How to code like Bruce Lee fights

Some things | have learned about computation
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Computation & Science
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Matlab, Python, R, Julia & co

» High level programming is convenient

» No explicit control over memory
» Limited control over computation
» Type-free

» Readable code (7)

Promise: The language developers will sort it out



A typical NIPS paper needs this plot

(Marginal) improvements in performance/time
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Problems

Automatic memory managment comes at a cost
Runtime type inference comes at a cost
Affects readability

» function calls & indexing become expensive
» compensate using “flattened” and “vectorised” code
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Most (research) codes do not nearly exploit the hardware
Giving away the control might make that impossible

v

Solutions (I would call hacks)

» Write critical parts in C
Things like Cython (type/compile system for Python)
Impossible to read, write, maintain ...

. and more critical: to validate and reproduce
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8 months later

Fabrice Bellard beats previous world record:
» 2.6 - 10° digits
» Using a single Intel i7 quad core

» 46.9 gigaflops
» 3000 USD
» 131 days

» Takahashi: 640 quad cores, roughly 2000x faster

» 94.2 Tflops (trillion floating point operations per second)
» Multi-million USD
» 29 hours

» Bellard only 96 times slower, speedup is 20x



http://bellard.org/pi/pi2700e9 /faq.html

The 7 algorithms are:

» |0 bound — very heavy communication between the nodes

Bellard’s algorithm:
» Chudnovsky series evaluated using binary splitting

» Asymptotically slower than Arithmetic-Geometric
Mean by Takahashi

Asymptotics seem to be saturated at 10'? digits. Why faster?



CPU cache

Capacity
Latency




Locality matters when accessing memory
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Example: MMD permutation test

» Recall Arthur's kernel two-sample test.
» Each nsamples x; ~ p and y; ~ g

n*MMD? = Z k(xi, x;) + k(yi,y;) — 2k(xi, y;)
i
» Testing requires the distribution of MMD? under p = g
» Analytically hard, so simulate empirical version
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Pseudo-code:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)

for rep in 1..100
p = index permutation (2xN)
XY = XY[p]
X, Y = split (XY)

for i,j in 1..N
null[rep] = null[rep]

£ K(X[i], X[3])

£ K(Y[i], YI§]

— 2xk(X[i], Y[j])
end for

end for



MATLAB (E.g. the code in Gretton et al.):

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)

for rep in 1..100
p = index permutation (2xN)

XY = XY[p] % CREATES COPY
X, Y = split(XY) % CREATES COPY

for i,j in 1..N % EXTREMELY SLOW
null[rep] = null[rep]
£ K(X[i], X[3])
£ K(Y[i], YI§]
— 2xk(X[i], Y[j])
end for
end for



Comparison

» N = 2000 (moderate)
» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment

Matlab 230 copy




Python:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)
for rep in 1..100
p = index permutation (2xN)
XY = XY[p] % CREATES VIEW
X, Y = split(XY) % CREATES VIEW

for i,j in 1..N % EVEN SLOWER
null[rep] = null[rep]
£ K(X[i], X[3])
£ K(Y[i], YI§]
— 2xk(X[i], Y[j])
end for
end for



Comparison

» N = 2000 (moderate)
» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds |

Comment

Matlab 230

copy

Python 200

view rather than copy




C/C++:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack (X,Y)

null = zeros(100)
for rep in 1..100
p = index permutation (2xN)

for i,j in 1..N
null [rep] = null[rep]
+ kO[], XY[p[i])
+ k(XY[p[i4N]] . XY[p[j+N]]
o 2ekeXeli] Xvip (i)
end for



Comparison

» N = 2000 (moderate)
» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment
Matlab 230 copy
Python 200 view rather than copy

C/Ct+ 120

random access




Locality matters when accessing memory
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C/C++ (Rahul):

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)
for rep in 1..100
p = index permutation (2xN)

k xx, k yy, k xy =0

for i,j in 1..N

compute k(XY[i], XY[j4N])
decide which term(p, i, j)
update k_xx, k_yy, k xy

end for
end for



Comparison

» N = 2000 (moderate)

» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment
Matlab 230 copy
Python 200 view rather than copy
C/C++ 120 random access
C/C++ 60 sequential access




C/C++:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)
ps = 100 index permutations(2xN)
k xx, k yy, k xy =0

for i,j in 1..N
compute k(XY[i], XY[j4N])

for rep in 1..100
decide which terms
update k xx, k_yy, k_ xy
update null[rep]
end
end for



Comparison

» N = 2000 (moderate)

» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment
Matlab 230 copy
Python 200 view rather than copy
C/C++ 120 random access
C/C++ 60 sequential access
C/C++ 30 sequential & single sweep

Single sweep does not require to pre-compute kernel matrix

O(N?) = O(N) memory




C/C++ and multicore:

N = 1000; X = randn(N); Y = laplace(N)
XY = stack(X,Y)

null = zeros(100)
ps = 100 index permutations(2xN)
k xx, k yy, k xy =0

#pragma omp parallel for
for i,j in 1..N
compute k(XY[i], XY[j+N])

for rep in 1..100
decide which terms
update k xx, k_yy, k_xy
update null[rep]
end
end for



Comparison

» N = 2000 (moderate)
» 200 samples from null

» Precomputed kernel matrix

| Implementation | Seconds | Comment
Matlab 230 copy
Python 200 view rather than copy
C/C++ 120 random access
C/C++ 60 sequential access
C/C++ 30 sequential & single sweep
C/C++ 15 sequential sweep & dual-core

Single sweep does not require to
O(N?) = O(N) memory

pre-compute kernel matrix




Why this matters

A Fast, Consistent Kernel Two-Sample Test

Arthur Gretton Kenji Fukumizu

Carnegie Mellon University Inst. of Statistical Mathematics
MPI for Biological Cybernetics Tokyo Japan

arthur.gretton@gmail.com Sukumizu@ism.ac.jp

Zaid Harchaoui Bharath K. Sriperumbudur
Carnegie Mellon University Dept. of ECE, UCSD

Pittsburgh, PA, USA La Jolla, CA 92037
zaid. harchaoui@gmail.com bharathsv@ucsd.edu
Abstract

A kernel embedding of probability distributions into reproducing kernel Hilbert
spaces (RKHS) has recently been proposed, which allows the comparison of two
probability measures P and Q) based on the distance between their respective em-
beddings: for a sufficiently rich RKHS, this distance is zero if and only if P and
Q coincide. In using this distance as a statistic for a test of whether two samples
are from different distributions, a major difficulty arises in computing the signif-
icance threshold, since the empirical statistic has as its null distribution (where
P = @) an infinite weighted sum of x? random variables. Prior finite sample
approximations to the null distribution include using bootstrap resampling, which
yields a consistent estimate but is computationally costly; and fitting a parametric



Why this matters

» The spectral test is theoretically quite complicated
» Motivated with its speed

» “our new distribution estimate is [...] computationally less
costly than the bootstrap”

» “[...] due the requirement to repeatedly re-compute the
test statistic”

» 64 citations on Google scholar



Why this matters

» N = 2000 (moderate)
» Eigendecomposition. Can't be optimised or parallelised.
» Scales O(N?), so gets worse quickly

| Implementation | Seconds | Comment

Matlab 230 copy

Python 200 view rather than copy
C/C++ 120 random access
C/C++ 60 sequential access
C/C++ 30 sequential & single sweep
C/C++ 15 sequential sweep & dual-core
Spectral 60 single low-level call




Conclusion

Machine Learning heavily focusses on computation

» Better be careful with statements a la

» "“Our algorithm is a X% speedup over the
state-of-the-art”

» “We provide an implementation in [R/Python/etc], with
critical parts written in C"

» “Trivial to parallelise”

» Structure of the (computational) problem matters

» Taking into account what the computer actually does
helps

» Often, only low-level languages allow to exploit this



Thank you!




