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larvae collected randomly in the field (2! 48.12" N, 41! 40.33" E) by SCUBA. Between 5 and
10 juveniles were recruited successfully in each of 15, 1 l polystyrene containers (n ¼ 15),
the bottom of which was covered with an acetate sheet that served as substratum for
sponge attachment. Containers were then randomly distributed in 3 groups, and sponges
in each group were reared for 14 weeks in 3 different concentrations of Si(OH)4:
0:741 ! 0:133, 30:235 ! 0:287 and 100:041 ! 0:760 "M (mean ! s:e:). All cultures were
prepared using 0.22 "m polycarbonate-filtered seawater, which was collected from the
sponge habitat, handled according to standard methods to prevent Si contamination29 and
enriched in dissolved silica, when treatments required, by using Na2SiF6. During the
experiment, all sponges were fed by weekly addition of 2 ml of a bacterial culture
(40–60 # 106 bacteria ml $ 1) to each container30. The seawater was replaced weekly, with
regeneration of initial food and Si(OH)4 levels. The concentration of Si(OH)4 in cultures
was determined on 3 replicates of 1 ml seawater samples per container by using a Bran-
Luebbe TRAACS 2000 nutrient autoanalyser. After week 5, the accidental contamination
of some culture containers by diatoms rendered subsequent estimates of Si uptake by
sponges unreliable, so we discarded them for the study.

For the study of the skeleton, sponges were treated according to standard methods30 and
examined in a Hitachi S-2300 scanning electron microscope (SEM).
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20. Palmer, T. J. & Fürsich, F. T. Ecology of sponge reefs from the Upper Bathonian of Normandy.

Palaeontology 24, 1–23 (1981).
21. Burckle, L. H. in Introduction to Marine Micropaleontology (eds Haq, B. U. & Boersma, A.) 245–266

(Elsevier, Amsterdam, 1978).
22. Austin, B. Underwater birdwatching. Canadian Tech. Rep. Hydro. Ocean. Sci. 38, 83–90 (1984).
23. Koltun, V. M. in The Biology of the Porifera (ed. Fry, W. G.) 285–297 (Academic, London, 1970).
24. Tabachnick, K. R. in Sponges in Time and Space (eds van Soest, R. M. W., van Kempen, T. M. G. &

Braekman, J. C.) 225–232 (A. A. Balkema, Rotterdam, 1994).
25. Harper, H. E. & Knoll, A. H. Silica, diatoms and Cenozoic radiolarian evolution. Geology 3, 175–177

(1975).
26. Hartman, W. D. in Silicon and Siliceous Structures in Biological Systems (eds Simpson, T. L. & Volcani,

B. E.) 453–493 (Springer Verlag, New York, 1981).
27. Pisera, A. Upper Jurassic siliceous sponges from Swabian Alb: taxonomy and paleoecology. Palaeont.

Pol. 57, 1–216 (1997).
28. Reincke, T. & Barthel, D. Silica uptake kinetics of Halichondria panicea in Kiel Bight. Mar. Biol. 129,

591–593 (1997).
29. Grasshoff, K., Ehrardt, M. & Kremling, K. Methods of Seawater Analysis (Verlag Chemie, Weinheim,

1983).
30. Maldonado, M. & Uriz, M. J. An experimental approach to the ecological significance of microhabitat-

scale movement in an encrusting sponge. Mar. Ecol. Prog. Ser. 185, 239–255 (1999).

Acknowledgements
We thank S. Pla for help with nutrient analyses, technicians of the Servicio de Microscopia
for help with SEM, and E. Ballesteros, C. M. Young, A. Pisera and R. Rycroft for comments
on the manuscript.

Correspondence and requests for materials should be addressed to M.M.
(e-mail: maldonado@ceab.csic.es).

.................................................................
Learning the parts of objects by
non-negative matrix factorization
Daniel D. Lee* & H. Sebastian Seung*†

* Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
† Department of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA

................. ......................... ......................... ......................... ......................... .........................

