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Introduction

o Quantity of interest: E.f(X) = [ f(x)
o Generate random objects of interest X17 . ,XC ~ 7, and use the
empirical mean: 13 | £(X;)
o Canonical O(c™*/?) convergence rate / estimation error, for
computational budget ¢
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Introduction

o Quantity of interest: E.f(X) = [ f(x)
o Generate random objects of interest X1, e ,XC ~ 7, and use the
. Y
empirical mean: > ., f(X;)
o Canonical O(c™*/?) convergence rate / estimation error, for
computational budget ¢
@ How to generate the objects of interest? Often can obtain arbitrarily
close approximations to 7, but closer the approximation, more
computation is required... — slower convergence rate
e Approximation error / bias much harder to quantify.
@ How to turn sequences of well behaved biased estimators into

an unbiased estimator without sacrificing the convergence rate?
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-
Example 1: SDEs

Quantity of interest: E.f(X)
X = (X(t) : t >0) is the solution to

dX = u(X)dt+a(X)dB,

Cannot generate X exactly, but can use discrete-time approximation
Xp, e.g., by Euler discretization with grid 0, h, 2h, ...

f(Xp) is a biased estimator with bias that drops with h, and comes
with the cost of ©(1/h)

Select h and the number of replications carefully to balance bias and
variance — slower convergence rate
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-
Example 2: MCMC

o Markov chain {Xp},-, with equilibrium distribution 7

@ Has it equilibriated yet? Want to estimate Ef (X, ), but only have
finite time. How to quantify the bias?
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Assumptions

o Let Y = f(X) be a real-valued random variable with a finite second
moment.

o Let {Y; = f(X¢)};o, be a sequence of real-valued random variables
with finite second moments. Denote Yy = 0.
Assumption (A1)
2
limi oo E|Y: — Y]2 =0 ie, Y; By (Y: converges to Y in quadratic
mean).

@ stronger than convergence of first two moments, i.e.,
lim; oo EY; = EY, lim; oo EYZ = EY?
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Assumptions

@ Let T be an integer-valued random variable independent of Y and
{Yi}io, with P[T > ¢t] >0VteN.

Assumption (Al+)
o E|Yei—Y[?
t=0 P[T>t]

happens faster than the tail of T decreases).

L2
< oo (thus not only that Y; — Y but convergence
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Telescoping estimator

Theorem
Assuming (A1+),

is an unbiased estimator of EY with

X E|Yeo1i — Y2 —E|Y; - Y]?
2 _ t
EZ? = ) FTS1 .

t=1

@ Under (A1+4), variance is finite and easily estimated by replication,
i.e., using Var[Zy,...,Zpy], where Z; = Z(T;) foriid. Tq,..., T,
which gives confidence intervals for EY — easy to construct
algorithms with desired error tolerance.
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Telescoping estimator

Theorem
Assuming (A1),

=
ZIP’[T>t] ZP[T>t]

is an unbiased estimator of EY with

Bz — SO EVea - YE-EIYe o VP SNEATH25 2. BAA,
— P[T > ] — P[T > ]

@ Variance depends on the joint distribution of Y;'s only throught the L2
norms of Y; — Y: only the marginal distribution of Y; affects the
algorithm — we can often replace Y;_; with Y{_, b Y:_1, which will
drive Ay = Y; — Y/_; faster to 0.
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N
Proof sketch

in(T,r) Ye—Ye
o 7/ =2z)(T) =y ") BoXe,

) 1[T > t]
EZ, = EZ]}D[T>t] = Ye1)

=ZEYt Ye-1)

= IEY,.

0 7% Zasr— oo

e construct a subsequence of {Z/}°, that must converge in L? using
(A1+). This L2-limit then must be Z, so:

EY +EY, = EZ —EZ
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Work-variance tradeoff

@ t, - time required to generate Y,
@ 7 - time required to generate each Z:
Er =E[t1+...+ t7] = Zj.il tP[T > j]

EA2+23°%° . EA;A, .
(] VarZ = Z;)il 4 ]P’[Tg]l ! = _]?i]. b]/P[T ZJ]

e For a given computational budget ¢, denote by m(c) the number of

replicates of Z we can generate in ¢ time,
m(c) = max{m >0: 37,7 < c}, and let Z(C) = _1 E’_"(C) Z;

m(c) £~j=1
e With m(c) replicates, workload is m(c)ET, and the variance is \,:7"’(22)

From (Glynn and Whitt 1992) it follows that if ET < co and
VarZ < oo then

Ve (Ziey —EY) ~ N (0,ErVarZ).
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N
Work-variance tradeoff in SDEs

