Interactions, Partitions, Cumulants

based on B. Streitberg, Lancaster Interactions Revisited, Ann. Stat., 1990

Dino Sejdinovic

Gatsby Unit, UCL

May 17, 2013

An Interaction Measure

- A random vector $(X_1, \ldots, X_n) \sim F$ taking values in the product space $\mathcal{X}_1 \times \cdots \times \mathcal{X}_n$; $F \in \mathbb{M}^1 = \mathbb{M}^1(\mathcal{X}_1 \times \cdots \times \mathcal{X}_n)$
- Write $F_{i_1 i_2 \dots i_{n'}}$ for the marginal $F_{X_{i_1} X_{i_2} \dots X_{i_{n'}}}$ of the subvector $(X_{i_1}, \dots, X_{i_{n'}})$.

An Interaction Measure

- A random vector $(X_1, \ldots, X_n) \sim F$ taking values in the product space $\mathcal{X}_1 \times \cdots \times \mathcal{X}_n$; $F \in \mathbb{M}^1 = \mathbb{M}^1(\mathcal{X}_1 \times \cdots \times \mathcal{X}_n)$
- Write $F_{i_1 i_2 \dots i_{n'}}$ for the marginal $F_{X_{i_1} X_{i_2} \dots X_{i_{n'}}}$ of the subvector $(X_{i_1}, \dots, X_{i_{n'}})$.

Definition (Bahadur (1961); Lancaster (1969))

Interaction measure is a signed measure ΔF that vanishes whenever F can be factorised in a non-trivial way as a product of its (possibly multivariate) marginal distributions.

An Interaction Measure

- A random vector $(X_1, \ldots, X_n) \sim F$ taking values in the product space $\mathcal{X}_1 \times \cdots \times \mathcal{X}_n$; $F \in \mathbb{M}^1 = \mathbb{M}^1(\mathcal{X}_1 \times \cdots \times \mathcal{X}_n)$
- Write $F_{i_1 i_2 \dots i_{n'}}$ for the marginal $F_{X_{i_1} X_{i_2} \dots X_{i_{n'}}}$ of the subvector $(X_{i_1}, \dots, X_{i_{n'}})$.

Definition (Bahadur (1961); Lancaster (1969))

Interaction measure is a signed measure ΔF that vanishes whenever F can be factorised in a non-trivial way as a product of its (possibly multivariate) marginal distributions.

$$n = 2$$
: $\Delta F = F_{12} - F_1 F_2$.

n = 3

• Possible non-trivial factorizations:

n = 3

- Possible non-trivial factorizations:
 - $F_{123} = F_1 F_2 F_3$ (total independence)

$$n = 3$$

- Possible non-trivial factorizations:
 - $F_{123} = F_1 F_2 F_3$ (total independence)
 - ullet $F_{123}=F_{12}F_3$, i.e., $X_3\perp\!\!\!\perp (X_1,X_2)$ and X_1,X_2 dependent
 - ullet $F_{123}=F_{13}F_2$, i.e., $X_2\perp\!\!\!\perp (X_1,X_3)$ and X_1,X_3 dependent
 - ullet $F_{123}=F_{23}F_1$, i.e., $X_1\perp\!\!\!\perp (X_2,X_3)$ and X_2,X_3 dependent

$$n = 3$$

- Possible non-trivial factorizations:
 - $F_{123} = F_1 F_2 F_3$ (total independence)
 - $F_{123} = F_{12}F_3$, i.e., $X_3 \perp \!\!\! \perp (X_1, X_2)$ and X_1, X_2 dependent
 - ullet $F_{123}=F_{13}F_2$, i.e., $X_2\perp\!\!\!\perp (X_1,X_3)$ and X_1,X_3 dependent
 - ullet $F_{123}=F_{23}F_1$, i.e., $X_1\perp\!\!\!\perp (X_2,X_3)$ and X_2,X_3 dependent
- pairwise independence $(X_1 \perp \!\!\! \perp X_2 \text{ and } X_2 \perp \!\!\! \perp X_3 \text{ and } X_1 \perp \!\!\! \perp X_3)$ does not imply any of the above
 - $X_1, X_2 \overset{i.i.d.}{\sim} Bern(1/2), X_3 = X_1 \veebar X_2.$

