, USA
e-mail: sjgershm@princeton.edu

Learn Behav (2012) 40:255–268
DOI 10.3758/s13420-012-0080-8

http://www.princeton.edu/~sjgershm
http://dx.doi.org/10.3758/s13420-012-0080-8


weaknesses. Finally, in the Discussion, we suggest some
promising routes toward improving the theory’s explanatory
reach as well as its connections to other normative accounts.

The latent cause theory

In this section, we review the latent cause theory of classical
conditioning introduced by Gershman, Blei, and Niv (2010).
This theory owes a major intellectual debt to the work of
Courville and his colleagues (Courville et al., 2003; Courville
et al., 2004, 2006), who were the first to demonstrate the
usefulness of thinking about classical conditioning in terms of
latent causes. We also drew inspiration from the reinforcement
learning model of Redish, Jensen, Johnson, and Kurth-Nelson
(2007); see Gershman et al. (2010) for a detailed comparison of
these models. At a mathematical level, our theory is directly
descended from work on human categorization, in particular
fromAnderson’s (1991) rational model of categorization and its
descendants (Sanborn, Griffiths, & Navarro, 2010).

In our theory, the animal combines its a priori beliefs
about how the world is structured together with its current
observations to make inferences about how CSs and USs are
linked, and to make predictions about the possible future
occurrence of a US. We use the term observation to refer to
the set of features (CS, US, context, etc.) presented to the
animal on a particular trial. We further assume that the
animal combines beliefs and observations statistically cor-
rectly—that is, by using Bayes’ rule to combine prior beliefs
and the likelihood of an observation to form a posterior
belief.

In particular, we assume that the animal divides its obser-
vations into groups or clusters, according to the hypothe-
sized latent cause of each trial. To the extent that different
trials are thought to result from the same (hidden) cause,
they are combined to form an expectation for the probability
of a US (and of other cues) given that cause. To determine
the strength of its CR on the current trial, the animal first
determines what cause is likely to be active, given the
current observed cues, and then makes a prediction about
the occurrence of the US according to the statistics previ-
ously observed for this latent cause. Thus, in essence, the
animal is not learning to associate CSs with USs, but rather
to associate latent causes with both CSs and USs. Impor-
tantly, as the latent causes are not observed, the animal must
rely on its subjective inference about which causes were
responsible for which trials.

To structure the animal’s prior beliefs about latent causes,
our theory imputes to the animal a set of probabilistic
assumptions about the environment that collectively consti-
tute a generative process—a stochastic “recipe” that the
animal assumes has generated its observed data. Intuitively,
the generative model amounts to a set of four assumptions:

1. Each trial is caused by one latent cause.
2. Each latent cause has some characteristic probability of

emitting observed features (CS, US, etc.).
3. All else being equal, a prolific latent cause (i.e., one that

has caused many trials) is more likely to cause another
trial.

4. There is some small probability that the current trial
results from a completely new latent cause (i.e., one
that has not yet generated any observations).

Given such a generative model, the animal can reason
backward from observations to latent causes using Bayes’
rule (shown schematically in Fig. 1). Once it has inferred
what latent cause is active in the current trial, the animal can
expect the US insofar as this latent cause has previously
emitted the US—that is, if the (inferred) characteristic emis-
sion probabilities of the latent cause suggest that a US is
likely to appear—and can generate the CR appropriately.
We now turn to a more formal description of the theory.

The internal model imputed to the animal

We assume that the animal’s observation on trial t takes
the form of a discrete-valued2 multidimensional vector
ft 0 {ft,1, . . . , ft,D}. Each feature corresponds to the
presence or absence of a particular stimulus (e.g., CS,
US, context), with the first feature, in particular,
corresponding to the binary occurrence or absence of a
US—ft,1 ∈ {US, ¬US}—and other features varying
depending on the particular experiment. Commonly,
there is a cue feature representing a typical Pavlovian
CS (or its absence): ft,d ∈ {CS, ¬CS}. Some experi-
ments3 include a context feature, an abstraction of typ-
ical context manipulations (e.g., box color, shape, or
odor), which we simplify into discrete values: ft,d ∈
{contextA, contextB, contextC, etc.}.

As mentioned above, the generative model that we im-
pute to the animal is one in which, on each trial, a single
latent cause is responsible for generating the observations
(see Courville et al., 2003, for an example of a latent cause
model in which multiple latent causes can be active on a
single trial). In such a mixture model, each trial is assumed
to be generated stochastically by first sampling a cause ct
according to a mixing distribution P(c) and then sampling
an observation vector conditioned on the cause from an
observation distribution P(f | ct). This type of generative
model is a reasonable prior belief for many environments,

2 The choice of discrete-valued observations is not crucial to our
formalism; we have used real-valued features and obtained similar
results.
3 We chose not to include this context feature in all simulations, in the
interest of simplicity; this affected the quantitative, but not the quali-
tative, pattern of results.
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since it expresses, to a first approximation, the process by
which many conditioning procedures are generated: first a
phase (e.g., conditioning, extinction, or test) is selected, and
then a set of stimuli are selected according to the phase.

If the animal assumes that each observation is generated
by a single latent cause, then “clustering” is the process of
recovering these causes on the basis of its observations. The
clusters inferred by the animal may not be identical to the
true causes of its observations; indeed, these are explanatory
constructs that do not necessarily correspond to objects in
the real world.

