Unbiased Estimation without Exact Simulation

(Rhee & Glynn, 2013; Glynn & Rhee, 2014)

Gatsby

September 19, 2014

Dino S. (Gatsby)

Unbiased Estimation

September 19, 2014

- Quantity of interest: $\mathbb{E}_{\pi}f(X) = \int f(x)d\pi(x)$
 - Generate random objects of interest $X_1, \ldots, X_c \sim \pi$, and use the empirical mean: $\frac{1}{c} \sum_{i=1}^{c} f(X_i)$
 - Canonical $O(c^{-1/2})$ convergence rate / estimation error, for computational budget c

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- Quantity of interest: $\mathbb{E}_{\pi}f(X) = \int f(x)d\pi(x)$
 - Generate random objects of interest $X_1, \ldots, X_c \sim \pi$, and use the empirical mean: $\frac{1}{c} \sum_{i=1}^{c} f(X_i)$
 - Canonical $O(c^{-1/2})$ convergence rate / estimation error, for computational budget c
- How to generate the objects of interest? Often can obtain arbitrarily close approximations to π , but closer the approximation, more computation is required... \rightarrow slower convergence rate

イロト 不得下 イヨト イヨト 二日

- Quantity of interest: $\mathbb{E}_{\pi}f(X) = \int f(x)d\pi(x)$
 - Generate random objects of interest $X_1, \ldots, X_c \sim \pi$, and use the empirical mean: $\frac{1}{c} \sum_{i=1}^{c} f(X_i)$
 - Canonical $O(c^{-1/2})$ convergence rate / estimation error, for computational budget c
- How to generate the objects of interest? Often can obtain arbitrarily close approximations to π , but closer the approximation, more computation is required... \rightarrow slower convergence rate
- Approximation error / bias much harder to quantify.

- Quantity of interest: $\mathbb{E}_{\pi}f(X) = \int f(x)d\pi(x)$
 - Generate random objects of interest $X_1, \ldots, X_c \sim \pi$, and use the empirical mean: $\frac{1}{c} \sum_{i=1}^{c} f(X_i)$
 - Canonical $O(c^{-1/2})$ convergence rate / estimation error, for computational budget c
- How to generate the objects of interest? Often can obtain arbitrarily close approximations to π , but closer the approximation, more computation is required... \rightarrow slower convergence rate
- Approximation error / bias much harder to guantify.
- How to turn sequences of well behaved biased estimators into an unbiased estimator without sacrificing the convergence rate?

Example 1: SDEs

- Quantity of interest: $\mathbb{E}_{\pi}f(X)$
- $X = (X(t) : t \ge 0)$ is the solution to

$$dX = \mu(X)dt + \sigma(X)dB,$$

- Cannot generate X exactly, but can use discrete-time approximation X_h, e.g., by Euler discretization with grid 0, h, 2h, ...
- f(X_h) is a biased estimator with bias that drops with h, and comes with the cost of Θ(1/h)
- Select h and the number of replications carefully to balance bias and variance → slower convergence rate

- Markov chain $\{X_n\}_{n>0}$ with equilibrium distribution π
- Has it equilibriated yet? Want to estimate $\mathbb{E}f(X_{\infty})$, but only have finite time. How to quantify the bias?

- 3

A = A = A

Assumptions

- Let Y = f(X) be a real-valued random variable with a finite second moment.
- Let {Y_t = f(X_t)}[∞]_{t=1} be a sequence of real-valued random variables with finite second moments. Denote Y₀ ≡ 0.

Assumption (A1)

 $\lim_{t\to\infty} \mathbb{E} |Y_t - Y|^2 = 0$, i.e., $Y_t \xrightarrow{L^2} Y$ (Y_t converges to Y in quadratic mean).

• stronger than convergence of first two moments, i.e., $\lim_{t\to\infty} \mathbb{E}Y_t = \mathbb{E}Y, \lim_{t\to\infty} \mathbb{E}Y_t^2 = \mathbb{E}Y^2$

Assumptions

• Let T be an integer-valued random variable independent of Y and $\{Y_t\}_{t=1}^{\infty}$ with $\mathbb{P}[T \ge t] > 0 \ \forall t \in \mathbb{N}$.