Lancaster interaction

• Lancaster interaction measure (Lancaster, 1969) is a formal product:

$$\Delta_L F = \prod_{i=1}^n (F_i^* - F_i),$$

where $\prod_{j=1}^{n'} F_{ij}^*$ is understood as the joint measure $F_{i_1 i_2 \dots i_{n'}}$ of the subvector $(X_{i_1}, \dots, X_{i_{n'}})$.

Lancaster interaction

• Lancaster interaction measure (Lancaster, 1969) is a formal product:

$$\Delta_L F = \prod_{i=1}^n (F_i^* - F_i),$$

where $\prod_{j=1}^{n'} F_{ij}^*$ is understood as the joint measure $F_{i_1 i_2 \dots i_{n'}}$ of the subvector $(X_{i_1}, \dots, X_{i_{n'}})$.

• n = 3:

$$\Delta_L F = F_{123} - F_{12}F_3 - F_{23}F_1 - F_{13}F_2 + 2F_1F_2F_3.$$

• Any factorization possible $\implies \Delta_L F = 0$

Lancaster interaction

• Lancaster interaction measure (Lancaster, 1969) is a formal product:

$$\Delta_L F = \prod_{i=1}^n (F_i^* - F_i),$$

where $\prod_{j=1}^{n'} F_{ij}^*$ is understood as the joint measure $F_{i_1 i_2 \dots i_{n'}}$ of the subvector $(X_{i_1}, \dots, X_{i_{n'}})$.

• n = 3:

$$\Delta_L F = F_{123} - F_{12}F_3 - F_{23}F_1 - F_{13}F_2 + 2F_1F_2F_3.$$

- Any factorization possible $\implies \Delta_L F = 0$
- Example: $X_3 \perp (X_1, X_2) \Longrightarrow X_3 \perp X_1, X_3 \perp X_2$, i.e., $F_{123} = F_{12}F_3 \Longrightarrow F_{23} = F_2F_3$, $F_{13} = F_1F_3$

Lancaster interaction (2)

• $n \ge 4$: Lancaster interaction fails to capture all factorizations: does not necessarily vanish for $(X_1, X_2) \perp (X_3, X_4)$

$$\Delta_L F = (F_1^* - F_1)(F_2^* - F_2)(F_3^* - F_3)(F_4^* - F_4),$$

= $(F_{12} - F_1F_2)(F_{34} - F_3F_4).$

Lancaster interaction (2)

• $n \ge 4$: Lancaster interaction fails to capture all factorizations: does not necessarily vanish for $(X_1, X_2) \perp (X_3, X_4)$

$$\Delta_L F = (F_1^* - F_1)(F_2^* - F_2)(F_3^* - F_3)(F_4^* - F_4),$$

= $(F_{12} - F_1F_2)(F_{34} - F_3F_4).$

 Interaction measure valid for all n was constructed by Streitberg (1990):

$$\Delta F = \sum_{-} (-1)^{|\pi|-1} (|\pi|-1)! J_{\pi} F$$

- Write $[n] = \{1, ..., n\}$.
- Partition π of [n] is a set of non-empty pairwise disjoint subsets (blocks) of [n], the union of which is equal to [n].
- Example: $\{\{1,3\},\{2\},\{4\}\}$, shorthand 13|2|4, is a partition of [4]

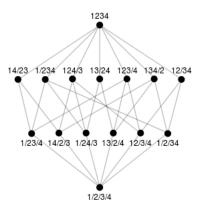
- Write $[n] = \{1, \ldots, n\}$.
- Partition π of [n] is a set of non-empty pairwise disjoint subsets (blocks) of [n], the union of which is equal to [n].
- Example: $\{\{1,3\},\{2\},\{4\}\}$, shorthand 13|2|4, is a partition of [4]
- Alternatively, an equivalence relation R_{π} : $(i,j) \in R_{\pi} \Leftrightarrow i,j$ belong to the same block of π
- Example: $R_{13|2|4} = \{(1,1),(2,2),(3,3),(4,4),(1,3),(3,1)\}$