Is perception of the whole based on perception of its parts? There
is psychological1 and physiological2,3 evidence for parts-based
representations in the brain, and certain computational theories
of object recognition rely on such representations4,5. But little is
known about how brains or computers might learn the parts of
objects. Here we demonstrate an algorithm for non-negative
matrix factorization that is able to learn parts of faces and
semantic features of text. This is in contrast to other methods,
such as principal components analysis and vector quantization,
that learn holistic, not parts-based, representations. Non-negative
matrix factorization is distinguished from the other methods by
its use of non-negativity constraints. These constraints lead to a
parts-based representation because they allow only additive, not
subtractive, combinations. When non-negative matrix factoriza-
tion is implemented as a neural network, parts-based representa-
tions emerge by virtue of two properties: the firing rates of
neurons are never negative and synaptic strengths do not
change sign.

We have applied non-negative matrix factorization (NMF),
together with principal components analysis (PCA) and vector
quantization (VQ), to a database of facial images. As shown in
Fig. 1, all three methods learn to represent a face as a linear
combination of basis images, but with qualitatively different results.
VQ discovers a basis consisting of prototypes, each of which is a
whole face. The basis images for PCA are ‘eigenfaces’, some of which
resemble distorted versions of whole faces6. The NMF basis is
radically different: its images are localized features that correspond
better with intuitive notions of the parts of faces.

How does NMF learn such a representation, so different from the
holistic representations of PCA and VQ? To answer this question, it
is helpful to describe the three methods in a matrix factorization
framework. The image database is regarded as an n # m matrix V,
each column of which contains n non-negative pixel values of one of
the m facial images. Then all three methods construct approximate
factorizations of the form V ! WH, or

Vim ! ðWHÞim ¼ "
r

a¼1

W iaHam ð1Þ

The r columns of W are called basis images. Each column of H is
called an encoding and is in one-to-one correspondence with a face
in V. An encoding consists of the coefficients by which a face is
represented with a linear combination of basis images. The dimen-
sions of the matrix factors W and H are n # r and r # m, respec-
tively. The rank r of the factorization is generally chosen so that
ðn þ mÞr % nm, and the product WH can be regarded as a com-
pressed form of the data in V.

The differences between PCA, VQ and NMF arise from different
constraints imposed on the matrix factors W and H. In VQ, each
column of H is constrained to be a unary vector, with one element
equal to unity and the other elements equal to zero. In other words,
every face (column of V) is approximated by a single basis image
(column of W) in the factorization V ! WH. Such a unary encod-
ing for a particular face is shown next to the VQ basis in Fig. 1. This
unary representation forces VQ to learn basis images that are
prototypical faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ !
n

i¼1
!

m

m¼1

½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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It is helpful to visualize the dependencies between image pixels
and encoding variables in the form of the network shown in Fig. 3.
The top layer of nodes represents an encoding h1,…,hr (column of
H), and the bottom layer an image v1,…,vn (column of V). The
matrix element Wia quantifies the amount of influence that the ath
encoding variable ha has on the ith image pixel vi. A single encoding
variable influences multiple image pixels, owing to the fan-out of
connections from the encoding variable. Because of the non-
negativity of Wia, this influence is restricted to coactivation of
image pixels. Intuitively, a parts-based representation should be
learnable from observations of coactivation in V, as the image pixels
belonging to the same part of the face are coactivated when that part
is present. NMF learns by adapting Wia to generate the appropriate
coactivations.

The preceding description of NMF has been specialized to
images, but the algorithm is actually applicable to a wide variety
of problem domains. More generally, NMF is a method for
modelling the generation of directly observable visible variables V
from hidden variables H (refs 12, 13). Each hidden variable
coactivates a subset of visible variables, or ‘part’. Activation of a
constellation of hidden variables combines these parts additively to
generate a whole. Seen in this light, NMF has a very broad range of
potential applications. We illustrate this versatility by applying
NMF to a completely different problem, the semantic analysis of
text documents.

For this application, a corpus of documents is summarized by a
matrix V, where Vim is the number of times the ith word in the
vocabulary appears in the mth document14. These word counts can
be regarded as a set of visible variables and modelled as being
generated from an underlying set of hidden variables. Application of
VQ, PCA or NMF involves finding the approximate factorization of
this matrix V ! WH into a feature set W and hidden variables H, in
the same way as was done for faces.

In the VQ factorization, a single hidden variable is active for each
document. If the same hidden variable is active for a group of
documents, they are semantically related, because they have similar
frequencies of word occurrence. Consequently, the hidden variables
are called semantic variables, and VQ is accordingly used for
automatic semantic indexing of documents by topic14. Each
column of W, or semantic feature, consists of the word frequencies
for the corresponding semantic variable.