Assumption (A1+)

 $\sum_{t=0}^{\infty} \frac{\mathbb{E}|Y_{t-1}-Y|^2}{\mathbb{P}[T \ge t]} < \infty \text{ (thus not only that } Y_t \xrightarrow{L^2} Y \text{ but convergence happens faster than the tail of } T \text{ decreases).}$

Telescoping estimator

Theorem

Assuming (A1+),

$$Z = Z(T) = \sum_{t=1}^{T} \frac{Y_t - Y_{t-1}}{\mathbb{P}[T \ge t]}$$

is an unbiased estimator of $\mathbb{E}Y$ with

$$\mathbb{E}Z^2 = \sum_{t=1}^{\infty} \frac{\mathbb{E}|Y_{t-1} - Y|^2 - \mathbb{E}|Y_t - Y|^2}{\mathbb{P}[T \ge t]}.$$

• Under (A1+), variance is finite and easily estimated by replication, i.e., using Var $[Z_1, \ldots, Z_m]$, where $Z_j = Z(T_j)$ for i.i.d. T_1, \ldots, T_m , which gives confidence intervals for $\mathbb{E}Y \to$ easy to construct algorithms with desired error tolerance.

Dino S. (Gatsby)

Telescoping estimator

Theorem

Assuming (A1+),

$$Z = Z(T) = \sum_{t=1}^{T} \frac{Y_t - Y_{t-1}}{\mathbb{P}[T \ge t]} = \sum_{t=1}^{T} \frac{\Delta_t}{\mathbb{P}[T \ge t]}$$

is an unbiased estimator of $\mathbb{E} Y$ with

$$\mathbb{E}Z^{2} = \sum_{t=1}^{\infty} \frac{\mathbb{E}\left|Y_{t-1}-Y\right|^{2}-\mathbb{E}\left|Y_{t}-Y\right|^{2}}{\mathbb{P}\left[T \geq t\right]} = \sum_{t=1}^{\infty} \frac{\mathbb{E}\Delta_{t}^{2}+2\sum_{s=t+1}^{\infty}\mathbb{E}\Delta_{t}\Delta_{s}}{\mathbb{P}\left[T \geq t\right]}.$$

• Variance depends on the joint distribution of Y_t 's only throught the L^2 norms of $Y_t - Y$: only the marginal distribution of Y_t affects the algorithm \rightarrow we can often replace Y_{t-1} with $Y'_{t-1} \stackrel{D}{=} Y_{t-1}$, which will drive $\Delta_t = Y_t - Y'_{t-1}$ faster to 0.

Dino S. (Gatsby)

September 19, 2014

Proof sketch

•
$$Z'_r = Z'_r(T) = \sum_{t=1}^{\min\{T,r\}} \frac{Y_t - Y_{t-1}}{\mathbb{P}[T \ge t]}.$$

 $\mathbb{E}Z'_r = \mathbb{E}\sum_{t=1}^r \frac{1[T \ge t]}{\mathbb{P}[T \ge t]} (Y_t - Y_{t-1})$
 $= \sum_{t=1}^r \mathbb{E}(Y_t - Y_{t-1})$
 $= \mathbb{E}Y_r.$

•
$$Z'_r \stackrel{\text{a.s.}}{\to} Z$$
 as $r \to \infty$

• construct a subsequence of $\{Z'_r\}_{r=1}^{\infty}$ that must converge in L^2 using (A1+). This L^2 -limit then must be Z, so:

$$\mathbb{E}Y \leftarrow \mathbb{E}Y_r = \mathbb{E}Z'_r \to \mathbb{E}Z$$

Dino S. (Gatsby)

Work-variance tradeoff

- t_n time required to generate Y_n
- au time required to generate each Z: $\mathbb{E} au = \mathbb{E}[t_1 + \ldots + t_T] = \sum_{j=1}^{\infty} t_j \mathbb{P}[T \ge j]$
- Var $Z = \sum_{j=1}^{\infty} \frac{\mathbb{E}\Delta_j^2 + 2\sum_{s=j+1}^{\infty} \mathbb{E}\Delta_j \Delta_s}{\mathbb{P}[T \ge j]} = \sum_{j=1}^{\infty} b_j / \mathbb{P}[T \ge j]$
- For a given computational budget c, denote by m(c) the number of replicates of Z we can generate in c time, $m(c) = \max \left\{ m \ge 0 : \sum_{j=1}^{m} \tau_j \le c \right\}$, and let $\overline{Z}_{(c)} = \frac{1}{m(c)} \sum_{j=1}^{m(c)} Z_j$
- With m(c) replicates, workload is $m(c)\mathbb{E}\tau$, and the variance is $\frac{\text{Var}Z}{m(c)}$.
- From (Glynn and Whitt 1992) it follows that if $\mathbb{E} au < \infty$ and ${\sf Var}Z < \infty$ then