- Write $[n] = \{1, ..., n\}$.
- Partition π of [n] is a set of non-empty pairwise disjoint subsets (blocks) of [n], the union of which is equal to [n].
- Example: $\{\{1,3\},\{2\},\{4\}\}$, shorthand 13|2|4, is a partition of [4]
- Alternatively, an equivalence relation R_{π} : $(i,j) \in R_{\pi} \Leftrightarrow i,j$ belong to the same block of π
- Example: $R_{13|2|4} = \{(1,1),(2,2),(3,3),(4,4),(1,3),(3,1)\}$
- Partial order: $\tau \leq \pi$ (τ finer than π) iff $R_{\tau} \subseteq R_{\pi}$
- meet: $\tau \wedge \pi \leftrightarrow R_{\tau} \cap R_{\pi}$, join: $\tau \vee \pi \leftrightarrow \overline{(R_{\tau} \cup R_{\pi})}$

- Write $[n] = \{1, ..., n\}$.
- Partition π of [n] is a set of non-empty pairwise disjoint subsets (blocks) of [n], the union of which is equal to [n].
- Example: $\{\{1,3\},\{2\},\{4\}\}$, shorthand 13|2|4, is a partition of [4]
- Alternatively, an equivalence relation R_{π} : $(i,j) \in R_{\pi} \Leftrightarrow i,j$ belong to the same block of π
- Example: $R_{13|2|4} = \{(1,1),(2,2),(3,3),(4,4),(1,3),(3,1)\}$
- Partial order: $\tau \leq \pi$ (τ finer than π) iff $R_{\tau} \subseteq R_{\pi}$
- meet: $\tau \wedge \pi \leftrightarrow R_{\tau} \cap R_{\pi}$, join: $\tau \vee \pi \leftrightarrow \overline{(R_{\tau} \cup R_{\pi})}$
- meet refines: $\pi \land \gamma \le \pi$, join coarsens: $\pi \lor \gamma \ge \pi$

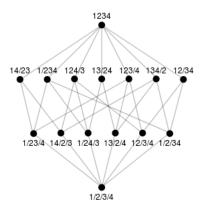
Partitions and interactions (2)

• The set of all partitions: P(n) forms a lattice



Partitions and interactions (2)

• The set of all partitions: P(n) forms a lattice



• The finest partition $\mathbf{0}:=1|2|\cdots|n$. The coarsest partition: $\mathbf{1}:=12\cdots n$

Partition operator

- Given a partition $\pi=\pi_1|\pi_2|\dots|\pi_r$, the associated partition operator on \mathbb{M}^1 is given by $J_\pi: F\mapsto F_\pi$, with $F_\pi=\prod_{j=1}^r F_{\pi_j}$, where F_{π_j} is the marginal distribution of the subvector $(X_i:i\in\pi_j)$.
- Example: $J_{13|2|4}F = F_{13}F_2F_4$, $J_1F = F$

Proposition

$$J_{\tau} \circ J_{\pi} = J_{\tau \wedge \pi}$$

Interaction operator

Definition

Let $\tau \in \mathbf{P}(n)$. A measure $F \in \mathbb{M}^1$ is said to be τ -decomposable if there exists $\gamma < \tau$ such that $J_{\gamma}F = F$. A τ -interaction operator is a linear combination

$$\Delta_{ au} = \sum_{\pi} \mathsf{a}(\pi, au) \mathsf{J}_{\pi}$$

that vanishes for all τ -decomposable measures. (decomposable \equiv 1-decomposable)

- ullet Original definition recovered for $au={f 1}$.
- F is τ -decomposable iff $J_{\tau}F=F$ and at least one of its marginals F_{τ_j} is itself decomposable.