VQ allows only one semantic variable to be active, which prevents
more than one topic from being attributed to a document. PCA
would seem to be a solution to this problem, as it allows activation
of multiple semantic variables. Although PCA has been successful in

certain linguistic tasks15, it generally results in semantic variables
that are difficult to interpret, for much the same reason that the PCA
representation of faces has no obvious visual interpretation. This is
the result of two unrealistic aspects of the model: all semantic
variables are used to represent each document; and negative values
for semantic variables are allowed. Intuitively, it makes more sense
for each document to be associated with some small subset of a large
array of topics, rather than just one topic or all the topics. Because
the sparsely distributed representation of NMF appears ideally
suited for this purpose, we applied NMF to the semantic analysis
of a corpus of encyclopedia articles.

Some of the semantic features (r ¼ 200, columns of W) discov-
ered by NMF are shown in Fig. 4. In each semantic feature, the
algorithm has grouped together semantically related words. Each
article in the encyclopedia is represented by additively combining
several of these features. For example, to represent the article about
the ‘Constitution of the United States’, the semantic feature contain-
ing ‘supreme’ and ‘court’ and the one containing ‘president’ and
‘congress’ are coactivated.

In addition to grouping semantically related words together into
semantic features, the algorithm uses context to differentiate
between multiple meanings of the same word. For example, the
word ‘lead’ appears with high frequency in two semantic features
shown in Fig. 4: it occurs with ‘metal’, ‘copper’ and ‘steel’ in one,
whereas it appears with ‘person’, ‘rules’ and ‘law’ in the other. This
demonstrates that NMF can deal with the polysemy of ‘lead’ by
disambiguating two of its meanings in the corpus of documents.

Although NMF is successful in learning facial parts and semantic
topics, this success does not imply that the method can learn parts
from any database, such as images of objects viewed from extremely
different viewpoints, or highly articulated objects. Learning parts
for these complex cases is likely to require fully hierarchical models
with multiple levels of hidden variables, instead of the single level in
NMF. Although non-negativity constraints may help such models
to learn parts-based representations13, we do not claim that they are
sufficient in themselves. Also, NMF does not learn anything about
the ‘syntactic’ relationships between parts. NMF assumes that the
hidden variables are non-negative, but makes no further assumptions
about their statistical dependencies.

This is in contrast to independent components analysis (ICA),
a variant of PCA that assumes that the hidden variables are
statistically independent and non-gaussian16,12. Applying ICA to
the facial images to make the encodings independent results in basis
images that are holistic. The independence assumption of ICA is ill-
suited for learning parts-based representations because various
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Figure 2 Iterative algorithm for non-negative matrix factorization. Starting from non-
negative initial conditions for W and H, iteration of these update rules for non-negative V
finds an approximate factorization V ! WH by converging to a local maximum of the
objective function given in equation (2). The fidelity of the approximation enters the
updates through the quotient Vim/(WH)im. Monotonic convergence can be proven using
techniques similar to those used in proving the convergence of the EM algorithm22,23. The
update rules preserve the non-negativity of W and H and also constrain the columns of W
to sum to unity. This sum constraint is a convenient way of eliminating the degeneracy
associated with the invariance of WH under the transformation W → W L, H → L! 1H ,
where L is a diagonal matrix.

W

〈v〉 = Wh

h1 hr

v1 vn. . .

. . .

Figure 3 Probabilistic hidden variables model underlying non-negative matrix
factorization. The model is diagrammed as a network depicting how the visible variables
v1,…,vn in the bottom layer of nodes are generated from the hidden variables h1,…,hr in
the top layer of nodes. According to the model, the visible variables vi are generated from a
probability distribution with mean SaWiaha. In the network diagram, the influence of ha

on vi is represented by a connection with strength Wia. In the application to facial images,
the visible variables are the image pixels, whereas the hidden variables contain the parts-
based encoding. For fixed a, the connection strengths W1a,…,Wna constitute a specific
basis image (right middle) which is combined with other basis images to represent a whole
facial image (right bottom).
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each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.
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H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
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results in a sparsely distributed image encoding, in contrast to the
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The exact form of the objective function is not as crucial as the
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A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
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faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ !
n

i¼1
!

m

m¼1

½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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where Y is the indicator matrix whose element Yt,i is non-zero if 
sample t is attributed to cluster i. The intuition for the clustering 
utility of SNMF is given in Fig. 1A. �

