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Organisms are constantly required to choose between options that dif-­
fer in terms of their expected reward values. Although neural signals 
reflecting these values are widespread throughout the brain1–5, the 
vmPFC has attracted particular interest. Neural signals recorded in 
this region seem to indicate choice1,5, and damage to these areas in 
humans leads to deficits in decision making6. However, the nature of 
the computations underlying these decisions has remained elusive.

One popular mechanism for decision making is competition by 
mutual inhibition; this comprises a class of models in which represen-­
tations of each available option inhibit one another until activity remains 
in only one. Such models can be implemented in abstract7 or biophysi-­
cal8 forms, and dynamic neural signals consistent with these models can 
be found in the vmPFC9. A crucial prediction is that performance will 
depend heavily on the degree of inhibition relative to excitation in the 
network. If the vmPFC implements a decision-­making process based 
on such an inhibitory competition mechanism, then both behavioral 
performance and the neural dynamics of the vmPFC value comparison 
signal should depend on the levels of the major excitatory and inhibitory 
neurotransmitters, glutamate and GABA, in the vmPFC. Such a finding 
would tie a neurochemical underpinning to our computational under-­
standing of value-guided choice and provide a mechanistic explanation 
for interindividual variability in choice behavior.

We tested these predictions by using magnetic resonance spectroscopy 
(MRS) to obtain measures of each individual’s basal GABA and gluta-­
mate concentrations from the vmPFC and from a right parietal region 
in the intraparietal sulcus (IPS) of 25 healthy male volunteers (Online 
Methods). Note that these neurochemical data are not time resolved 

or choice related. They reflect the baseline neurotransmitter concentra-­
tions in each subject at rest, and we collected each from a single voxel in 
the vmPFC and a single voxel in the IPS. We chose the IPS as a control 
region because it has also been shown to encode value- and decision-
related parameters in a number of studies2,10. Time constraints and 
methodological considerations precluded us from using further control 
regions such as the lateral orbitofrontal cortex (Online Methods). After 
MRS acquisition, subjects underwent a short version of a reward-guided 
decision-­making task (Fig. 1 and Supplementary Fig. 1) during scanning 
with functional magnetic resonance imaging (fMRI). After scanning, 
participants completed a longer version of the decision-making task. 
During the task, subjects repeatedly made choices between two options 
of differing reward magnitude and reward probability (Fig. 1a).

Subject performance in this task can be characterized by using 
a standard prospect theory model (Online Methods). Whereas 
statistically optimal behavior on the task would be to multiply mag-­
nitude and probability and to choose the option with the highest 
Pascalian value, the model has two parameters that warp probability 
and reward space to match subject behavior. A third, crucial parameter 
(the softmax inverse temperature, τ), indicates the accuracy of sub-­
ject decisions. Subjects with a low τ value require a substantial value 
difference to select the option with the higher subjective value reliably 
(Supplementary Fig. 1d). If decisions are made by mutual inhibition, 
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Figure 1  Experimental task and correlation of spectroscopy data with  
behavior. (a) Example trial task schematic. The width of the bars represents 
reward magnitudes, and the percentages underneath specify the reward 
probability. The black bar at the bottom represents participant’s cumulative 
earnings, and the gray bar at right is a target that volunteers try to reach. 
(b) Location of the MRS voxel in the vmPFC. (c,d) Performance was 
best in subjects with high GABA concentrations (c) and low glutamate 
concentrations (d). Values represent arbitrary units, as glutamate (c) and 
GABA (d), respectively, were regressed out of both variables to show effects 
that are orthogonal with respect to the other neurotransmitter.
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τ should increase with higher GABA and lower glutamate concentra-­
tions (see Supplementary Fig. 2 for this relation in one instantiation 
of one mutual-inhibition model9).