It seems reasonable to suppose that animals do not know
(or decide) a priori how many latent causes will be involved
in a certain situation. This means that, as they observe more
data, animals must have the ability to flexibly expand their
repertoire of latent causes. We can specify the mixture
model described above such that the number of latent causes
is unbounded—a so-called “infinite-capacity” mixture
model.4

Formally, let us denote a partition of observations (trials)
1, . . . , t by the vector c1:t 0 {c1, . . . , ct}. A partition
specifies which observations were generated by which
causes, such that ct 0 k indicates that the observation t was
generated by cause k. In our model, before observing any
data, the animal’s prior belief over how likely different
partitions will be is an infinite-capacity mixture model (see
Gershman & Blei, 2012, for a tutorial introduction). This
can be written as a sequential process that generates cause k
on trial t with probability

P ct ¼ kjc1:t�1ð Þ ¼
Nk

t�1þa if k is an old cause
a

t�1þa if k is an new cause;

�
ð1Þ

where Nk is the number of observations already generated
by cause k (by default, it is assumed that c1 0 1). The
number of causes generating observations 1, . . . , t is now
a random variable and can be any number from 1 to t.

Through determining the probability of assigning trial t to
a new cause, the concentration parameter α specifies the
animal’s prior belief about the number of causes in the
environment. When α 0 0, all observations are generated
by a single cause; when α approaches ∞, each observation is
generated by a unique cause. In general, for α < ∞, the
animal assumes that observations will be generated by a
number of causes that is smaller than the number of obser-
vations, with fewer causes accounting for more data the
lower α is. Additional information about this distribution
can be found in the supplemental materials.

Once a cause has been sampled for a trial, an observation
is sampled from an observation distribution conditional on
the cause. In our model, each cause is linked to a multino-
mial distribution over features, parameterized by ϕ, where
ϕi,j,k is the probability of observing value j (e.g., US) for
feature i given latent cause k. A common assumption in
mixture models (which we adopt here) is that, in the gener-
ative model, each feature is conditionally independent of all
the other features, given the latent cause and its multinomial
parameters. The conditional-independence assumption
expresses the idea that, given the identity of the latent cause,
CSs and US are generated separately, each according to its
relevant probability ϕi,j,k. In this sense, our model does not
embody associations between CSs and USs, but rather be-
tween each of these and the latent causes.

At this juncture, it is worth noting several questionable
assumptions of the proposed internal model of the environ-
ment. In this model, features are assumed to be conditionally
independent given the latent cause. This assumption is par-
ticularly consequential with respect to the predictive rela-
tionship between cues and reward: In the model, two cues
that appear simultaneously do not summate in the traditional
sense of increasing the total predicted US, but rather in-
crease the probability that a cause that tends to emit both
cues is active (whether this cause is associated with one or
more USs depends on the cause, not the cues). As we will
discuss in the Simulations section, this prevents the model
from capturing phenomena like overexpectation and

Fig. 1 Schematic of the latent cause theory. Each box represents the
animal’s observations on a single trial. The circles represent latent
causes, labeled to distinguish different causes. The upward arrows
denote probabilistic dependencies: Observations are assumed to be
generated by latent causes. The animal does not get to observe the
latent causes; it must infer these by inverting the generative model

using Bayes’ rule, as indicated by the downward arrow. As shown at
the top of the schematic, Bayes’ rule defines the probability of latent
causes conditional on observations, which is obtained (up to a normal-
ization constant) by multiplying the probability of observations given
hypothetical causes (the likelihood) and the probability of the hypo-
thetical latent causes (the prior)

4 For any given set of T observations, only a finite number of latent
causes will actually be active (at most T).
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superconditioning. Blocking is another phenomenon that is
elegantly explained by different generative assumptions
(e.g., the linear-Gaussian model proposed by Kakade &
Dayan, 2002). Another questionable assumption is the ex-
changeability of the infinite-capacity mixture model distri-
bution over latent causes: Changing the order of
observations does not change the probability of the partition.
This assumption prevents the model from learning about
temporal structure in its observation sequence (Savastano
& Miller, 1998).We emphasize that these assumptions are
not intrinsic to our model; our goal is to develop a modeling
framework in terms of latent causes, and to articulate one
simple variant that can still capture a wide range of phe-
nomena. In any case, in this article we explore the explan-
atory power of the above-specified model, replete with its
specific assumptions.

Approximate inference

The inference problem facing the animal consists of two
components: identifying the latent causes of its observa-
tions, and predicting the US given a partial observation
(i.e., an observation consisting of cues such as CSs and
context, but excluding the US). Because in our model pre-
diction depends on inferences about latent causes, we ad-
dress each of these components in turn.

Let F1:t 0 {f1, . . . , ft} denote the observations on
trials 1, . . . , t. According to Bayesian inference (Gelman,
Carlin, Stern, & Rubin, 2004), the animal’s beliefs about the
latent causes of the observations up to trial t are encoded by the
posterior distribution over partitions, given the observations:

P c1:tjF1:tð Þ ¼ P F1:tjc1:tð ÞP c1:tð ÞP
c1:tP F1:tjc1:tð ÞP c1:tð Þ ð2Þ

where the posterior probability of each partition c1:t is deter-
mined both by the prior probability of this partition,P(c1:t), and
the likelihood of the observed features if this partition was the
true assignment of trials to latent causes, P(F1:t | c1:t). This
means that, although the generative process assumes that fea-
tures are generated independently given a cause, in inference
the probability of a partition also depends on multiplicative
interactions between features: A partition is more likely to the
extent that it involves consistent feature values in each cluster.

