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Introduction

Quantity of interest: Eπf (X ) =
´
f (x)dπ(x)

Generate random objects of interest X1, . . . ,Xc ∼ π, and use the
empirical mean: 1

c

∑c

i=1
f (Xi )

Canonical O(c−1/2) convergence rate / estimation error, for
computational budget c

How to generate the objects of interest? Often can obtain arbitrarily
close approximations to π, but closer the approximation, more
computation is required... → slower convergence rate

Approximation error / bias much harder to quantify.

How to turn sequences of well behaved biased estimators into
an unbiased estimator without sacri�cing the convergence rate?
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Example 1: SDEs

Quantity of interest: Eπf (X )

X = (X (t) : t ≥ 0) is the solution to

dX = µ(X )dt + σ(X )dB,

Cannot generate X exactly, but can use discrete-time approximation
Xh, e.g., by Euler discretization with grid 0, h, 2h, ...

f (Xh) is a biased estimator with bias that drops with h, and comes
with the cost of Θ(1/h)

Select h and the number of replications carefully to balance bias and
variance → slower convergence rate
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Example 2: MCMC

Markov chain {Xn}n≥0 with equilibrium distribution π

Has it equilibriated yet? Want to estimate Ef (X∞), but only have
�nite time. How to quantify the bias?
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Assumptions

Let Y = f (X ) be a real-valued random variable with a �nite second
moment.

Let {Yt = f (Xt)}∞t=1 be a sequence of real-valued random variables
with �nite second moments. Denote Y0 ≡ 0.

Assumption (A1)

limt→∞ E |Yt − Y |2 = 0, i.e., Yt
L2→ Y (Yt converges to Y in quadratic

mean).

stronger than convergence of �rst two moments, i.e.,
limt→∞ EYt = EY , limt→∞ EY 2

t = EY 2
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Assumptions

Let T be an integer-valued random variable independent of Y and
{Yt}∞t=1 with P [T ≥ t] > 0 ∀t ∈ N .

Assumption (A1+)∑∞
t=0

E|Yt−1−Y |2
P[T≥t] <∞ (thus not only that Yt

L2→ Y but convergence

happens faster than the tail of T decreases).
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Telescoping estimator

Theorem

Assuming (A1+),

Z = Z (T ) =
T∑
t=1

Yt − Yt−1
P [T ≥ t]

is an unbiased estimator of EY with

EZ 2 =
∞∑
t=1

E |Yt−1 − Y |2 − E |Yt − Y |2

P [T ≥ t]
.

Under (A1+), variance is �nite and easily estimated by replication,
i.e., using Var [Z1, . . . ,Zm], where Zj = Z (Tj) for i.i.d. T1, . . . ,Tm,
which gives con�dence intervals for EY → easy to construct
algorithms with desired error tolerance.
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Telescoping estimator

Theorem

Assuming (A1+),

Z = Z (T ) =
T∑
t=1

Yt − Yt−1
P [T ≥ t]

=
T∑
t=1

∆t

P [T ≥ t]

is an unbiased estimator of EY with

EZ 2 =
∞∑
t=1

E |Yt−1 − Y |2 − E |Yt − Y |2

P [T ≥ t]
=
∞∑
t=1

E∆2

t + 2
∑∞

s=t+1
E∆t∆s

P [T ≥ t]
.

Variance depends on the joint distribution of Yt 's only throught the L2

norms of Yt − Y : only the marginal distribution of Yt a�ects the

algorithm → we can often replace Yt−1 with Y ′t−1
D
= Yt−1, which will

drive ∆t = Yt − Y ′t−1 faster to 0.

Dino S. (Gatsby) Unbiased Estimation September 19, 2014 8 / 18



Proof sketch

Z ′r = Z ′r (T ) =
∑min(T ,r)

t=1
Yt−Yt−1
P[T≥t] .

EZ ′r = E
r∑

t=1

1 [T ≥ t]

P [T ≥ t]
(Yt − Yt−1)

=
r∑

t=1

E (Yt − Yt−1)

= EYr .

Z ′r
a.s.→ Z as r →∞

construct a subsequence of {Z ′r}
∞
r=1 that must converge in L2 using

(A1+). This L2-limit then must be Z , so:

EY ← EYr = EZ ′r → EZ
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Work-variance tradeo�

tn - time required to generate Yn

τ - time required to generate each Z :

Eτ =E [t1 + . . .+ tT ] =
∑∞

j=1 tjP [T ≥ j ]

VarZ =
∑∞

j=1

E∆2
j
+2

∑∞
s=j+1 E∆j∆s

P[T≥j] =
∑∞

j=1 bj/P [T ≥ j ]

For a given computational budget c , denote by m(c) the number of
replicates of Z we can generate in c time,

m(c) = max
{
m ≥ 0 :

∑m
j=1 τj ≤ c

}
, and let Z̄(c) = 1

m(c)

∑m(c)
j=1 Zj

With m(c) replicates, workload is m(c)Eτ , and the variance is VarZ
m(c) .