In the decision-making task, GABA and glutamate concentrations 
indeed predicted average choice accuracy τ. Because GABA is synthe-­
sized from glutamate, the concentrations of the two neurotransmitters 
are highly correlated within each brain region. It is therefore crucial 
to orthogonalize all effects with respect to the other neurotransmit-­
ter11; that is, it is necessary to compute partial correlations. By doing 
so, we found that vmPFC GABA and glutamate had opposing effects: 
τ was highest in subjects with high GABA concentrations (r = 0.76,  
P < 0.00001) and low glutamate concentrations (r = –0.598, P = 0.001; 
Fig. 1). This pattern was specific to the vmPFC, as no such relation 
was found with IPS GABA (r = 0.25, P = 0.13) and glutamate levels  
(r = –0.29, P = 0.1). Furthermore, when the two pairs of neurotransmitter 
concentrations were formally compared in a single linear model, 
vmPFC GABA had a significantly greater positive effect than IPS GABA  
(t = 2.05, P = 0.027), and vmPFC glutamate had a significantly greater 
negative effect than IPS glutamate (t = 2.29, P = 0.017).

In agreement with previous studies5, blood oxygenation level–
dependent (BOLD) activity in the vmPFC recorded in the fMRI ses-­
sion correlated positively with the value difference between chosen 
and unchosen options on each trial (Fig. 2a,b). If the evolution of 
this value-difference signal is indeed dependent on a balance between 
mutual inhibition and recurrent excitation, then it should ramp up 
faster and ramp down earlier in subjects with relatively high ratios of 
excitation to inhibition. We therefore computed the temporal derivative 
of the value-difference signal throughout the trial (Fig. 2c) and exam-­
ined its correlation with vmPFC GABA and glutamate concentrations. 
Early in the trial, individuals with high glutamate (t = 4.96, P < 0.00005; 
Fig. 2d) and low GABA (t = –3.05, P = 0.0029) concentrations showed 
higher derivatives, indicating faster ramping up. Late in the trial, the 

same individuals had the most negative derivatives, indicating faster 
ramping down (GABA: t = 3.42, P = 0.0012; glutamate: t = –4.25,  
P < 0.0002). Notably, this effect was specific to the value-difference 
correlation; no such pattern was found in the raw BOLD signal, thus 
making it unlikely that our finding is due to a general effect on the 
BOLD signal (Supplementary Fig. 3).

We have shown that interindividual variability in vmPFC GABA 
and glutamate concentrations explains variability in choice behav-­
ior and in fMRI signals recorded during value-guided choice. Taken 
together, these findings indicate that value-guided choice is governed 
by a competition by mutual inhibition that is mediated by a balance 
between GABAergic inhibition and glutamatergic excitation in the 
vmPFC. We have recently shown using magnetoencephalography 
that vmPFC shows dynamics predicted by neural competition9. The 
findings presented here further support the idea that vmPFC has a 
central role not only in valuation12 but also in choice13. However, in 
showing that this competitive process is predictably dependent on 
GABA and glutamate concentrations, our findings provide a clear link 
from neurochemical to computational mechanisms and thus to eco-­
nomic choice. Such an understanding of neurochemical mechanisms 
has potential clinical relevance. For example, it is noteworthy that 
altered prefrontal levels of GABA and glutamate have been reported 
in individuals with major depressive disorder14, a condition that has 
impairments in decision making as one of its diagnostic criteria.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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Figure 2  Relationship between GABA and glutamate and value difference slope.  
(a) Whole-brain analysis showing the effects of value difference. (b) Time-
resolved regression of value difference against the fMRI signal from the vmPFC. 
(c) Slope (temporal derivative) of the value-difference signal in b. In b and c, the 
solid line represents the mean across subjects, the shaded area indicates the 
s.e.m. (d) Regression of vmPFC concentrations of GABA and glutamate against 
the slope of the vmPFC value difference signal (c) at each time point in a trial. 
Solid lines represent regression coefficients, shaded area represents the s.e.m. 
High concentrations of glutamate and low concentrations of GABA lead to faster 
ramping up of the value difference signal. a.u., arbitrary units.
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Figure 1d. To test whether subjects integrated probabilities and magnitudes, we 
performed a logistic regression analysis. Reward probability, magnitude, choice 
on the previous trial and outcome on the previous trial were entered as inde-­
pendent variables X to predict the binary outcome Y (choices, 0 or 1 for left and 
right choices, respectively, Supplementary Fig. 1e). A further linear regression 
tested the effect of value difference, value sum and no-brainer trials on subjects’ 
log reaction times (Supplementary Fig. 1f).