Unfortunately, this posterior probability is computation-
ally intractable, since the denominator in Eq. 2 involves a
summation over an exponentially large number of partitions.
We must therefore consider approximate inference algo-
rithms. One approximate inference algorithm that is suitable
for implementation in the brain is the particle filter
(Fearnhead, 2004). This algorithm approximates the poste-
rior distribution over partitions using a set of samples (or
particles), which it updates in an online fashion as new

observations arrive. The particle filter algorithm has been
used successfully to model a number of learning phenomena
(Brown & Steyvers, 2009; Daw & Courville, 2008; Sanborn
et al., 2010). The essential idea in particle filtering is to
create a set of m hypothetical partitions of trials into causes
such that each partition is represented in the set approxi-
mately in proportion to the partition’s posterior probability
according to Eq. 2. Specifically, the probability of sampling
a partition depends on factors such as the number of latent
causes in the partition and whether similar observations are
clustered together. A detailed description of the particle
filter algorithm can be found in the supplemental materials.

Finally, we assume that the animal’s conditioned
(Pavlovian) response is proportional to the predicted proba-
bility of a US given a “test” observation that lacks the first (US
or ¬US) feature. This prediction (which we denote V) is based
on the animal’s posterior beliefs about the structure of the task
and about the cause to which the current test trial is assigned:

Vt ¼ P ft ;1 ¼ USjf t ;2:D;F1:t�1

� �
¼

X
c 1:t

P ft ;1 ¼ USjct; c1:t�1; f1:t�1;1

� �
P ctjf t ;2:D;F1:t�1;2:D; c1:t�1

� �

� P c1:t�1jF1:t�1ð Þ:
ð3Þ

For each possible partition of trials into latent causes c1:t,
this equation calculates the probability of the US assuming
that the current trial was caused by ct, and given the occur-
rence of USs in previous trials that were assigned to this
same latent cause. In our model, this amounts to simply
counting, for all previous trials assigned to latent cause ct,
how many trials had a US and how many did not (hence, the
dependency on c1:t–1 and f1:t–1,1). This is then weighted by
the probability of assigning trials 1:t to causes c1:t: The last
term is the (recursively calculated, from the previous trial)
posterior probability of the partition up to trial t – 1, and the
middle term is the probability of assigning the current trial to
ct. Specifically, the middle term involves both the likelihood
of the current trial being generated by ct, as determined by
similarity between the cues in this trial and cues in previous
trials assigned to the same latent cause, and the prior proba-
bility of latent cause ct given the previous latent causes:

P ct ¼ cjf t ;2:D;F1:t�1;2:D; c1:t�1

� �

¼ P f t ;2:DjF1:t�1;2:D; ct ¼ c; c1:t�1

� �
P ct ¼ cjc1:t�1ð ÞP

jP f t ;2:DjF1:t�1;2:D; ct ¼ j; c1:t�1

� �
P ct ¼ jjc1:t�1ð Þ :

ð4Þ
As in Eq. 2, this is the normalized product of the likeli-

hood of this trial’s features (excluding the US feature)
assuming previous trials assigned to the same cause (again,
calculated by counting how many trials shared these fea-
tures) and the prior probability of assigning this trial to this
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latent cause (Eq. 1). Vt is thus the probability of a US given
the assignment of trials to causes, averaged over all the
possible partitions weighted by their probabilities.5

Figure 2 illustrates the behavior of the model in 20 trials
of simple conditioning. For this scenario, we show the
behavior of a single latent cause. The left panel shows the
conditional probability of the US (the leftmost term in
Eq. 3). It is monotonically increasing as the confidence that
the US will occur in the presence of the CS and the latent
cause increases (see Eq. 4 in the supplementary materials).
The right panel shows the probability of the latent cause
(middle term in Eq. 3), which is close to 1 for all of these
trials, since the statistical evidence for a second latent cause
is weak.6 Note that we do not show the rightmost term here
because in the particle filter implementation, this term is
implicitly represented by the set of latent causes (see the
supplementary materials).

Simulations

In this section, we present simulations of the model’s be-
havior in a wide range of experimental paradigms. Our goal
is to illustrate both the breadth of the model’s explanatory
reach and its limitations. Of necessity, we concentrate on
only a subset of the relevant literature. The simulations are
broken down into the major research categories of classical
conditioning. In each category, we begin by describing key
phenomena that the model accounts for, and then discuss
failures of the model.

In all of the simulations reported below, the value of α
(the only free parameter of the model) was set to 1. As will
become apparent, for some of our simulations, the quantita-
tive size of the effect is small, casting doubt on the model’s
fidelity to the data. One approach would be to fit α to
summary statistics of the data rather than to set it a priori.
However, the quantitative predictions of our model are also
dependent on somewhat arbitrary choices in the model
specifications, such as binary features and Dirichlet-
multinomial priors on the observation parameters (see the
supplementary materials). Instead, our goal is to expose
qualitative rather than quantitative patterns. To ensure that
our small effects are indeed qualitatively robust, in each case
we have run simulations, not reported here in the interest of
brevity, with values of α that have ranged over an order of
magnitude. In all cases, we were able to achieve a credibly
large effect with values in this range.

Acquisition, extinction, and recovery

The latent cause theory accounts trivially for the basic
acquisition of the Pavlovian response (Pavlov, 1927), as
well as the lower asymptote of conditioned responding
following partial reinforcement. In addition, it predicts the
loss of responding during an extinction treatment (see
Gershman et al., 2010). An important constraint on theories
of learning is the fact that extinguished or attenuated
responding can be recovered following posttraining manip-
ulations or changes in testing conditions (Bouton, 2004).
Below, we simulate a selection of important phenomena in
acquisition, extinction, and recovery.

