
A Case for using Trend Filtering over Splines

Aaditya Ramdas

ML Department and Statistics Department
Carnegie Mellon University

Joint work (+ borrowing slides) with Ryan Tibshirani

Nonparametric regression

Nonparametric regression: observe (x1, y1), . . . (xn, yn) ∈ Rp×R
from model

yi = f(xi) + εi, i = 1, . . . n

Errors εi have zero mean conditional on X = xi. Want to estimate

f(x) = E[Y |X = x]

Rich literature, lots of interesting work (mostly for p = 1). E.g.,

• Local polynomials

• Kernels

• Splines

• Wavelets

This talk: relative newcomer in nonparametric regression. Assume
p = 1 and x1, . . . xn are evenly spaced (for now)

Nonparametric regression

Nonparametric regression: observe (x1, y1), . . . (xn, yn) ∈ Rp×R
from model

yi = f(xi) + εi, i = 1, . . . n

Errors εi have zero mean conditional on X = xi. Want to estimate

f(x) = E[Y |X = x]

Rich literature, lots of interesting work (mostly for p = 1). E.g.,

• Local polynomials

• Kernels

• Splines

• Wavelets

This talk: relative newcomer in nonparametric regression. Assume
p = 1 and x1, . . . xn are evenly spaced (for now)

Nonparametric regression

Nonparametric regression: observe (x1, y1), . . . (xn, yn) ∈ Rp×R
from model

yi = f(xi) + εi, i = 1, . . . n

Errors εi have zero mean conditional on X = xi. Want to estimate

f(x) = E[Y |X = x]

Rich literature, lots of interesting work (mostly for p = 1).

E.g.,

• Local polynomials

• Kernels

• Splines

• Wavelets

This talk: relative newcomer in nonparametric regression. Assume
p = 1 and x1, . . . xn are evenly spaced (for now)

Nonparametric regression

Nonparametric regression: observe (x1, y1), . . . (xn, yn) ∈ Rp×R
from model

yi = f(xi) + εi, i = 1, . . . n

Errors εi have zero mean conditional on X = xi. Want to estimate

f(x) = E[Y |X = x]

Rich literature, lots of interesting work (mostly for p = 1). E.g.,

• Local polynomials

• Kernels

• Splines

• Wavelets

This talk: relative newcomer in nonparametric regression. Assume
p = 1 and x1, . . . xn are evenly spaced (for now)

Nonparametric regression

Nonparametric regression: observe (x1, y1), . . . (xn, yn) ∈ Rp×R
from model

yi = f(xi) + εi, i = 1, . . . n

Errors εi have zero mean conditional on X = xi. Want to estimate

f(x) = E[Y |X = x]

Rich literature, lots of interesting work (mostly for p = 1). E.g.,

• Local polynomials

• Kernels

• Splines

• Wavelets

This talk: relative newcomer in nonparametric regression. Assume
p = 1 and x1, . . . xn are evenly spaced (for now)

Constant-order trend filtering

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Setup: we make observations
y = (y1, . . . yn) ∈ Rn at suc-
cessive, equally spaced loca-
tions

We want to approximate y by
piecewise constant sequence,
in red

Given by solving 1-dimensional fused lasso problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ
n−1∑
i=1

|βi − βi+1|

(Also called 1-dimensional total variation denoising)

Constant-order trend filtering

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Setup: we make observations
y = (y1, . . . yn) ∈ Rn at suc-
cessive, equally spaced loca-
tions

We want to approximate y by
piecewise constant sequence,
in red

Given by solving 1-dimensional fused lasso problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ
n−1∑
i=1

|βi − βi+1|

(Also called 1-dimensional total variation denoising)

Constant-order trend filtering

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Setup: we make observations
y = (y1, . . . yn) ∈ Rn at suc-
cessive, equally spaced loca-
tions

We want to approximate y by
piecewise constant sequence,
in red

Given by solving 1-dimensional fused lasso problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ

n−1∑
i=1

|βi − βi+1|

(Also called 1-dimensional total variation denoising)

Constant-order trend filtering

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Setup: we make observations
y = (y1, . . . yn) ∈ Rn at suc-
cessive, equally spaced loca-
tions

We want to approximate y by
piecewise constant sequence,
in red

Given by solving 1-dimensional fused lasso problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ

n−1∑
i=1

|βi − βi+1|

(Also called 1-dimensional total variation denoising)

Linear trend filtering

●

●

●●
●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●
●
●
●

●
●
●

●

●

●
●
●●

●

●
●
●

●

●

●

●

●

●
●
●
●●

●●
●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●●●
●
●

●

●

●

●

●●
●
●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Same setup, but now we be-
lieve underlying trend is piece-
wise linear

(Or well-approximated by such
a function)

Solve linear trend filtering problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ
n−2∑
i=1

|βi − 2βi+1 + βi+2|

Note βi − 2βi+1 + βi+2 = 0 ⇔ βi+1 = (βi + βi+2)/2

Linear trend filtering

●

●

●●
●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●
●
●
●

●
●
●

●

●

●
●
●●

●

●
●
●

●

●

●

●

●

●
●
●
●●

●●
●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●●●
●
●

●

●

●

●

●●
●
●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Same setup, but now we be-
lieve underlying trend is piece-
wise linear

(Or well-approximated by such
a function)

