How to code like Bruce Lee fights

Some things | have learned about computation

Tea talk, Heiko

10th May 2016

Computation & Science

" 10000-

5 TagName
E’ 5000- = E:ython
&)

2009 2010 2011 2012 2013 2014 2015
Month

From blog entry ‘In celebration of 100,000 R questions on
StackOverflow'

Matlab, Python, R, Julia & co

» High level programming is convenient

» No explicit control over memory
» Limited control over computation
» Type-free

» Readable code (7)

Promise: The language developers will sort it out

A typical NIPS paper needs this plot

(Marginal) improvements in performance/time

Scalable iati G. i Process CI

0.5 g_‘. o

z - KLSp M=4

2 o4 —A~ KLSp M=50

a A~ KLSp M=200

2 - MFSp M=4

£ 03 -~ MFSp M=50

] % -l MFSp M=200

§ g -0~ EPFite M=4
8 £ 02% -8~ EPFitc M=50 | |

g ,8 -@- EPFitc M=200

2 o1 — o
100 10t 102 10° 104
- Time (seconds)
200 C—)

400 600
Wall Clock Time (secs) Figure 2: Temporal performance of the different methods on the image dataset.

Problems

Automatic memory managment comes at a cost
Runtime type inference comes at a cost
Affects readability

» function calls & indexing become expensive
» compensate using “flattened” and “vectorised” code

v

v

v

v

Most (research) codes do not nearly exploit the hardware
Giving away the control might make that impossible

v

Solutions (I would call hacks)

» Write critical parts in C
Things like Cython (type/compile system for Python)
Impossible to read, write, maintain ...

. and more critical: to validate and reproduce

vV v VY

A story about m

6 July
1997

5 April
1999

20
September
1999

24
November
2002

29 April
2009

Yasumasa Kanada
and Daisuke
Takahashi
Yasumasa Kanada
and Daisuke
Takahashi
Yasumasa Kanada
and Daisuke
Takahashi

Yasumasa Kanada
& 9 man team

Daisuke Takahashi
etal.

HITACHI SR2201 (1024 CPU) [20]

HITACHI SR8000 (64 of 128 nodes) 2]

HITACHI SR8000/MPP (128 nodes) [22]

HITACHI SR8000/MPP (64 nodes), Department of
Information Science at the University of Tokyo in Tokyo,
Japan 23]

600
hours

T2K Open Supercomputer (640 nodes), single node speed is

147.2 gigaflops, computer memory is 13.5 terabytes, Gauss— | 29.09
Legendre algorithm, Center for Computational Sciences at hours
the University of Tsukuba in Tsukuba, Japan(24]

51,539,600,000

68,719,470,000

206,158,430,000

1,241,100,000,000

2,576,980,377,524

8 months later

Fabrice Bellard beats previous world record:
» 2.6 - 10° digits
» Using a single Intel i7 quad core

» 46.9 gigaflops
» 3000 USD
» 131 days

» Takahashi: 640 quad cores, roughly 2000x faster

» 94.2 Tflops (trillion floating point operations per second)
» Multi-million USD
» 29 hours

» Bellard only 96 times slower, speedup is 20x

http://bellard.org/pi/pi2700e9 /faq.html

The 7 algorithms are:

» |0 bound — very heavy communication between the nodes

Bellard’s algorithm:
» Chudnovsky series evaluated using binary splitting

» Asymptotically slower than Arithmetic-Geometric
Mean by Takahashi

Asymptotics seem to be saturated at 10'? digits. Why faster?

CPU cache

Capacity
Latency

Locality matters when accessing memory

[A A A P PR EA N T
|
Random
Sequential
500
450 7 60%
400 ,/ - /
— / 5
< 350 v e A
£ 300 — 10% v
w 9 = [[
250 & |
B ¥ 2 30% /
S 200 ©]
% / = /
o 150 7 o 20% T
3] -]
> 100
o A 10% 7
50 /
‘r’_-,'_y/'/ /
[0 B e AR 0%
| I I l I I
21[] 211! 21(1’ 21!—) 222 225 228 21() 21.i 21[’) 219 222 225 228
Working Set Size (Bytes) Working Set Size (Bytes)

Example: MMD permutation test

» Recall Arthur's kernel two-sample test.
» Each nsamples x; ~ p and y; ~ g

n*MMD? = Z k(xi, x;) + k(yi,y;) — 2k(xi, y;)
i
» Testing requires the distribution of MMD? under p = g
» Analytically hard, so simulate empirical version

100

80

60

40

20

0,

=05

Pseudo-code:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)

for rep in 1..100
p = index permutation (2xN)
XY = XY[p]
X, Y = split (XY)

for i,j in 1..N
null[rep] = null[rep]

£ K(X[i], X[3])

£ K(Y[i], YI§]

— 2xk(X[i], Y[j])
end for

end for

MATLAB (E.g. the code in Gretton et al.):

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)

for rep in 1..100
p = index permutation (2xN)

XY = XY[p] % CREATES COPY
X, Y = split(XY) % CREATES COPY

for i,j in 1..N % EXTREMELY SLOW
null[rep] = null[rep]
£ K(X[i], X[3])
£ K(Y[i], YI§]
— 2xk(X[i], Y[j])
end for
end for