Conditioning with imperfect predictors It has long been
recognized that the “associability” of conditioned stimuli
(i.e., the ease with which they acquire an association with
the US) can vary under different training conditions
(Mackintosh, 1975; Pearce & Hall, 1980). For example,
according to Pearce and Hall’s theory, the surprisingness
of a CS increases its associability (see Hall, 1991, for a
review of the evidence). The latent cause theory lacks
direct CS–US associations, so it must appeal to a dif-
ferent principle to explain these data.

Conceptually, one can think of each latent cause as im-
plicitly encoding an observation prototype (the central ten-
dency of observations generated by that cause), along with
an estimate of how observations tend to vary around the
prototype. The greater the diversity of observations assigned
to the same latent cause, the larger the estimate of the
variance will be. The functional consequence of this inflated
variance is a higher tolerance for outliers, and novel obser-
vations that differ from the prototype are more likely to be
assigned to a latent cause when the cause’s variance estimate
is larger. Paradigms that modestly increase observation di-
versity (e.g., by using imperfect predictors) encourage the
animal to assign new observations to an existing latent cause
with high diversity. New learning will be accelerated by the
fact that the animal is exploiting earlier knowledge, thereby
explaining the apparent associability change.

As an example, Wilson, Boumphrey, and Pearce (1992)
trained rats on a serial-conditioning task in which a light was
always followed by a tone, which in turn was intermittently
paired with a US. Half of the rats (Group C) continued to be
trained on this task, while the other half (Group E) were
switched to a schedule in which the tone was omitted on all
nonreinforced trials, making the light an imperfect predictor
of the tone. Subsequently, the light was paired directly with
the US for both groups. Wilson et al. observed that Group E
acquired conditioned responding to the light more rapidly
than did Group C.

Simulations of this experiment using the latent cause
model are shown in Fig. 3 (recall that V denotes the animal’s

5 Details of how Vt is calculated recursively using the particle filter are
contained in the supplemental materials.
6 The slight decrease after the first trial is a consequence of the fact that
all of the particles are initialized to the first latent cause on the first trial,
but the particles can assign different trials to different latent causes
after that.
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estimate of the probability that the US will occur). The
model is able to capture the findings of Wilson et al.

(1992) by virtue of the fact that Group E produced greater
diversity within the first inferred latent cause during the
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Fig. 3 Conditioning with an imperfect predictor: Simulation of the
Wilson, Boumphrey, and Pearce (1992) partially reinforced serial-
conditioning paradigm. In the first training phase (Trials 1–10 in our
simulation), two groups of rats are presented with a light cue followed
by a tone cue, which in turn is intermittently paired with a US (in our
simulation, every other trial includes a US). (A–B) Both groups assign
the first (reinforced) trial to Cause 1 and the second (nonreinforced)
trial to both Causes 1 and 2. Henceforth, both groups assign reinforced
trials predominantly to Cause 1 (which is thus associated with high
probability of a US) and nonreinforced trials to both Causes 1 and 2
(the second cause being associated with low probability of a US). For
illustration purposes, we have labeled the causes “CS+” and “CS–”
according to their association with reinforcement. In the second phase
(Trials 10–50 in our simulation), Group C continues to be trained on

this task, while Group E is switched to a schedule in which the tone is
omitted on all nonreinforced trials. In our simulations, this results in a
third cause being inferred (not shown here) for Group C, with the new
light–no-US trials being assigned to all three causes with some prob-
ability. Finally, in a test phase (Trials 50–60), the light is paired directly
with the US for both groups. (C) Simulated responding corresponding
to the final phase shows greater responding in group E, in agreement
with the experimental results. This results from the greater diversity of
the trials assigned to Cause 1 in the second phase in Group E (this
cause accounts for trials with light, tone, and US; light, tone, and no
US; and light and no US), which means that the light-only test trials are
assigned to this cause with higher probability, thus bringing about
higher expectations for the occurrence of a US
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second phase of training (see the figure caption). As a
consequence, the light–US trials in the third test phase were
more likely to be assigned to that cause. This allowed the
animal to use its preexisting predictions about the US to
learn more rapidly.

The partial-reinforcement extinction effect One of the most
paradoxical findings in classical conditioning is the partial-
reinforcement extinction effect (PREE; Capaldi, 1957;Wagner,
Siegel, Thomas, & Ellison, 1964): the finding that extinction is
retarded following training in which the CS is partially rein-
forced. This finding is paradoxical from the perspective of most
associative-learning theories because one might plausibly ex-
pect that extinction should be faster after partial reinforcement,
since the animal presumably has a weaker association between
the CS and the US.

As was first pointed out by Gallistel and Gibbon (2000),
the PREE is less paradoxical when considered from a
statistical perspective: Discrimination between condition-
ing and extinction phases is harder when they have
similar rates of reinforcement (see also Courville et al.,
2006). The latent cause theory offers a similar explana-
tion: The hypothesis that conditioning and extinction
phases were generated by different latent causes is less
likely in the partial-reinforcement condition, as compared
to training with 100 % reinforcement. Confirming this
intuition, Fig. 4 shows simulations of the PREE by the
latent cause theory.