$$\sqrt{c}\left(\bar{Z}_{(c)}-\mathbb{E}Y
ight)\rightsquigarrow\mathcal{N}\left(0,\mathbb{E} au\mathsf{Var}Z
ight).$$

Work-variance tradeoff in SDEs

- Y_n corresponds to the discretization with increment $h = 2^{-n}$ (doubling the number of time steps).
- $t_n = \Theta(2^n)$, and typically $b_n = \mathbb{E} |Y_{n-1} - Y|^2 - \mathbb{E} |Y_n - Y|^2 = O(2^{-2np})$, where p > 0 is the strong order of the discretization scheme
- choose N so that $\mathbb{P}[N \ge n] = 2^{-nr}$, with 1 < r < 2p, for p > 1/2. • Then:

• Var
$$Z = \sum_{n=1}^{\infty} b_n / \mathbb{P}[N \ge n] = O\left(\sum_{n=1}^{\infty} 2^{-n(2p-r)}\right) < \infty$$

• $\mathbb{E}\tau = \sum_{n=1}^{\infty} t_n \mathbb{P}[N \ge n] = O\left(\sum_{n=1}^{\infty} 2^{-n(r-1)}\right) < \infty$

- ▲ 臣 ▶ ▲ 臣 → りへつ

Work-variance tradeoff in SDEs

- Y_n corresponds to the discretization with increment $h = 2^{-n}$ (doubling the number of time steps).
- $t_n = \Theta(2^n)$, and typically $b_n = \mathbb{E} |Y_{n-1} - Y|^2 - \mathbb{E} |Y_n - Y|^2 = O(2^{-2np})$, where p > 0 is the strong order of the discretization scheme
- choose N so that $\mathbb{P}[N \ge n] = 2^{-nr}$, with 1 < r < 2p, for p > 1/2. • Then:

• Var
$$Z = \sum_{n=1}^{\infty} b_n / \mathbb{P}[N \ge n] = O\left(\sum_{n=1}^{\infty} 2^{-n(2p-r)}\right) < \infty$$

• $\mathbb{E}\tau = \sum_{n=1}^{\infty} t_n \mathbb{P}[N \ge n] = O\left(\sum_{n=1}^{\infty} 2^{-n(r-1)}\right) < \infty$

• Thus, $c^{-\frac{1}{2}}$ convergence. The fastest previous rate is $c^{-\frac{p}{2p+1}}$.

September 19, 2014

- Markov chain $\{X_n\}_{n>0}$, with i.i.d. transitions φ_n , with $X_n = \varphi_n(X_{n-1})$
- Problem: if we just generate $\{X_n\}_{n\geq 0}$, and set $\Delta_n = f(X_n) f(X_{n-1})$ for debiasing, then we would need $\overline{\Delta}_n \to 0$ in L^2 , which does not happen
- Idea: need to couple the values in Δ_n , i.e., replace X_{n-1} with \tilde{X}_{n-1} , s.t., $\tilde{X}_{n-1} \stackrel{\mathcal{D}}{=} X_{n-1}$, but \tilde{X}_{n-1} is close to X_n

Coupling for contractive chains

- (C1) Chain is contractive on average: $\mathbb{E} \|\varphi_1(x) - \varphi_1(x')\|^2 \le b \|x - x'\|^2$, for some b < 1.
- (C2) Function f is Lipschitz: $|f(x) f(x')| \le \kappa ||x x'||$, for some $\kappa < \infty$.
- Now, set

$$X_n = (\varphi_n \circ \varphi_{n-1} \circ \cdots \circ \varphi_1)(x)$$

$$\tilde{X}_{n-1} = (\varphi_n \circ \varphi_{n-1} \circ \cdots \circ \varphi_2)(x)$$

Note: (X_n, \tilde{X}_{n-1}) can be recursively computed from $(X_{n-1}, \tilde{X}_{n-2})$. • Set $\Delta_n = f(X_n) - f(\tilde{X}_{n-1})$.