From (Glynn and Whitt 1992) it follows that if Eτ <∞ and
VarZ <∞ then

√
c
(
Z̄(c) − EY

)
 N (0,EτVarZ ) .
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Work-variance tradeo� in SDEs

Yn corresponds to the discretization with increment h = 2−n (doubling
the number of time steps).

tn = Θ(2n) , and typically
bn = E |Yn−1 − Y |2 − E |Yn − Y |2 = O(2−2np), where p > 0 is the
strong order of the discretization scheme

choose N so that P [N ≥ n] = 2−nr , with 1 < r < 2p, for p > 1/2.

Then:

VarZ =
∑∞

n=1
bn/P [N ≥ n] = O

(∑∞
n=1

2−n(2p−r)
)
<∞

Eτ =
∑∞

n=1
tnP [N ≥ n] = O

(∑∞
n=1

2−n(r−1)
)
<∞

Thus, c−
1
2 convergence. The fastest previous rate is c

− p
2p+1 .
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Unequilibriated MCMC

Markov chain {Xn}n≥0, with i.i.d. transitions ϕn, with Xn = ϕn (Xn−1)

Problem: if we just generate {Xn}n≥0, and set ∆n = f (Xn)− f (Xn−1)

for debiasing, then we would need ∆n → 0 in L2, which does not
happen

Idea: need to couple the values in ∆n, i.e., replace Xn−1 with X̃n−1,

s.t., X̃n−1
D
= Xn−1, but X̃n−1 is close to Xn
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Coupling for contractive chains

(C1) Chain is contractive on average:
E ‖ϕ1(x)− ϕ1(x ′)‖2 ≤ b ‖x − x ′‖2, for some b < 1.

(C2) Function f is Lipschitz: |f (x)− f (x ′)| ≤ κ ‖x − x ′‖, for some
κ <∞.

Now, set

Xn = (ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1) (x)

X̃n−1 = (ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2) (x)

Note:
(
Xn, X̃n−1

)
can be recursively computed from

(
Xn−1, X̃n−2

)
.

Set ∆n = f (Xn)− f (X̃n−1).
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Coupling for contractive chains (2)

E∆2
n ≤ κ2E

∥∥∥Xn − X̃n−1

∥∥∥2
= κ2E

∥∥∥ϕn (Xn−1)− ϕn
(
X̃n−2

)∥∥∥2
≤ κ2bE

∥∥∥Xn−1 − X̃n−2

∥∥∥2 ≤ · · ·
≤ κ2bn−1E ‖X1 − x‖2 → 0

geometrically fast, so can match with appropriate distribution of T .
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Alternative coupling

X ∗1 = ϕN(x)

X ∗2 = (ϕN ◦ ϕN−1) (x)

X ∗n = (ϕN ◦ ϕN−1 ◦ · · · ◦ ϕN−n+1) (x)

More complicated to implement as cannot recursively compute X ∗n from
X ∗n−1. Computational e�ort quadratic in N. Also: di�erent variance, since
E∆j∆k 6= E∆∗j ∆∗k .
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Glivenko-Cantelli result

Sometimes, not only interested in equilibrium expectation Ef (X ), but
in the equilibrium distribution of f (X )

How to estimate equilibrium cdf
F∞(y) = P [f (X ) ≤ y ] = E1 [f (X ) ≤ y ]? Note that1 [f (·) ≤ y ] is not
Lipschitz.

In the context of exact simulation: generate X1, . . . ,Xc ∼ π, and set
Yj = f (Xj). The empirical distribution function is given by
Fm(y) = 1

m

∑m
j=1 1 [Yj ≤ y ].

Glivenko-Cantelli theorem shows uniform convergence of Fm(y) to
F (y) if Y 's are i.i.d.

sup
y
|Fm(y)− F∞(y)| → 0, a.s.
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Glivenko-Cantelli result

The empirical (signed) measure induced by the debiasing scheme

γm (·) =
1

m

m∑
j=1

 Nj∑
n=1

δYn,j
(·)− δỸn−1,j

(·)
P [N ≥ n]

 ,

and thereby empirical debiased distribution

Fm (y) =
1

m

m∑
j=1

 Nj∑
n=1

1 [Yn,j ≤ y ]− 1
[
Ỹn−1,j ≤ y

]
P [N ≥ n]

 .

Glivenko-Cantelli theorem still holds:supy |Fm(y)− F∞(y)| → 0 a.s.
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Summary

P. W. Glynn and C. Rhee, Exact Estimation for Markov Chain

Equilibrium Expectations, 2014

C. Rhee and P. W. Glynn, Unbiased Estimation with Square Root

Convergence for SDE Models, 2013 arXiv:1207.2452

Exact estimation can be easier than exact simulation

No bias and controllable variance - canonical convergence rate as a
function of the computational budget

Easy to handle work-variance tradeo�

It can work under less restrictive conditions (π-irreducibility vs positive
Harris recurrence in the Markov chain example)
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