Drawing is much nicer than algebra

May 24, 2019 (Tea Talk)

Proof without words - Definition

Wikipedia:

In mathematics, a proof without words is a proof of an identity or mathematical statement which can be demonstrated as self-evident by a diagram without any accompanying explanatory text. Such proofs can be considered more elegant than formal or mathematically rigorous due to their self-evident nature. When the diagram demonstrates a particular case of a general statement, to be a proof, it must be generalisable.

Sum of odd numbers is a perfect square

- Sum of odd numbers is a perfect square
- Pythagorean theorem

- Sum of odd numbers is a perfect square
- Pythagorean theorem
- Jensen's inequality

- Sum of odd numbers is a perfect square
- Pythagorean theorem
- Jensen's inequality

Wikipedia: When the diagram demonstrates a particular case of a general statement, to be a proof, it must be generalisable.

Proof without words - Several others

On Wikipedia, Category: Proof without words has a few more:

- Archimedes' inifinite geometric series
- Triangular number

Proof without words - Several others

On Wikipedia, Category: Proof without words has a few more:

- Archimedes' inifinite geometric series
- Triangular number

Proof without words - Several others

On Wikipedia, Category: Proof without words has a few more:

- Archimedes' inifinite geometric series
- Triangular number

• • • •

A diagram represent particular transitions between states and codes for probability amplitudes (\mathbb{C})

A diagram represent particular transitions between states and codes for probability amplitudes (\mathbb{C}) Easier than calculate integrals

A diagram represent particular transitions between states and codes for probability amplitudes (\mathbb{C}) Easier than calculate integrals

The rules for associating analytic expressions with pieces of diagrams are called the *Feynman rules*. In ϕ^4 theory the rules are:

- 3. For each external point, $x \bullet = 1;$
- 4. Divide by the symmetry factor.

A diagram represent particular transitions between states and codes for probability amplitudes (\mathbb{C}) Easier than calculate integrals

The rules for associating analytic expressions with pieces of diagrams are called the *Feynman rules*. In ϕ^4 theory the rules are:

3. For each external point, $x \bullet = 1;$

4. Divide by the symmetry factor.

A while ago, I blogged about a simple way to think about matrices, namely as bipartite graphs. Now I'd like to share yet another way to think about matrices: tensor network diagrams! Here, familiar things have nice pictures. New blog post! math3ma.com /blog/matrices-...

10:14 PM - 15 May 2019

A matrix $M : \mathbb{R}^n \to \mathbb{R}^m$ can be represented by

https://www.math3ma.com/blog/matrices-as-tensor-network-diagrams

Matrix Product States (quantum mechanics)

A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States

Roman Orus

(Submitted on 10 Jun 2013 (v1), last revised 10 Jun 2014 (this version, v3))

- Matrix Product States (quantum mechanics)
- TensorFlow library

google / TensorNetwork	O Watch ▼	11	★ Star	106	¥ Fork	18	
	O materi		A out		8.00		

Matrix Product States (quantum mechanics)

TensorFlow library

- Matrix Product States (quantum mechanics)
- TensorFlow library
- Penrose graphical notation or tensor diagram notation
 - Kronecker delta
 - Levi-Civita antisymmetric tensor
 - Determinant, inverses, · · ·

String/Wiring Diagrams

 Not just mapping between vector spaces, but any monoidal category

Examples of categories.

Examples of categories:							
Category's name:	its dejects:	its marphisms :					
Set	sets	functions					
Group	groups	group homomorphisms					
Top	topological spaces	continuous functions					
Vect _K	vector spaces over a field, k	linear transformations					
Meas	measurable spaces	measurable functions					
Poset	partially ordered sets	order-preserving functions					
Man	smooth manifolds	smooth Maps					
R	the real numbers	the (total) order, <					

String/Wiring Diagrams

- Not just mapping between vector spaces, but any monoidal category
- Seems to be quite useful in Category Theory

String/Wiring Diagrams

- Not just mapping between vector spaces, but any monoidal category
- Seems to be quite useful in Category Theory
- ► Actually, the whole idea of Algebra ↔ Geometry comes from Category Theory