The rest of the paper is organized as follows. In the next 
Section we review the formal connection between K-means 
clustering and SNMF. In Section A of the Results, we derive an 
online algorithm to solve SNMF and hence clustering. In 
Section B, we illustrate our algorithm’s clustering performance 
on a numerical example. In Section C, we demonstrate that 
network operation can also be viewed in the context of sparse 
feature discovery. In Discussion, we propose that online 
symmetric matrix factorization my serve as a powerful 
algorithmic theory of neural computation and compare our 
SNMF network with known biological facts. 
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one and only one cluster meaning that the rows of Y are 
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matrices of type given in (3). Then, the objective function for 
K-means clustering (2) can be written as follows:  

 

where the first equality follows from the orthonormality of the 
indicator functions and the second - by completing a square 
with a quartic X term independent of Y.  

Finally, by relaxing the constraint on the binary form of Y, 
but keeping it non-negative, we arrive at the SNMF cost 
function (1). Such relaxation permits fractional values in the 
indicator matrix allowing for the possibility that a given data 
point may belong to more than one cluster, so-called soft 
clustering. 
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Here we minimize the SNMF cost function in the online 

setting where the input data are streamed sequentially one 
vector, xT, at a time and the corresponding, yT, must be 
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SNMF of the similarity matrix yields an indicator matrix, which attributes 
T samples to m clusters. Note that the dimension of the input data vectors 
can be less (upper example) or greater (lower example) than the number of 
clusters m. B) Schematic illustration of clustering in the space of x. Colors 
indicate cluster assignments, empty circles are cluster centroids.  
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Because in the online setting the final rank of the output may be 
unknown a priori, we control it by a regularizer with O being a 
regularization coefficient.  
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We solve this problem by coordinate descent on the 
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where we used the “synaptic connection” matrices defined as 
follows: 
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where we used the “synaptic connection” matrices defined as 
follows: 
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which can be naturally implemented by a neural network of 
summation/rectification units with feedforward and lateral 
synaptic connections, Fig. 2. �
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connections can be written in a recursive form, which lead to 
Hebbian and anti-Hebbian updates for feedforward and lateral 
connections respectively:�
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Interestingly, these update rules have the functional form of 
Oja’s rule proposed previously for single neurons [12]. Note 
that each weight update depends only on the activity of pre- and 
post-synaptic neurons, and hence is biologically plausible. Yet, 
unlike Oja’s rule where the learning rate is arbitrary, here the 
learning rate is specified and activity dependent. To the best of 
our knowledge such single-neuron updates [25] have not been 
previously derived in the multi-neuron case.  

Thus, starting with the SNMF cost function, we derived the 
following online algorithm:  

 

B. Numerical test of the online clustering algorithm 
Here, we demonstrate the clustering performance of our 

algorithm on artificial datasets. We generated a test dataset by 
sampling from three Gaussians (100 data points each) centered 
at randomly chosen locations, [(-0.0985, -0.3379), (-0.6325, 
0.9322), (1.1078, 1.0856)], with identical covariance matrices 
0.04I2, Fig. 3A. Then, we applied Algorithm 1 with the 
regularization coefficient, O  0.6  and found that it correctly 
clustered the data, Fig. 3A.  

 We compare the performance of our online algorithm to the 
offline Newton-like SNMF algorithm proposed in [24]. The 
performance of the offline algorithm depends on initialization, 
and we attempted to improve it by initializing the three rows of 
Y to i) the rectified projections of each data point onto the first 
principal component of the data X ; ii) same for the second 
principal component; and iii) the rectified negative of the first 
principal component. We ran the offline algorithm on the whole 
dataset.  

 We evaluated algorithms’ performance by computing the 
unregularized cost at time T defined using the notation 

 for the input up to time T and  
for the corresponding output: 

2

FT T T T T
C  �X 'X Y 'Y �.���������������������(9)�����������������

Here when running the online algorithm we limited the number 
of output degrees of freedom to three.  

The ratio of the costs for the offline and the online algorithm 
is shown in Fig. 3B. Interestingly, we find that the performance 
of the online algorithm is very close to that of the offline 
algorithm, and, in relative terms, improves over time.  

 

C. Sparse feature discovery by the online SNMF algorithm 
In the previous section we considered the performance of 

our algorithm when presented with clearly clusterable data. 