A property of coefficients

• $\Delta_{ au}$ is a valid au-interaction operator iff $\Delta_{ au}J_{\gamma}F=0$ $\forall F,\ \forall \gamma< au$. Now,

$$0 \equiv \Delta_{\tau} J_{\gamma}$$

$$= \sum_{\pi} a(\pi, \tau) J_{\pi} J_{\gamma}$$

$$= \sum_{\pi} a(\pi, \tau) J_{\pi \wedge \gamma}$$

$$= \sum_{\sigma \leq \gamma} \left[\sum_{\pi : \pi \wedge \gamma = \sigma} a(\pi, \tau) \right] J_{\sigma}$$

A property of coefficients

• $\Delta_{ au}$ is a valid au-interaction operator iff $\Delta_{ au}J_{\gamma}F=0$ $\forall F,\ \forall \gamma< au$. Now,

$$0 \equiv \Delta_{\tau} J_{\gamma}$$

$$= \sum_{\pi} a(\pi, \tau) J_{\pi} J_{\gamma}$$

$$= \sum_{\pi} a(\pi, \tau) J_{\pi \wedge \gamma}$$

$$= \sum_{\sigma \leq \gamma} \left[\sum_{\pi : \pi \wedge \gamma = \sigma} a(\pi, \tau) \right] J_{\sigma}$$

• Thus, $\sum_{\pi:\pi\wedge\gamma=\sigma} a(\pi,\tau) = 0$, for all $\sigma \leq \gamma < \tau$.

◆ロト ◆御 ト ◆ 恵 ト ・ 恵 ・ 夕 Q ○

Incidence algebra on a lattice

• A bit of notation: Iverson bracket $\{\mathcal{P}\} = \begin{cases} 1, & \mathcal{P} \text{ true} \\ 0, & \mathcal{P} \text{ false} \end{cases}$

Incidence algebra on a lattice

- A bit of notation: Iverson bracket $\{\mathcal{P}\} = \begin{cases} 1, & \mathcal{P} \text{ true} \\ 0, & \mathcal{P} \text{ false} \end{cases}$
- Incidence algebra I_S on the lattice S: set of all maps $g: S \times S \to \mathbb{R}$, s.t. $g(\pi, \tau) \neq 0$ only if $\pi \leq \tau$
- Convolution in I_S : $(g*h)(\pi,\tau) = \sum_{\gamma} g(\pi,\gamma)h(\gamma,\tau)$
- Special elements in I_S : identity $\delta(\pi, \tau) = \{\pi = \tau\}$, and the zeta function $\zeta(\pi, \tau) = \{\pi \leq \tau\}$.
- The Möbius function μ is the inverse of the zeta function, i.e., $\mu*\zeta=\zeta*\mu=\delta.$

Main Lemma

Lemma

There exists a unique $a \in \mathit{I}_{S}$ such that $a(\pi,\pi) = 1$ for all $\pi \in \mathit{S}$ and

$$\sum_{\pi} \{\pi \wedge \gamma = \sigma\} \ \mathsf{a}(\pi,\tau) \ = \ 0,$$

for all $\tau \in S$ and all $\sigma \leq \gamma < \tau$. Moreover, $\mathbf{a} = \mu$ is the Möbius function in \mathbf{l}_S .

By definition, $\delta\left(\pi,\tau\right) = \sum_{\gamma} \zeta(\pi,\gamma) \mu(\gamma,\tau) = \sum_{\gamma} \{\pi \leq \gamma \leq \tau\} \mu(\pi,\gamma) \zeta(\gamma,\tau). \text{ Therefore,}$ $1 = \delta(\pi,\pi) = \sum_{\gamma} \{\pi \leq \gamma \leq \pi\} \mu(\pi,\gamma) \zeta(\gamma,\pi)$ $= \mu(\pi,\pi) \zeta(\pi,\pi)$

 $= \mu(\pi,\pi).$

Let $\tau \in S$ and $\gamma < \tau$. Then,

$$\sum_{\pi} \{\pi \wedge \gamma = \gamma\} \mu(\pi, \tau) = \sum_{\pi} \{\gamma \leq \pi\} \mu(\pi, \tau)$$
$$= \sum_{\pi} \zeta(\gamma, \pi) \mu(\pi, \tau)$$
$$= \delta(\gamma, \tau) = 0,$$

which shows the proof for $\sigma = \gamma$.