Comparison

» N = 2000 (moderate)
» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment

Matlab 230 copy

Python:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)
for rep in 1..100
p = index permutation (2xN)
XY = XY[p] % CREATES VIEW
X, Y = split(XY) % CREATES VIEW

for i,j in 1..N % EVEN SLOWER
null[rep] = null[rep]
£ K(X[i], X[3])
£ K(Y[i], YI§]
— 2xk(X[i], Y[j])
end for
end for

Comparison

» N = 2000 (moderate)
» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds |

Comment

Matlab 230

copy

Python 200

view rather than copy

C/C++:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack (X,Y)

null = zeros(100)
for rep in 1..100
p = index permutation (2xN)

for i,j in 1..N
null [rep] = null[rep]
+ kO[], XY[p[i])
+ k(XY[p[i4N]] . XY[p[j+N]]
o 2ekeXeli] Xvip (i)
end for

Comparison

» N = 2000 (moderate)
» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment
Matlab 230 copy
Python 200 view rather than copy

C/Ct+ 120

random access

Locality matters when accessing memory

[A A A P PR EA N T
|
Random
Sequential
500
450 7 60%
400 ,/ - /
— / 5
< 350 v e A
£ 300 — 10% v
w 9 = [[
250 & |
B ¥ 2 30% /
S 200 ©]
% / = /
o 150 7 o 20% T
3] -]
> 100
o A 10% 7
50 /
‘r’_-,'_y/'/ /
[0 B e AR 0%
| I I l I I
21[] 211! 21(1’ 21!—) 222 225 228 21() 21.i 21[’) 219 222 225 228
Working Set Size (Bytes) Working Set Size (Bytes)

C/C++ (Rahul):

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)
for rep in 1..100
p = index permutation (2xN)

k xx, k yy, k xy =0

for i,j in 1..N

compute k(XY[i], XY[j4N])
decide which term(p, i, j)
update k_xx, k_yy, k xy

end for
end for

Comparison

» N = 2000 (moderate)

» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment
Matlab 230 copy
Python 200 view rather than copy
C/C++ 120 random access
C/C++ 60 sequential access

C/C++:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)
ps = 100 index permutations(2xN)
k xx, k yy, k xy =0

for i,j in 1..N
compute k(XY[i], XY[j4N])

for rep in 1..100
decide which terms
update k xx, k_yy, k_ xy
update null[rep]
end
end for

Comparison

» N = 2000 (moderate)

» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment
Matlab 230 copy
Python 200 view rather than copy
C/C++ 120 random access
C/C++ 60 sequential access
C/C++ 30 sequential & single sweep

Single sweep does not require to pre-compute kernel matrix

O(N?) = O(N) memory

C/C++ and multicore:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)
ps = 100 index permutations(2xN)
k xx, k yy, k xy =0

#pragma omp parallel for
for i,j in 1..N
compute k(XY[i], XY[j+N])

for rep in 1..100
decide which terms
update k xx, k_yy, k_xy
update null[rep]
end
end for

Comparison

» N = 2000 (moderate)
» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment
Matlab 230 copy
Python 200 view rather than copy
C/C++ 120 random access
C/C++ 60 sequential access
C/C++ 30 sequential & single sweep
C/C++ 15 sequential sweep & dual-core

Single sweep does not require to
O(N?) = O(N) memory

pre-compute kernel matrix

Why this matters

A Fast, Consistent Kernel Two-Sample Test

Arthur Gretton Kenji Fukumizu

Carnegie Mellon University Inst. of Statistical Mathematics
MPI for Biological Cybernetics Tokyo Japan

arthur.gretton@gmail.com Sukumizu@ism.ac.jp

Zaid Harchaoui Bharath K. Sriperumbudur
Carnegie Mellon University Dept. of ECE, UCSD

Pittsburgh, PA, USA La Jolla, CA 92037
zaid. harchaoui@gmail.com bharathsv@ucsd.edu
Abstract

A kernel embedding of probability distributions into reproducing kernel Hilbert
spaces (RKHS) has recently been proposed, which allows the comparison of two
probability measures P and Q) based on the distance between their respective em-
beddings: for a sufficiently rich RKHS, this distance is zero if and only if P and
Q coincide. In using this distance as a statistic for a test of whether two samples
are from different distributions, a major difficulty arises in computing the signif-
icance threshold, since the empirical statistic has as its null distribution (where
P = @) an infinite weighted sum of x? random variables. Prior finite sample
approximations to the null distribution include using bootstrap resampling, which
yields a consistent estimate but is computationally costly; and fitting a parametric

Why this matters

» The spectral test is theoretically quite complicated
» Motivated with its speed

» “our new distribution estimate is [...] computationally less
costly than the bootstrap”

» “[...] due the requirement to repeatedly re-compute the
test statistic”

» 64 citations on Google scholar

Why this matters

» N = 2000 (moderate)
» Eigendecomposition. Can't be optimised or parallelised.
» Scales O(N?), so gets worse quickly

| Implementation | Seconds | Comment

Matlab 230 copy

Python 200 view rather than copy
C/C++ 120 random access
C/C++ 60 sequential access
C/C++ 30 sequential & single sweep
C/C++ 15 sequential sweep & dual-core
Spectral 60 single low-level call

Conclusion

Machine Learning heavily focusses on computation

» Better be careful with statements a la

» "“Our algorithm is a X% speedup over the
state-of-the-art”

» “We provide an implementation in [R/Python/etc], with
critical parts written in C"

» “Trivial to parallelise”

» Structure of the (computational) problem matters

» Taking into account what the computer actually does
helps

» Often, only low-level languages allow to exploit this

Thank you!