�

Fig. 3: Clustering of artificial datasets using online SNMF algorithm. A) 
An example run of our online algorithm. Dot colors indicate cluster 
assignments. B) Mean ratio of costs (9) of our online algorithm and of the 
offline algorithm [24] run on 100 datasets.   T  1is not shown since the 
online algorithm always achieves zero cost for the initial data point. 
Shadows show standard deviation. �

�

Algorithm 1: Online SNMF 

 

Start with the empty active set {}, W’ = 0 and M = 0. 

For each T=1…Tf 

1. Initialize yT = 0. 
2. Receive xT.  
3. For each degree of freedom in the active set {i} 

compute    yT , i
= max W

T , i
x

T
� M

T , i
y

T
, 0� � iterating 

until convergence. 
4. If required by (5) add another degree of freedom to 

the active set {i}. 
5. Output yT. 
6. Update “synaptic connections” W’ and M 

according to (8). 

��������������� �
Fig. 2: A neuronal network implementing online SNMF. Each neuron 
rectifies the sum of inputs weighted by feedforward connections W’ and 
other neurons’ activity weighted by lateral connections –M. Feedforward 
and lateral connection weights are updated according to local Hebbian and 
anti-Hebbian rules correspondingly. 
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However, nervous systems may encounter stimuli that do not 
have obvious cluster structure. In this Section, we discuss the 
performance of our online SNMF algorithm when presented 
with such natural stimuli.  

 We present our algorithm with a natural image ensemble as 
is common in computational neuroscience and computer vision. 
Specifically, we present sequentially 5x104 16-pixel by 16-
pixel natural image patches, using the data set provided in [21].  
The patches are pre-processed by centering, contrast-
normalization, and whitening [2], which may not be far from 
the computations performed in the mammalian retina and 
thalamus upstream of the primary visual cortex (V1) [26], [27]. 
Each image patch was presented to the network 40 times, in 
random order, resulting in a total of 2x106 presentations. The 
number of output units, m = 256, and the regularizer, O  200 . 
To speed up convergence, we used an alternative step size 

schedule, where at initialization of a neuron Ŷ
T ,i
 1000  and at 

subsequent steps Ŷ
T ,i
 ŶT�1,i � 0.01y

T �1,i

2 . 

The resulting feedforward weight matrix, W’, transformed 
into the neural filters acting on natural images is shown in Fig. 
4A. The transformation involves right-multiplying W’ by the 
whitening matrix, Q, and then plotting the rows of the product. 
The recovered neural filters resemble Gabor-filter receptive 
fields of V1 neurons [28]. Previously, such Gabor-filter 
receptive fields were obtained as independent components of an 
image patch [19] as well as sparse dictionary learning model 
[29], where each image patch is represented by a small set of 
active neurons [21], [22]. Similarly, we find that the activity in 
our network is sparse, Fig. 4B, with a high probability of neural 
activity being zero. Therefore, our algorithm is capable of 
recovering sparse features. 

Can we understand why SNMF discovers sparse features? 
A hint comes from the recently reported success of K-means 
clustering algorithm in discovering Gabor filters from whitened 
natural image patches [1], [2]. Since, as discussed in Section II, 
SNMF is related to K-means it is possible that SNMF also 
discovers sparse features.  

Next, we review an argument showing that K-means 
discovers sparse features [3]. Let us assume that the data are 
generated by the Independent Component Analysis (ICA) 
model [19],  

x
T
 As

T
,                                  (10) 

where �A �Թnxn is a mixing matrix, assumed to be invertible, 
and the random source vector, sT, has statistically independent 
elements. The source is assumed to be sparse, e.g. Laplace 
distributed. Such generative model may describe natural images 
with rows of A-1 corresponding to Gabor filter.  When applied 
to data such filters would recover the original sparse sources, 

A�1x
T
 A�1As

T
 s

T
 [19], [20]. Below we will assume that 

the number of clusters, K  2n . 

Central to the argument that K-means discovers sparse 
features is that it satisfies the so-called Rotation Invariance and 
Sparse Selectivity (RISS) property [3]: �

i) Rotation Invariance: If the data are rotated by an 
orthonormal transformation, the cluster centroids given 
by the algorithm are also rotated.  

ii) Sparse Selectivity:  If the mixing matrix were identity, 
cluster centroids would be n unit vectors along 
coordinate axis and their negatives. These directions are 
the sparse directions. 
 