Dino S. (Gatsby)

September 19, 2014

Coupling for contractive chains (2)

$$\begin{split} \mathbb{E}\Delta_{n}^{2} &\leq \kappa^{2} \mathbb{E}\left\|X_{n} - \tilde{X}_{n-1}\right\|^{2} \\ &= \kappa^{2} \mathbb{E}\left\|\varphi_{n}\left(X_{n-1}\right) - \varphi_{n}\left(\tilde{X}_{n-2}\right)\right\|^{2} \\ &\leq \kappa^{2} b \mathbb{E}\left\|X_{n-1} - \tilde{X}_{n-2}\right\|^{2} \leq \cdots \\ &\leq \kappa^{2} b^{n-1} \mathbb{E}\left\|X_{1} - x\right\|^{2} \to 0 \end{split}$$

geometrically fast, so can match with appropriate distribution of T.

Dino S. (Gatsby)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > □
 September 19, 2014

Alternative coupling

$$\begin{array}{lll} X_1^* &=& \varphi_N(x) \\ X_2^* &=& (\varphi_N \circ \varphi_{N-1})(x) \\ X_n^* &=& (\varphi_N \circ \varphi_{N-1} \circ \cdots \circ \varphi_{N-n+1})(x) \end{array}$$

More complicated to implement as cannot recursively compute X_n^* from X_{n-1}^* . Computational effort quadratic in N. Also: different variance, since $\mathbb{E}\Delta_j\Delta_k \neq \mathbb{E}\Delta_j^*\Delta_k^*$.

15 / 18

イロト イポト イヨト イヨト 二日

Glivenko-Cantelli result

- Sometimes, not only interested in equilibrium expectation $\mathbb{E}f(X)$, but in the equilibrium distribution of f(X)
- How to estimate equilibrium cdf $F_{\infty}(y) = \mathbb{P}[f(X) \le y] = \mathbb{E}\mathbf{1}[f(X) \le y]$? Note that $\mathbf{1}[f(\cdot) \le y]$ is not Lipschitz.
- In the context of exact simulation: generate $X_1, \ldots, X_c \sim \pi$, and set $Y_j = f(X_j)$. The empirical distribution function is given by $F_m(y) = \frac{1}{m} \sum_{j=1}^m \mathbf{1} [Y_j \leq y]$.
- Glivenko-Cantelli theorem shows uniform convergence of $F_m(y)$ to F(y) if Y's are i.i.d.

$$\sup_{y}|F_m(y)-F_\infty(y)|\to 0, \qquad \text{a.s.}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Glivenko-Cantelli result

• The empirical (signed) measure induced by the debiasing scheme

$$\gamma_{m}(\cdot) = \frac{1}{m} \sum_{j=1}^{m} \left(\sum_{n=1}^{N_{j}} \frac{\delta_{Y_{n,j}}(\cdot) - \delta_{\tilde{Y}_{n-1,j}}(\cdot)}{\mathbb{P}[N \ge n]} \right),$$

and thereby empirical debiased distribution

$$F_m(y) = \frac{1}{m} \sum_{j=1}^m \left(\sum_{n=1}^{N_j} \frac{\mathbb{1}\left[Y_{n,j} \leq y\right] - \mathbb{1}\left[\tilde{Y}_{n-1,j} \leq y\right]}{\mathbb{P}\left[N \geq n\right]} \right)$$

• Glivenko-Cantelli theorem still holds: $\sup_{y} |F_m(y) - F_{\infty}(y)| \to 0$ a.s.

Dino S. (Gatsby)

September 19, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

•

- P. W. Glynn and C. Rhee, Exact Estimation for Markov Chain Equilibrium Expectations, 2014
- C. Rhee and P. W. Glynn, Unbiased Estimation with Square Root Convergence for SDE Models, 2013 arXiv:1207.2452
- Exact estimation can be easier than exact simulation
- No bias and controllable variance canonical convergence rate as a function of the computational budget
- Easy to handle work-variance tradeoff
- It can work under less restrictive conditions (π-irreducibility vs positive Harris recurrence in the Markov chain example)