 \bullet Property shown for the case $\sigma=\gamma<\tau.$

• Property shown for the case $\sigma = \gamma < \tau$.

Let σ , such that $\sigma < \gamma < \tau$, be a maximal element for which the property has not been shown. Then:

$$\sum_{\pi} \{\pi \wedge \gamma = \sigma\} \mu(\pi, \tau) = \sum_{\pi} \{\pi \wedge \gamma \geq \sigma\} \mu(\pi, \tau)$$

$$-\sum_{\sigma' > \sigma} \sum_{\pi} \{\pi \wedge \gamma = \sigma'\} \mu(\pi, \tau)$$

$$= \sum_{\pi} \{\pi \wedge \gamma \geq \sigma\} \mu(\pi, \tau)$$

$$= \sum_{\pi} \{\pi \geq \sigma\} \mu(\pi, \tau)$$

$$= \sum_{\pi} \{\sigma \geq \sigma\} \mu(\pi, \tau)$$

$$= \sum_{\pi} \{\sigma \leq \sigma\} \mu(\pi, \tau) = \delta(\sigma, \tau) = 0.$$

• Property shown for the case $\sigma = \gamma < \tau$.

Let σ , such that $\sigma < \gamma < \tau$, be a maximal element for which the property has not been shown. Then:

$$\sum_{\pi} \{\pi \wedge \gamma = \sigma\} \mu(\pi, \tau) = \sum_{\pi} \{\pi \wedge \gamma \geq \sigma\} \mu(\pi, \tau)$$

$$-\sum_{\sigma' > \sigma} \sum_{\pi} \{\pi \wedge \gamma = \sigma'\} \mu(\pi, \tau)$$

$$= \sum_{\pi} \{\pi \wedge \gamma \geq \sigma\} \mu(\pi, \tau)$$

$$= \sum_{\pi} \{\pi \geq \sigma\} \mu(\pi, \tau)$$

$$= \sum_{\pi} \{\sigma \geq \sigma\} \mu(\pi, \tau)$$

$$= \sum_{\pi} \{\sigma \geq \sigma\} \mu(\pi, \tau) = \delta(\sigma, \tau) = 0.$$

Together

Theorem

Up to multiplicative constant, the τ -interaction operator is given by:

$$\Delta_{ au} = \sum_{\pi} \mu(\pi, au) J_{\pi}$$

In particular,

$$\Delta = \sum_{\pi} \mu(\pi, \mathbf{1}) J_{\pi}$$

$$= \sum_{\pi} (-1)^{|\pi|-1} (|\pi|-1)! J_{\pi}$$

Joint cumulants

• The joint cumulant $\kappa(X_1,\ldots,X_n)$ are defined by the cumulant generating function $g(t_1,\ldots,t_n)=\log\mathbb{E}\left[\exp\left(\sum_{i=1}^n t_iX_i\right)\right]$

Joint cumulants

- The joint cumulant $\kappa(X_1,\ldots,X_n)$ are defined by the cumulant generating function $g(t_1,\ldots,t_n)=\log\mathbb{E}\left[\exp\left(\sum_{i=1}^n t_iX_i\right)\right]$
- Symmetry: $\kappa(X_1,\ldots,X_n)=\kappa(X_{\sigma(1)},\ldots,X_{\sigma(n)})$ for all permutations σ
- **②** Multilinearity: $\kappa(\alpha X_1 + \beta Y_1, \dots, X_n) = \alpha \kappa(X_1, \dots, X_n) + \beta \kappa(Y_1, \dots, X_n)$
- **3** Moment property: $\kappa(\mathbf{X}) = \kappa(\mathbf{Y})$ iff \mathbf{X} and \mathbf{Y} have identical moments up to order n.