Renewal In Gershman et al. (2010), we presented an exten-
sive discussion of renewal effects. Briefly, changing the
context between acquisition and extinction, or between ex-
tinction and test, has the effect of renewing the animal’s CR
following extinction (see Bouton, 2004, for a review). The
latent cause theory explains these phenomena in terms of
how contextual manipulations shift the posterior distribution
over latent causes. In the most straightforward case (ABA

renewal: acquisition in context A, extinction in context B,
and test in context A), the context change promotes the
inference of one latent cause for acquisition and one for
extinction; this effectively protects the acquisition cause
from extinction training. Upon return to the acquisition
context, the animal infers that the original latent cause is
once again active, and therefore renews its prediction that a
US will occur.

Generalization and discrimination

In this section, we discuss how our model accounts for
generalization from a training set to novel stimuli, as well
as discrimination between stimuli in the training set. See
Courville et al. (2004) for an alternative latent cause theory
of generalization and discrimination.

External inhibition A simple example of generalization is
the phenomenon of external inhibition (Pavlov, 1927): Con-
ditioned responding to a (previously trained) CS is decre-
mented when the CS is presented with an added stimulus.
The latent cause theory explains this phenomenon as fol-
lows: the added stimulus reduces the posterior probability
that the trial was generated by the same latent cause as the
one that caused the original training trials, and hence the
conditioned response is not generalized strongly from the
elemental stimulus to the compound. More precisely, the
added stimulus causes the animal to place more probability
on a new cause, whose US prediction is initialized to .5 (the
default prediction in our model, due to the uniform prior
over parameters), making it lower than the prediction for the
latent cause inferred during training. A simulation of exter-
nal inhibition is shown in Fig. 5.

Positive and negative patterning Traditional accounts of
classical conditioning, such as the Rescorla–Wagner model,
generate predictions that are linear in the values of presented
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stimuli. Positive and negative patterning problems are inter-
esting in that they imply a nonlinear architecture. Belling-
ham, Gillette-Bellingham, and Kehoe (1985) showed that
animals could solve problems of the forms {A–, B–, AB+}
(positive patterning) and {A+, B+, AB–} (negative pattern-
ing), for which no linear solution exists. The latent cause
model can solve these problems as well, as is shown in
Fig. 6. The explanation is straightforward: The model can
assign each pattern to a different latent cause, allowing it to
make different predictions for different configurations. This
demonstrates an important computational property of the
latent cause model: It can adaptively form predictions that
are nonlinear in the stimulus configuration.

Inhibitory conditioning

In this section, we describe simulations of experiments in
which stimuli acquire an inhibitory potential. Whereas most
earlier models viewed this inhibitory potential in terms of a
negative CS–US associative weight that interacts additively
with the weights of other CSs, the latent cause theory
explains the inhibitory potential in terms of the evidence
provided by the conditioned inhibitor for a latent cause that
predicts no US.

Conditioned inhibition When two CSs are trained in a
feature-negative discrimination (AX+/X–), X becomes a
conditioned inhibitor, as assessed by summation and re-
tardation tests (Pavlov, 1927). We shall return to the
conditions under which conditioned inhibition arises in
the Higher-Order Conditioning section. Here we discuss how
various posttraining manipulations influence the conditioned-
inhibition effect.

Zimmer-Hart and Rescorla (1974) observed that extin-
guishing the conditioned inhibitor (X–) following condi-
tioned inhibition training has little effect on its inhibitory

potential, whereas pairing it with the US (X+) attenuates
its inhibitory potential. Figure 7 shows simulations of
this paradigm. Inhibitory potential was assessed by pair-
ing cue X with a test cue B that was separately rein-
forced during training (a so-called “summation test”).
According to the latent cause theory, X– and X+ trials
will both be assimilated into the cause containing X–
trials that was created during conditioned-inhibition training.
Extinction of X– will not greatly change the no-US pre-
diction encoded in that cause, whereas pairing with the US
will attenuate it.

It should be noted that this finding has not been
reliably replicated in humans. In a causal-learning ex-
periment, Melchers, Wolff, and Lachnit (2006) showed
that extinguishing a conditioned inhibitor does reduce
its inhibitory potential if the reinforcer can take on
negative values. Thus, humans’ judgments may be in-
fluenced by other kinds of knowledge that do not as
strongly affect Pavlovian responses in animals.

While the latent cause theory correctly predicts the
effects of posttraining inflation (X+) and deflation (X–) of
the conditioned inhibitor, it incorrectly predicts that post-
training inflation of the conditioned excitor should attenuate
the inhibitory potential of the conditioned inhibitor. Con-
trary to this prediction, Amundson, Wheeler, and Miller
(2005) have shown that this manipulation actually enhances
conditioned inhibition. The problem stems from the fact that
the model tends to assign the A+ trials to the same latent
cause as the AX– trials, and this dilutes the no-US prediction
encoded in that cause.

Stimulus competition and potentiation

In this section, we discuss studies in which stimuli trained in
compound either compete with or potentiate one another.
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Overshadowing Overshadowing (Pavlov, 1927) refers to
the finding that compound conditioning of two CSs (AB+)
results in weaker conditioning to an individual CS (A) than
when each CS has been trained alone (A+, B+). The latent
cause theory explains this finding in terms of generalization
(Fig. 8): The individual CS test trial is more likely to be
assigned to the same latent cause as the conditioning phase
when training was performed to that CS individually.

