Drawing is much nicer than algebra

May 24, 2019
(Tea Talk)

Proof without words - Definition

Wikipedia:
In mathematics, a proof without words is a proof of an identity or mathematical statement which can be demonstrated as self-evident by a diagram without any accompanying explanatory text. Such proofs can be considered more elegant than formal or mathematically rigorous due to their self-evident nature. When the diagram demonstrates a particular case of a general statement, to be a proof, it must be generalisable.

Proof without words - Simple Examples

- Sum of odd numbers is a perfect square

Proof without words - Simple Examples

- Sum of odd numbers is a perfect square
- Pythagorean theorem

Proof without words - Simple Examples

- Sum of odd numbers is a perfect square
- Pythagorean theorem
- Jensen's inequality

Proof without words - Simple Examples

- Sum of odd numbers is a perfect square
- Pythagorean theorem
- Jensen's inequality

Wikipedia: When the diagram demonstrates a particular case of a general statement, to be a proof, it must be generalisable.

Proof without words - Several others

On Wikipedia, Category:Proof without words has a few more:

- Archimedes' inifinite geometric series
- Triangular number

Proof without words - Several others

On Wikipedia, Category: Proof without words has a few more:

- Archimedes' inifinite geometric series
- Triangular number

Proof without words - Several others

On Wikipedia, Category: Proof without words has a few more:

- Archimedes' inifinite geometric series
- Triangular number
- ...

Feynman Diagrams

A diagram represent particular transitions between states and codes for probability amplitudes (\mathbb{C})

Feynman Diagrams

A diagram represent particular transitions between states and codes for probability amplitudes (\mathbb{C}) Easier than calculate integrals

Feynman Diagrams

A diagram represent particular transitions between states and codes for probability amplitudes (\mathbb{C}) Easier than calculate integrals

The rules for associating analytic expressions with pieces of diagrams are called the Feynman rules. In ϕ^{4} theory the rules are:

1. For each propagator,
2. For each vertex,

3. For each external point,

4. Divide by the symmetry factor.

Feynman Diagrams

A diagram represent particular transitions between states and codes for probability amplitudes (\mathbb{C}) Easier than calculate integrals

The rules for associating analytic expressions with pieces of diagrams are called the Feynman rules. In ϕ^{4} theory the rules are:

1. For each propagator,
2. For each vertex,

3. For each external point,

4. Divide by the symmetry factor.

Tensor Network Diagrams

Following
A while ago, I blogged about a simple way to think about matrices, namely as bipartite graphs. Now l'd like to share yet another way to think about matrices: tensor network diagrams! Here, familiar things have nice pictures. New blog post! math3ma.com /blog/matrices- ...
matrix factorization

matrix multiplication

Tensor Network Diagrams

A matrix $M: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be represented by

Tensor Network Diagrams

M_{v} is $-0=-0$

Tensor Network Diagrams
a 3-tensor

Mv is is $-0-0=-0$
a 4-tensor

https://www.math3ma.com/blog/matrices-as-tensor-network-diagrams

Tensor Network Diagrams
a 3 -tensor
M_{V} is $-0-0=-0$

symmetric

not symmetric
a 4-tensor

\vdots

Tensor Network Diagrams
a 3-tensor
M_{V} is $-0-0=-0$

symmetric not symmetric
a 4-tensor

$$
\operatorname{tr}(M N P)=\operatorname{tr}(P M N)=\operatorname{tr}(N P M)
$$

Tensor Network Diagrams

- Matrix Product States (quantum mechanics)

A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States Roman Orus
(Submitted on 10 Jun 2013 (V1), last revised 10 Jun 2014 (this version, v3))

Tensor Network Diagrams

- Matrix Product States (quantum mechanics)
- TensorFlow library

Tensor Network Diagrams

- Matrix Product States (quantum mechanics)
- TensorFlow library

Tensor Network Diagrams

- Matrix Product States (quantum mechanics)
- TensorFlow library
- Penrose graphical notation or tensor diagram notation
- Kronecker delta
- Levi-Civita antisymmetric tensor
- Determinant, inverses, \cdots

String/Wiring Diagrams

- Not just mapping between vector spaces, but any monoidal category

Examples of categovies:		
Categon's name:	Its objects:	its merphisms
Set	sets	functions
Group	groups	group homomarphisms
Top	topological spaces	continuars functions
Vect ${ }_{\text {k }}$	vector spaces over a field, k	Inear transformations
Meas	measurable spaces	measurable functions
Poset	partially ordered sets	order-preserving functions
Man	Smooth manifilds	Smooth maps
\mathbb{R}	the real numbers	the (total) order, \leqslant

String/Wiring Diagrams

- Not just mapping between vector spaces, but any monoidal category
- Seems to be quite useful in Category Theory

String/Wiring Diagrams

- Not just mapping between vector spaces, but any monoidal category
- Seems to be quite useful in Category Theory
- Actually, the whole idea of Algebra \leftrightarrow Geometry comes from Category Theory