@ Y, corresponds to the discretization with increment h = 27" (doubling
the number of time steps).

e t, =©(2"), and typically
by =E|Yy1—Y]?—E|Y,— Y|? = O(272"), where p > 0 is the
strong order of the discretization scheme
@ choose N so that P[N > n] =27"", with 1 < r < 2p, for p > 1/2.
@ Then:
o VarZ =37° by/P[N >n] =0 (35, 27"2P71)) < 00
o Er =3 t,P[N>n]=0 (32,27 Y) < o
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Work-variance tradeoff in SDEs

@ Y, corresponds to the discretization with increment h = 27" (doubling
the number of time steps).

e t, =©(2"), and typically
by =E|Yy1—Y]?—E|Y,— Y|? = O(272"), where p > 0 is the
strong order of the discretization scheme
@ choose N so that P[N > n] =27"", with 1 < r < 2p, for p > 1/2.
@ Then:

e VarZ = Z:il b,—,/ED [N Z n] = O (Z:il 2_”(213_")) < 00
o ET = Z:il t,IP [N > n] =0 (Z:‘;l 2_"(’_1)) < 0

_1 . . __p_
@ Thus, ¢~ 2 convergence. The fastest previous rate is ¢ 21,
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|
Unequilibriated MCMC

e Markov chain {X,},~q, with i.i.d. transitions ¢,, with X, = ¢, (Xa-1)

@ Problem: if we just generate {Xn}nsos and set Ay = £(X;) — £(Xp-1)
for debiasing, then we would need A, — 0 in L2, which does not
happen

o Idea: need to couple the values in A, i.e., replace X,_1 with Xn_1,
s.t., Xp_1 2 Xp_1, but X,_1 is close to X,
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Coupling for contractive chains

@ (C1) Chain is contractive on average:
E |j¢1(x) — @1(x)||* < b|jx — X||?, for some b < 1.

e (C2) Function f is Lipschitz: |f(x) — f(x)| < k||x — X'||, for some
K < 00.

@ Now, set

Xo = (pno@n_10---0¢1)(x)
Xoc1 = (@nopn-10---0¢2)(x)

Note: (X,,,)N(,,_l) can be recursively computed from (Xn_l,)N(,,_g)

o Set A, = f(X,) — f(Xo_1).
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Coupling for contractive chains (2)

EA2 < HzE‘X—)N( H2
n - n n—1

~ 2
= HzE ‘ ©Pn (Xn—l) — ©n (Xn—2> H

5 ~ 2
K bEHxn_l - Xn_z(] <.

IN

< KB"IE|X —x|? =0

geometrically fast, so can match with appropriate distribution of T.
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Alternative coupling

Xi = en(x)
X5 = (envoen-1)(x)
Xy, = (enopn_10--0py_pnt1)(X)

More complicated to implement as cannot recursively compute X from
~_1. Computational effort quadratic in . Also: different variance, since
EAjA, # EATAL.
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Glivenko-Cantelli result

e Sometimes, not only interested in equilibrium expectation Ef(X), but
in the equilibrium distribution of £(X)

@ How to estimate equilibrium cdf
Foo(y) =P[f(X) <y] =E1[f(X) < y]? Note thatl [f(-) < y] is not
Lipschitz.

@ In the context of exact simulation: generate Xi,..., X, ~ 7, and set
Y; = f(X;). The empirical distribution function is given by
Fm()/):# jm:11[yj§)/]-

e Glivenko-Cantelli theorem shows uniform convergence of Fp,(y) to
F(y) if Y's are i.i.d.

sup |Fm(y) — Foo(y)| — 0, a.s.
y
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Glivenko-Cantelli result

@ The empirical (signed) measure induced by the debiasing scheme

1 (O by, ;) =dg, ()
E Z PN > n] ’

and thereby empirical debiased distribution

1 N’I[Y,J—)’] [nlj—y}

- EZ z_: PN > n]

1

o Glivenko-Cantelli theorem still holds:sup,, |Fm(y) — Foo(y)| — 0 a.s.
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Summary

@ P. W. Glynn and C. Rhee, Exact Estimation for Markov Chain
Equilibrium Expectations, 2014

@ C. Rhee and P. W. Glynn, Unbiased Estimation with Square Root
Convergence for SDE Models, 2013 arXiv:1207.2452

o Exact estimation can be easier than exact simulation

@ No bias and controllable variance - canonical convergence rate as a
function of the computational budget

o Easy to handle work-variance tradeoff

@ It can work under less restrictive conditions (m-irreducibility vs positive
Harris recurrence in the Markov chain example)
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