Blocking and summation The classic “Kamin blocking ef-
fect” refers to the finding that conditioning to a CS1–CS2
compound results in weaker conditioning to CS2 when it is
preceded by conditioning to CS1 than when it is not
(Kamin, 1968). The latent cause theory fails to account for
this finding, because in our theory the CSs do not directly
compete to predict the US, an important principle for
explaining blocking. In general, the latent cause theory as
stated does not assume or result in summation of the pre-
dictions of different CSs, an important component in models
such as Rescorla and Wagner’s (1972). Instead of affecting
the inferred probability of reward, different stimuli appear-
ing together might increase or decrease the probability that a
latent cause is inferred to be active. This inference can affect
conditioned responding; for example, after conditioning
with a CS1–CS2 compound, presentation of CS1 alone
would result in less responding, but this is not because of
summation (or subtraction) of predictions of the US.

Similarly, our model does not account well for other
phenomena that seem to require summation of predic-
tions. One such example is overexpectation, in which
reinforced CS1–CS2 presentations following independent
reinforced CS1 and CS2 presentations result in a decre-
ment in their initial associative strengths (Rescorla, 1970).
This phenomenon is very naturally explained by the
Rescorla–Wagner model in terms of a negative prediction
error during the compound presentation. The phenomenon
of superconditioning (Rescorla, 1971) is also naturally
explained by changes in prediction error due to summation
across CSs.

Although summation appears to be an important mecha-
nism lacking in our model, it is worth noting that summation
leads to erroneous predictions in certain cases. For example,
it is well-known that for certain types of stimuli (e.g., from
the same sensory modality), summation is not observed
(Melchers, Shanks, & Lachnit, 2008). In some cases, stimuli
seem to play a more modulatory role, rather than directly
summating with other CSs (Holland, 1993), and in others
they act more like memory retrieval cues (Bouton, 1993).
The work of Courville et al. (2003; Courville et al., 2004,
2006) suggests one way of incorporating summation into a
latent cause theory, by allowing for more than one latent
cause per trial and for the causes (rather than the stimuli) to
summate. Another idea, which we are currently exploring, is
to incorporate a linear-Gaussian observation model (e.g., in
the style of the Kalman filter; see the Discussion below) into
our model.

Preexposure effects

In contrast to effects whose explanation calls on the
idea of summation of predicted values, preexposure
effects are much more readily explained by our model.
In fact, these are the phenomena that are not so easily
explained by associative-learning theories like that of
Rescorla and Wagner (1972).

Latent inhibition One of the classic preexposure effects,
latent inhibition (the CS preexposure effect), is explored at
length in Gershman et al. (2010), and therefore we will only
discuss it briefly here. In this paradigm, animals are preex-
posed to the CS prior to pairing it with the US (see Lubow,
1989, for a review). This preexposure retards learning of the
CS–US relationship, as compared to a nonpreexposed CS.
The latent cause theory explains this result in terms of the
animal’s inference that the same latent cause was active
during the preexposure and conditioning phases. Because
the animal learned to predict no US in the preexposure
phase, this prediction retards the acquisition of the US
prediction in the conditioning phase. This retardation is
attenuated, however, when conditioning is performed in a
context different from that of preexposure; the context
change increases the posterior probability that different la-
tent causes were active in the two phases, thereby releasing
the animal from the initial prediction acquired during
preexposure.

The Hall–Pearce effect Hall and Pearce (1979) found that
acquisition of a CS–US association is slowed if the same CS
was previously trained with a weaker US. This phenomenon
has subsequently become known as “Hall–Pearce latent
inhibition.” Figure 9 shows simulations of the latent cause
model in this paradigm. The basic explanation offered by
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our theory is that the weak-shock training establishes a
latent cause that is later reused in the strong-shock train-
ing. This retards acquisition because the latent cause is
associated with a weak shock, which competes with the
strong-shock association. In other words, at the end of
acquisition, the posterior is confident that the first latent
cause is associated with a weak shock, and this belief is
in conflict with the strong-shock association acquired
during subsequent training. If a new CS is used, there
is a release from latent inhibition, since the two USs are
no longer linked to the same latent cause, and hence do
not compete with each other (Fig. 9, right). This form of
competition is a natural consequence of Bayesian infer-
ence, where the probability distribution over hypotheses
(e.g., associations) must sum to 1, and therefore increas-
ing the posterior probability of one hypothesis must
necessarily decrease the posterior probability of another
hypothesis.

Preexposure effects not accounted for by the theory A num-
ber of preexposure effects are not accounted for by the latent
cause theory. For example, preexposing an animal to the
conditioning context facilitates subsequent contextual fear
conditioning (Kiernan & Westbrook, 1993). This phenome-
non is paradoxical in light of the latent-inhibition effect
described above: If the context is treated like a cue, it should
also exhibit latent inhibition. Clearly, then, contexts are not
(or at least not always) treated as cues. Because the latent
cause theory in its present form makes the assumption that
contexts are cues, it cannot explain the context preexposure
effect. On the other hand, Fanselow (1990) has shown that
longer context preexposure can produce latent inhibition
(rather than facilitation), suggesting that contexts can act
as cues under certain temporal conditions in the same para-
digm. This phenomenon is not captured by our model
presently.

Another type of preexposure effect that challenges the
latent cause theory is learned irrelevance (Bonardi & Hall,
1996): Random exposure to the CS and the US retards

conditioning even more than the combination of CS preex-
posure (“latent inhibition”) and US preexposure. The latent
cause theory cannot account for this finding because of its
assumption of exchangeability: Randomly permuting the
order of trials leaves the probability of the whole se-
quence of data unchanged, and thus does not affect the
US prediction. This means that interleaving random ex-
posure to the CS and US should have the same effect as
blocking the presentations of each trial type, contrary to
the learned-irrelevance effect. In the Discussion, we re-
turn to ways in which the exchangeability assumption
can be relaxed.