Joint cumulants

- The joint cumulant $\kappa(X_1,\ldots,X_n)$ are defined by the cumulant generating function $g(t_1,\ldots,t_n)=\log\mathbb{E}\left[\exp\left(\sum_{i=1}^n t_iX_i\right)\right]$
- ① Symmetry: $\kappa(X_1,\ldots,X_n)=\kappa(X_{\sigma(1)},\ldots,X_{\sigma(n)})$ for all permutations σ
- **3** Moment property: $\kappa(\mathbf{X}) = \kappa(\mathbf{Y})$ iff \mathbf{X} and \mathbf{Y} have identical moments up to order n.

Fact

$$\kappa(X_1,\ldots,X_n)=\int x_1\cdots x_n d\Delta F$$

Corollary

F is decomposable $\Rightarrow \kappa(X_1, \ldots, X_n) = 0$.

• Recall: the second and third cumulant are exactly the same as the second and third central moments

- Recall: the second and third cumulant are exactly the same as the second and third central moments
 - the higher cumulants are neither moments nor central moments, but some other polynomials of the moments

- Recall: the second and third cumulant are exactly the same as the second and third central moments
 - the higher cumulants are neither moments nor central moments, but some other polynomials of the moments
- Lancaster definition: **joint central moments**: $\int x_1 \cdots x_n d\Delta_L F$

- Recall: the second and third cumulant are exactly the same as the second and third central moments
 - the higher cumulants are neither moments nor central moments, but some other polynomials of the moments
- Lancaster definition: **joint central moments**: $\int x_1 \cdots x_n d\Delta_L F$
- Streitberg's correction: **joint cumulants**: $\int x_1 \cdots x_n d\Delta F$

What does this have to do with kernels?

 Three-variable interaction has a simple kernel statistic (joint "kernel cumulant"

joint "kernel central moment"):

$$\begin{split} \left\| \int \left[k_1(\cdot, x_1) \otimes k_2(\cdot, x_2) \otimes k_3(\cdot, x_3) \right] d\widehat{\Delta_L F} \right\|_{\mathcal{H}_{k_1 \otimes k_2 \otimes k_3}}^2 \\ &= \left\| \int \left[\tilde{k}_1(\cdot, x_1) \otimes \tilde{k}_2(\cdot, x_2) \otimes \tilde{k}_3(\cdot, x_3) \right] d\widehat{F} \right\|_{\mathcal{H}_{k_1 \otimes k_2 \otimes k_3}}^2 \\ &= \frac{1}{n^2} \left(\tilde{K}_1 \circ \tilde{K}_2 \circ \tilde{K}_3 \right)_{++} \end{split}$$

What does this have to do with kernels?

 Three-variable interaction has a simple kernel statistic (joint "kernel cumulant"

joint "kernel central moment"):

$$\begin{split} \left\| \int \left[k_1(\cdot, x_1) \otimes k_2(\cdot, x_2) \otimes k_3(\cdot, x_3) \right] d\widehat{\Delta_L F} \right\|_{\mathcal{H}_{k_1 \otimes k_2 \otimes k_3}}^2 \\ &= \left\| \int \left[\tilde{k}_1(\cdot, x_1) \otimes \tilde{k}_2(\cdot, x_2) \otimes \tilde{k}_3(\cdot, x_3) \right] d\widehat{F} \right\|_{\mathcal{H}_{k_1 \otimes k_2 \otimes k_3}}^2 \\ &= \frac{1}{n^2} \left(\tilde{K}_1 \circ \tilde{K}_2 \circ \tilde{K}_3 \right)_{++} \end{split}$$

• But for $n \ge 4$, the statistic involves the sum over all partitions of order n and different combinations of the centering of the kernel matrices within each summand.

4014914111111111