Processing and analysis of MRS data. A semi-automated MATLAB-based preproc-­
essing routine was applied to all spectra before analysis. Motion-­corrupted signal 
averages were identified and removed, and then frequency and phase-drift correc-­
tions were performed to ensure exact alignment of the remaining averages; these 
steps were followed by signal averaging. Fully processed spectra were then analyzed 
as in ref. 15. GABA and glutamate values are reported as a ratio to creatine. GABA 
and glutamate were successfully detected in 24 (vmPFC) and 22 (parietal cortex) 
volunteers. Only two spectra from vmPFC had a water line-width slightly ≥ 10 Hz 
(11.5 and 11.66). As reported in the supplements, excluding them did not change 
the pattern of results, which is why the data reported in the main text include those 
two vmPFC data sets. The T1-weighted anatomical scans were segmented into gray 
and white matter using FAST (FMRIB’s automated segmentation tool)18 to calculate 
relative volumes of gray matter, white matter and cerebrospinal fluid in the MRS 
voxels. The reported concentrations of GABA and glutamate are corrected for the 
relative gray matter volumes (Supplementary Table 2).

Analysis of fMRI data. Analysis of fMRI data was performed using tools from 
the FMRIB Software Library (FSL19), using the same routine as in ref. 20, with 
the spatial filter set to 6 mm full-width at half maximum. To investigate activity 
related to the value difference between the chosen and unchosen options, we set 
up a general linear model (GLM) that contained the following nine regressors: 
value difference, value sum, outcome value (reward versus no reward obtained), 
reward magnitude obtained, main effect from stimulus presentation to response 
onset, main effect from response onset to outcome delivery, main effect of out-­
come phase and two stick functions (modeling left and right button presses, 
respectively). In addition, the six motion parameters from motion correction were 
included. Contrast images from the first level were then taken to group level using 
a random effects analysis. Results are reported at an activation-level threshold of 
P < 0.005 (z > 2.58) combined with a cluster-forming threshold of P < 0.05.

Region of interest (ROI) analyses. The above whole-brain analysis yielded a 
positive effect of value difference in the vmPFC (Supplementary Fig. 4a). BOLD 
time courses were extracted from the resulting activation. Each volunteer’s 
time series was cut into trials with a duration of 16.2 s (symbol presentation at  
0 s, response onset at 4.58 s, outcome presentation at 8.12 s, corresponding to the 
mean onsets across subjects and trials). Time series were resampled to a resolu-­
tion of 300 ms. A GLM containing the parameters of interest was then fitted at 
each time point for each volunteer. This resulted in a time course of effect size for 
each regressor and for each volunteer. Time courses were then averaged across 
participants (Fig. 2 and Supplementary Fig. 4b,c).

Correlation analyses. As mentioned in the main text, GABA and glutamate are 
correlated. Therefore, we performed partial correlation analyses. To test whether 
GABA and glutamate concentrations from vmPFC were better at predicting τ 
than IPS concentrations of those transmitters, GABA and glutamate from both 
regions were entered as regressors in the design matrix (along with a constant 
term) to predict the data, τ. The effects of vmPFC GABA and glutamate were 
directly contrasted with those of IPS GABA and glutamate.

For the time-resolved analysis of GABA and glutamate on the slope of the 
value-difference signal, both GABA and glutamate were entered into one single 
GLM such that again, the reported effects are exclusively on the orthogonal, non-­
shared variance between the two neurotransmitters. To test whether the pattern 
of results could be due to a general relation between GABA and glutamate levels 
and the BOLD response, we conducted the same analysis; however, this time we 
looked at the effects of the two neurotransmitters on the main effect rather than 
on the slope of the value difference (Supplementary Fig. 3).

Modeling. We implemented a mean-field reduction of the spiking neuronal net-­
work model described in ref. 21. Full details are given in ref. 9. It is notable that 

ONLINE METHODS
Participants. Twenty-five healthy male participants (18 to 35 years) participated 
in the experiment after written informed consent was obtained. All experimental 
procedures were approved by the Milton Keynes Ethics Committee.