Finally, perceptual learning—that is, exposure to similar
stimuli leads to faster subsequent acquisition of a discrimi-
nation between them (Channell & Hall, 1981)—is not an-
ticipated by the latent cause theory. This is because, in our
model, the similar stimuli tend to be assigned to the same
latent cause, retarding later acquisition of a discrimination
between them.

Higher-order conditioning

Second-order conditioning and conditioned inhibition A
peculiar contradiction for a long time existed in the classical
conditioning literature: Almost-identical treatments (second-
order conditioning and conditioned inhibition) seemed to pro-
duce opposite results. Both treatments involve presentations of
a nonreinforced compound AB– interleaved with reinforced
presentations of the individual CS A+. Whereas conditioned
inhibition results in B becoming inhibitory (Pavlov, 1927),
second-order conditioning results in B becoming excitatory
(Rizley & Rescorla, 1972). This contradiction was resolved
by Yin, Barnet, and Miller (1994), who showed that with a
small number of conditioning trials, one obtains second-order
conditioning, whereas with a large number of conditioning
trials, one obtains conditioned inhibition.

The latent cause theory explains this finding because,
although fewer causes are preferred by the animal a priori,
this simplicity preference can be overcome by observing
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Fig. 9 The Hall–Pearce effect.
(Left) Simulated conditioned
responding to a CS trained with a
strong shock, following training
in which the same CS was paired
with a weaker shock (“Same
CS”). In the “Diff CS” condition,
training is with a novel CS.
(Middle) Conditional probability
of the US under the first (“weak-
shock”) latent cause during
strong-shock training. (Right)
Posterior probability of the first
latent cause during strong-shock
training

264 Learn Behav (2012) 40:255–268



more data (see also Courville et al., 2003). With few condi-
tioning trials, the animal assigns both AB– and A+ to the
same latent cause, resulting in the US prediction generaliz-
ing to CS B. With more conditioning trials, the animal
accumulates evidence in favor of a more complex internal
model consisting of two latent causes, one for each trial
type. In this case, CS B is assigned to a cause predicting
no US (Fig. 10). As mentioned above, this prediction of no
US is, however, not “inhibitory” in the sense of summation,
as our model does not involve summation of US predictions.

Discussion

We have shown that a simple normative theory of classical
conditioning that is based on the idea that animals reason
about latent causes can account for a wide range of exper-
imental data. This is surprising for two reasons. First, the
theory departs from some basic assumptions of most theo-
ries of conditioning. Below we dissect these departures, as
well as the relationship of our theory to other normative
accounts. Second, the theory is clearly oversimplified, as
evidenced by its failure to account for a number of important
phenomena. We will suggest several directions for extend-
ing and improving the theory.

Relationship to other theories

It is worth emphasizing the radicalness of the latent cause
theory’s departure from the major contemporary theories of
classical conditioning (Mackintosh, 1975; Pearce & Hall,
1980; Rescorla & Wagner, 1972; Schmajuk, 2010; Wagner,
1981), all of which posit that conditioned responding arises
from learned associations between CSs and USs (but see
Gallistel & Gibbon, 2000). According to the latent cause
theory, animals instead learn associations between hypothet-
ical latent causes and observation features (CS, US,

contextual stimuli, etc.); in other words, in our model the
animal’s predictions about the US are mediated by its beliefs
about which latent causes are active. The model is norma-
tive because we assume that these beliefs are updated when-
ever a new observation is obtained, in a statistically rational
manner, by means of Bayesian inference. Conditioned
responding arises not from direct CS–US associations, but
rather from cause–US associations, averaged under the ani-
mal’s posterior probability distribution over latent causes.

It has long been recognized that some cognitive processes
operating in classical conditioning defy explanations in
terms of CS–US associations (Holland, 1993; Tolman,
1948). Bouton (1993) has argued persuasively that certain
types of stimuli—in particular, contextual stimuli—act to
facilitate retrieval rather than to directly excite or inhibit
conditioned responding. A complementary perspective is
offered by Miller’s comparator hypothesis (Stout & Miller,
2007), according to which associations compete in memory
for control of conditioned responding at the time of test. In
contrast to encoding-focused models (e.g., Rescorla &
Wagner, 1972), which place the explanatory onus on processes
occurring at the time of training, retrieval-focused models like
the comparator hypothesis seem better suited to explain the
effects of posttraining manipulations on the response to a cue
without actually presenting the cue again (but see Schmajuk &
Larrauri, 2006).

Our latent cause theory attempts to place some of these
ideas in a statistical perspective. The probabilistic computa-
tions underlying Bayesian inference can be understood as a
kind of memory retrieval process: The animal is attempting to
match the current observation to the prototypes stored in
memories of the latent causes that it has previously inferred.
If a match is found, or several are, the animal updates the
latent cause memories to reflect the current observation; if no
memory matches sufficiently, the animal encodes the current
observation into a new memory (see also Redish et al., 2007).