The RISS property allows one to prove that an algorithm 
discovers sparse features by the following logic. First, a RISS 
clustering algorithm applied to whitened input, generated from 
the ICA model (10), finds 2n cluster centroids aligned with the 
sparse directions. Second, a known linear transformation of 
such centroids can recover the rows of A-1, or Gabor filters for 
natural image input. Below, we show this more formally. 

 The data generated from the ICA model (10) and then 
whitened is related to the original sources by an orthogonal 
rotation [19]. To see this, we rewrite the whitened input, zT, in 

  

           

Fig. 4: SNMF network discovers sparse features in natural images. A) The 
neural filters trained on natural images, resemble Gabor filters. B) 
Probability density of output activity, pooled over all neurons and all 
stimuli presentations. The red arrow denotes the probability of having zero 
output. This plot was obtained by presenting the network with the same 
image patches as used for training but with frozen synaptic weights. �
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Interestingly, these update rules have the functional form of 
Oja’s rule proposed previously for single neurons [12]. Note 
that each weight update depends only on the activity of pre- and 
post-synaptic neurons, and hence is biologically plausible. Yet, 
unlike Oja’s rule where the learning rate is arbitrary, here the 
learning rate is specified and activity dependent. To the best of 
our knowledge such single-neuron updates [25] have not been 
previously derived in the multi-neuron case.  

Thus, starting with the SNMF cost function, we derived the 
following online algorithm:  

 

B. Numerical test of the online clustering algorithm 
Here, we demonstrate the clustering performance of our 

algorithm on artificial datasets. We generated a test dataset by 
sampling from three Gaussians (100 data points each) centered 
at randomly chosen locations, [(-0.0985, -0.3379), (-0.6325, 
0.9322), (1.1078, 1.0856)], with identical covariance matrices 
0.04I2, Fig. 3A. Then, we applied Algorithm 1 with the 
regularization coefficient, O  0.6  and found that it correctly 
clustered the data, Fig. 3A.  

 We compare the performance of our online algorithm to the 
offline Newton-like SNMF algorithm proposed in [24]. The 
performance of the offline algorithm depends on initialization, 
and we attempted to improve it by initializing the three rows of 
Y to i) the rectified projections of each data point onto the first 
principal component of the data X ; ii) same for the second 
principal component; and iii) the rectified negative of the first 
principal component. We ran the offline algorithm on the whole 
dataset.  

 We evaluated algorithms’ performance by computing the 
unregularized cost at time T defined using the notation 

 for the input up to time T and  
for the corresponding output: 

2

FT T T T T
C  �X 'X Y 'Y �.���������������������(9)�����������������

Here when running the online algorithm we limited the number 
of output degrees of freedom to three.  

The ratio of the costs for the offline and the online algorithm 
is shown in Fig. 3B. Interestingly, we find that the performance 
of the online algorithm is very close to that of the offline 
algorithm, and, in relative terms, improves over time.  

 

C. Sparse feature discovery by the online SNMF algorithm 
In the previous section we considered the performance of 

our algorithm when presented with clearly clusterable data. 

�

Fig. 3: Clustering of artificial datasets using online SNMF algorithm. A) 
An example run of our online algorithm. Dot colors indicate cluster 
assignments. B) Mean ratio of costs (9) of our online algorithm and of the 
offline algorithm [24] run on 100 datasets.   T  1is not shown since the 
online algorithm always achieves zero cost for the initial data point. 
Shadows show standard deviation. �

�

Algorithm 1: Online SNMF 

 

Start with the empty active set {}, W’ = 0 and M = 0. 

For each T=1…Tf 

1. Initialize yT = 0. 
2. Receive xT.  
3. For each degree of freedom in the active set {i} 

compute    yT , i
= max W

T , i
x

T
� M

T , i
y

T
, 0� � iterating 

until convergence. 
4. If required by (5) add another degree of freedom to 

the active set {i}. 
5. Output yT. 
6. Update “synaptic connections” W’ and M 

according to (8). 

��������������� �
Fig. 2: A neuronal network implementing online SNMF. Each neuron 
rectifies the sum of inputs weighted by feedforward connections W’ and 
other neurons’ activity weighted by lateral connections –M. Feedforward 
and lateral connection weights are updated according to local Hebbian and 
anti-Hebbian rules correspondingly. 

SNMF network discovers sparse features in natural images
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