Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations

Florian Tramèr¹ Jens Behrmann² Nicholas Carlini³ Nicolas Papernot ³ Jörn-Henrik Jacobsen ⁴

¹Stanford University ²University of Bremen ³Google Brain ⁴Vector Institute and University of Toronto

Tea talk - 13th February 2020

Adversarial Examples

Setting: classification for computer vision.

Definition

Malicious inputs (eg, designed by an adversary) that induces misclassification

Adversarial Examples

 classic adversarial examples, "sensitivity based": small perturbation (non semantic) of an input that results in different model prediction

this paper studies another kind of adversarial example, "invariance based": small perturbation (semantic change) of the input that does not change the model prediction.

Is it possible to be robust to both types? There seems to be a fundamental trade-off.

Definition

Adversarial training: The adversary abilities are constrained by bounding the size of the perturbation added to the original input (to leave the semantic of the input unchanged)

Formally, the perturbation lives in a l_p -ball where l_p is a norm:

•
$$l_p(x) = (\sum_{i=1}^n x_i^p)^{1/p}$$

- $\blacktriangleright I_{\infty}(x) = \max_{i=1,\dots,n} |x_i|$
- I₀(x): number of non zeros coordinates/pixels that differ (not a norm)

Problem : this remains a crude approximation for visual similarity

Example

(a): original image; (b): invariance-based example; (c): sensitivity-based example
(b) and (c) are perturbations of same l₂ norm

Also Co et al. (2018) show that a perturbation of size 16/255 in l_{∞} can suffice to give an image of a cat the appearance of a shower curtain print, which are both valid ImageNet classes.

Problems with current adversarial training

Their results: There seems to be a trade off between being robust to sensitivity-based examples and invariance-based examples.

They managed to break *adversarially-trained* (1) and *certifiably robust* (2) models with these invariance-based examples.

- ▶ (1): augmenting training data using adversarial examples
- ► (2) Zhang et al 2019 provide a model certified to have 87% test accuracy under l_∞ perturbations of norm e <= 0.4</p>

Intuition: distance-oracle misalignment

Definition

dist is aligned with the oracle \mathcal{O} if for any x st $\mathcal{O}(x) = y$, and any (x_1, x_2) st $\mathcal{O}(x_1) = y$ and $\mathcal{O}(x_2) \neq y$, we have $dist(x, x_1) < dist(x, x_2)$.

- (a): a point at distance ϵ^* in a chosen norm
- (b): a model robust to perturbations of norm
 ϵ < *ϵ*^{*} is still vulnerable to sensitivity-based attacks (*x*^{*})
- (c) : a model robust to perturbations of norm
 ϵ > *ϵ*^{*} has invariant-based adversarial examples (*x*^{*})

Study of MNIST

- Robust classification on MNIST is considered close to solved, with the existence of models highly robust to various *I_p*-bounded attacks
- This paper argues that it's far from being the case; and that this training harms the performance of the model against invariance-based attacks

Algorithm to generate Invariance-based examples

They introduce an algorithm to generate l_0 and l_{∞} bounded invariance-based examples:

Process for generating I_0 invariant adversarial examples.

(a) original image;

(b)/(c) the nearest training image (labeled as 3), before/after alignment; (d) the Δ perturbation between the original and aligned training example; (e) spectral clustering of Δ ;

(f-h) candidate invariance adversarial examples, selected by applying subsets of clusters of Δ to the original image. (f) is a failed attempt at an invariance adversarial example. (g) is successful, but introduces a larger perturbation than necessary (adding pixels to the bottom of the 3). (h) is successful and minimally perturbed.

Invariance-based examples

Slow process, but they managed to create successful examples of low-distortion ($I_0 = 25$ or $I_{\infty} = 0.3, 0.4$).

For evaluation, they use 100 generated IB examples and 50 hand-crafted ones.

They conduct a human-study (40 humans) to check if these examples are successful, ie if humans agree the label has been changed.

Results

Even models robust to small perturbations (I_{∞} below $\epsilon < 0.01$) have higher vulnerability to invariance-based attacks compared to original models (without adversarial training).

Agreement between model and humans, for successful invariance adversarial examples						
Model:1	Undefended	ℓ_0 Sparse	Binary-ABS	ABS	$\ell_\infty PGD$	$\ell_2 \mathbf{PGD}$
Clean	99%	99%	99%	99%	99%	99%
ℓ_0	80%	38%	47%	58%	56%*	27%*
$\ell_{\infty}, \varepsilon = 0.3$	33%	19%*	0%	14%	0%	5%*
$\ell_{\infty}, \varepsilon = 0.4$	51%	27%*	8%	18%	16%*	19%*

 $^{-1}$ ℓ_0 Sparse: (Bafna et al., 2018); ABS and Binary-ABS: (Schott et al., 2019); ℓ_{∞} PGD and ℓ_2 PGD: (Madry et al., 2017)

+ they break certifiably robust models, such as Zhang et al 2019 (the one guaranteed 87% accuracy for I_{∞} pert. of norm $\epsilon \leq 0.4$)

Conclusion

- The tradeoff between robustness to sensitivity based (SB) and invariant based (IB) examples is due to the distance misalignment (between the norm chosen and the perception)
- increasing robustnesss to SB decreases robustness to IB
- Discussion: they propose data augmentation (incorporate prior knowledge about invariance to features, or randomize over non-informative features)
- Code available to reproduce attacks