A more elaborate latent cause theory has been explored
by Courville and colleagues (Courville et al., 2003;
Courville et al., 2004, 2006) using sigmoid belief networks.
In their model, a variety of latent causes could be active in
any given trial, with the data from all trials used to infer a
network-like structure of causes and their associated obser-
vations. Space precludes us from discussing the detailed
similarities and differences between Courville’s theory and
ours; however, these theories are meant to capture different
aspects of conditioning. Courville’s theory was motivated
by elemental and configural theories of conditioning and
explores the idea that animals use rational statistical princi-
ples to decide what configurations of stimuli should be
learned about. In contrast, our theory was developed as a
formal distillation of the idea that some circumstances pro-
mote the formation of a new memory, whereas other condi-
tions promote the modification of an old memory (Gershman
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Fig. 10 Second-order conditioning and conditioned inhibition: Simu-
lated conditioned responding to B after either few or many trials of
AB–/A+ training. See the text for details
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et al., 2010). Unlike the Courville et al. (2004) model, our
model does not assume that a single causal structure underlies
all of the observations (but see Courville et al., 2006, for an
elaboration in which latent causes evolve through a birth–
death process). The nonparametric prior over latent causes is
explicitly designed to allow different latent causes to explain
different observations, and these latent causes belong to a
potentially infinite set. Our model is thus better suited to
explaining phenomena like context-dependent renewal fol-
lowing extinction, which admits a natural interpretation in
terms of different latent causes assigned to training and ex-
tinction (Gershman et al., 2010).

The simplicity of our theory makes it useful for investi-
gating the idea of when a new memory is formed versus an
old one modified. This, however, comes at the cost of not
capturing the full richness of classical conditioning. None-
theless, we have shown that our theory can still capture a
remarkably wide array of findings. In sum, we see our
model and Courville’s (Courville et al., 2003; Courville et
al., 2004, 2006) as two instances of a more general model-
ing paradigm within which particular assumptions can be
tested and criticized. Its key theoretical commitment is the
explanatory concept of a latent cause; the other assumptions
are auxiliary (i.e., not central to the theory, but necessary for
it to make quantitative predictions). Our contribution in this
article has been to explore one set of auxiliary assumptions
within this framework.

As mentioned in the Preexposure Effects section, the latent
cause theory we have presented assumes exchangeability
(invariance to ordering of the observations). Courville et al.
(2006) discussed evidence that this assumption is not viable,
and they presented a nonexchangeable latent cause theory as
an alternative. Other work by Kakade and Dayan (Dayan et
al., 2000; Kakade & Dayan, 2002) has borrowed an idea from
engineering theory (the Kalman filter) to model classical
conditioning as optimal online inference in a particular kind
of dynamical system. Their model captures certain types
of learning dynamics but does not use the concept of
latent causes. In fact, the Kalman filter model can be
seen as an extension of the Rescorla–Wagner (1972)
and Pearce–Hall (1980) theories, and as such has some
of the same limitations, such as failing to explain phe-
nomena like the partial-reinforcement extinction effect,
which are explained naturally under a latent cause ac-
count (Courville et al., 2006).

Finally, while we have used the word “cause,” we do not
wish to make strong causal interpretations of our model.
Rather, latent causes are simply useful explanatory con-
structs posited by the animal. This is in contrast to work in
the causal-learning literature (e.g., Griffiths & Tenenbaum,
2005), where a rigorous probabilistic interpretation of cau-
sality is explored. There is evidence that causal learning
plays an important role in classical conditioning (Beckers,

Miller, De Houwer, & Urushihara, 2006), but we do not
address these phenomena in the present work.

Limitations and extensions

In this article, we have omitted the important area of within-
trial temporal effects. These effects emerge from manipula-
tions of the intertrial and interstimulus intervals, including
distinctions between serial- and simultaneous-conditioning
paradigms. Like Rescorla and Wagner’s (1972) model, the
latent cause theory we have presented is a trial-level model,
treating the entire trial as a single time point; hence, within-
trial timing effects lie beyond its scope. For a similar reason,
the theory also does not explain the conditioned diminution
of the unconditioned response after presentation of the CS
with which the US was trained (Donegan, 1981), which is
essentially a priming phenomenon requiring a real-time
treatment. It is, however, possible to integrate the latent
cause theory presented here with real-time normative theo-
ries, in particular the temporal-difference-learning theory
(Sutton & Barto, 1990). We are actively exploring this
direction. Courville et al. (2006) proposed a latent cause
theory of within-trial temporal structure, using a mixture
model over Markov chains representing different stimulus
sequences. This model could be fruitfully integrated with
our own work by replacing the finite mixture model with its
infinite counterpart, the infinite-capacity mixture model.

A quite different class of temporal effects concerns the
dynamics of trial-level phenomena—that is, how the statis-
tics of observations change over trials. Our model makes the
generative assumption that both the distribution over latent
causes and the properties of latent causes do not change over
trials. This assumption is unrealistic, and several authors
have suggested ways in which to model gradual change in
the observation statistics, as exemplified by the Kalman
filter model (Behrens, Woolrich, Walton, & Rushworth,
2007; Dayan et al., 2000; Kakade & Dayan, 2002). The
assumption of gradual change is not incompatible with our
model; a cause’s distribution over observations could be
allowed to change. In addition, one could modify the gen-
erative model to allow the distribution over latent causes to
change gradually. These developments are the subject of
future work.

Conclusions

The latent cause theory explored in this article is clearly
inadequate as a general model of classical conditioning.
However, as we argued at the beginning of the article, the
value of a normative theory lies primarily in its ability to reveal
the logic of behavior. The latent cause theory offers a new way
of conceptualizing the logic of classical conditioning, one that
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will hopefully furnish new directions for experimental re-
search. We hope to elaborate and extend these tentative first
steps to provide a more general theory of classical condition-
ing. These elaborations include allowing the latent cause
parameters to drift over time (as in the Kalman filter model)
and making the latent cause prior sensitive to the temporal
order of observations.
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