Magnetic resonance (MR) imaging. MR data were acquired at 3 T on a Siemens 
Trio using a 32-channel coil. First, a high-resolution T1-weighted scan was 
acquired using an MPRAGE sequence15. Spectroscopy voxel placement was 
based on this scan. MRS data were acquired as described previously15, with rep-­
etition time (TR) = 3,200 ms. The vmPFC voxel (anteroposterior 1.5 × medio
lateral 3.0 × dorsoventral 1.0 cm) was mediolaterally centered on the midline 
and dorsoventrally on the genu of the corpus callosum, with the posterior voxel 
boundary just rostral to the genu. The parietal voxel (2.0 × 2.0 × 2.0 cm) was 
centered on the right IPS. We acquired 180 averages for the parietal and 360 
averages for the vmPFC voxel to compensate for the reduced signal-to-noise 
ratio. A rather thin (dorsoventrally) voxel was used for the vmPFC to reduce 
the effect of field inhomogeneities in this brain area. The presence of field inho-­
mogeneities was also the reason for choosing IPS as the control site rather than 
lateral orbitofrontal cortex. Temporal constraints precluded the acquisition 
of more than two voxels. MRS was followed by fMRI, during which subjects  
performed the task. Forty-five slices with a voxel resolution of 3 mm isotropic were 
obtained using a sequence optimized for the orbitofrontal cortex16. Field maps 
were acquired using a dual echo 2D gradient echo sequence with TR = 488 ms  
and TE of 7.65 ms and 5.19 ms on a 64 × 64 × 40 grid.

Behavioral task. The task involved repeatedly choosing between two options to 
obtain a monetary reward (Supplementary Fig. 1a). Each option consisted of 
one horizontal bar (reward magnitude) and a percentage written underneath it 
(reward probability). On a subset of trials (‘no-brainer’ trials), the magnitude and 
probability of one option were higher than those of the alternative option. The 
reward schedule was designed to minimize the correlation between chosen and 
unchosen value (mean r = 0.21 and 0.33 across subjects for the fMRI and post
scanning task). One hundred trials were presented during fMRI. After scanning, 
participants undertook another 400 trials of this task (without the initial viewing 
period and with quicker timing) on a laptop outside the scanner.

Analysis of behavioral data. Subjective reward magnitudes and probabilities 
were derived by fitting utility functions according to prospect theory17
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where the objective reward magnitude and probability rO and pO are transformed 
into subjective magnitude and probability, rS and pS, respectively. From these 
values, subjective expected values can be calculated as

    sEV = rS × pS

The modeled probability to choose either of the two options was given by a 
softmax rule
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where K = choice made by subject, n = number of options and τ = softmax 
inverse temperature. We also fitted two models with only two free parameters, 
where either α or γ  were fixed at 1. Calculation of the Bayes information crite-­
rion (BIC) showed that model fits under the two alternative models were signifi-­
cantly worse than under the full model (P < 0.008, Supplementary Table 1).

We custom-implemented a Bayesian estimation procedure in MATLAB 
(MathWorks) to obtain the best-fitting parameters α, γ and τ (Supplementary 
Fig. 1b,c). Choice probabilities as a function of τ are shown in Supplementary 
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a number of models exist that implement a neural competition on the basis of 
mutual inhibition, for example those described in refs. 21–23. We do not claim 
that our results are specific to this particular model; instead we choose this model 
as an example of the class. We have used this model successfully in a recent study9 
to predict local field potential data, which are more closely related to the fMRI 
BOLD signal than neuronal spiking activity, which is why we decided to base our 
predictions on this model.

Model analysis. For model predictions of cross-subject behavioral variation, we 
fit softmax functions to model choice behavior in exactly the same way as was 
done for individual subjects, choosing the softmax parameter that maximized 
the log-likelihood of each model instantiation’s choices. The regression of these 
softmax parameters against the degree of recurrent excitation (w+) is plotted in 
Supplementary Figure 2a.

For model predictions of cross-subject neural activity variation, we first esti-­
mated a linear regression model for each instantiation of the model, with value 
difference and overall value as independent variables and with the network’s 

response as the dependent variable. As for the fMRI data, we calculated the first 
temporal derivative of the parameter estimate for value difference. We then ran a 
second-level linear regression analysis (across model instantiations) in which this 
temporal derivative was the dependent variable and inhibition balance was an 
independent explanatory variable. The t statistic from this second-level analysis 
is plotted in Supplementary Figure 2b.
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