Solve linear trend filtering problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ

n−2∑
i=1

|βi − 2βi+1 + βi+2|

Note βi − 2βi+1 + βi+2 = 0 ⇔ βi+1 = (βi + βi+2)/2

Linear trend filtering

●

●

●●
●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●
●
●
●

●
●
●

●

●

●
●
●●

●

●
●
●

●

●

●

●

●

●
●
●
●●

●●
●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●●●
●
●

●

●

●

●

●●
●
●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Same setup, but now we be-
lieve underlying trend is piece-
wise linear

(Or well-approximated by such
a function)

Solve linear trend filtering problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ

n−2∑
i=1

|βi − 2βi+1 + βi+2|

Note βi − 2βi+1 + βi+2 = 0 ⇔ βi+1 = (βi + βi+2)/2

Quadratic trend filtering

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●

●
●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Same setup, but now we be-
lieve underlying trend is piece-
wise quadratic

(Or well-approximated by such
a function)

Solve quadratic trend filtering problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ
n−3∑
i=1

|βi − 3βi+1 + 3βi+2 − βi+3|

(Where did this come from?)

Quadratic trend filtering

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●

●
●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Same setup, but now we be-
lieve underlying trend is piece-
wise quadratic

(Or well-approximated by such
a function)

Solve quadratic trend filtering problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ

n−3∑
i=1

|βi − 3βi+1 + 3βi+2 − βi+3|

(Where did this come from?)

Quadratic trend filtering

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●

●
●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

0 20 40 60 80 100

−
2

0
2

4
6

8
10

12

Same setup, but now we be-
lieve underlying trend is piece-
wise quadratic

(Or well-approximated by such
a function)

Solve quadratic trend filtering problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ

n−3∑
i=1

|βi − 3βi+1 + 3βi+2 − βi+3|

(Where did this come from?)

Why those penalty terms?

Write 1d fused lasso problem as

min
β∈Rn

1

2
‖y − β‖22 + λ‖D1β‖1

where D1 =

 −1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . .
0 0 0 . . . −1 1

 ∈ R(n−1)×n

Linear trend filtering replaces penalty by ‖D2β‖1, where

D2 =

 −1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0

. . .
0 0 0 . . . −1 2 −1

 ∈ R(n−2)×(n−1)

Why those penalty terms?

Write 1d fused lasso problem as

min
β∈Rn

1

2
‖y − β‖22 + λ‖D1β‖1

where D1 =

 −1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . .
0 0 0 . . . −1 1

 ∈ R(n−1)×n

Linear trend filtering replaces penalty by ‖D2β‖1, where

D2 =

 −1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0

. . .
0 0 0 . . . −1 2 −1

 ∈ R(n−2)×(n−1)

Important relationship: note

D2 = D
(n−1)
1︸ ︷︷ ︸

(n−2)×(n−1)

· D1︸︷︷︸
(n−1)×n

Using this recursion: for polynomial trend filtering of order k, the
penalty term is ‖Dk+1β‖1, where

Dk+1 = D
(n−k)
1︸ ︷︷ ︸

(n−k−1)×(n−k)

· Dk︸︷︷︸
(n−k)×n

∈ R(n−k−1)×n

This is discrete derivative operator of order k + 1, i.e., kth order
trend filtering penalizes discrete (k + 1)st derivatives

Important relationship: note

D2 = D
(n−1)
1︸ ︷︷ ︸

(n−2)×(n−1)

· D1︸︷︷︸
(n−1)×n

Using this recursion: for polynomial trend filtering of order k, the
penalty term is ‖Dk+1β‖1, where

Dk+1 = D
(n−k)
1︸ ︷︷ ︸

(n−k−1)×(n−k)

· Dk︸︷︷︸
(n−k)×n

∈ R(n−k−1)×n

This is discrete derivative operator of order k + 1, i.e., kth order
trend filtering penalizes discrete (k + 1)st derivatives

Important relationship: note

D2 = D
(n−1)
1︸ ︷︷ ︸

(n−2)×(n−1)

· D1︸︷︷︸
(n−1)×n

Using this recursion: for polynomial trend filtering of order k, the
penalty term is ‖Dk+1β‖1, where

Dk+1 = D
(n−k)
1︸ ︷︷ ︸

(n−k−1)×(n−k)

· Dk︸︷︷︸
(n−k)×n

∈ R(n−k−1)×n

This is discrete derivative operator of order k + 1, i.e., kth order
trend filtering penalizes discrete (k + 1)st derivatives

Uneven spacing

This recursion also reveals a way to deal with uneven spacing: if
y1, . . . yn are observed at x1 < . . . < xn, then we redefine

D1 =

− 1

x2−x1

1
x2−x1

0 . . . 0 0

0 − 1
x3−x2

1
x3−x2

. . . 0 0

. . .
0 0 0 . . . − 1

xn−xn−1

1
xn−xn−1

and carry forward recursion as before,

Dk+1 = D
(n−k)
1︸ ︷︷ ︸

(n−k−1)×(n−k)

· Dk︸︷︷︸
(n−k)×n

∈ R(n−k−1)×n, k = 1, 2, . . .

For the rest of this talk, assume even spacing for simplicity; results
can be extended to uneven case

Uneven spacing

This recursion also reveals a way to deal with uneven spacing: if
y1, . . . yn are observed at x1 < . . . < xn, then we redefine

D1 =

− 1

x2−x1

1
x2−x1

0 . . . 0 0

0 − 1
x3−x2

1
x3−x2

. . . 0 0

. . .
0 0 0 . . . − 1

xn−xn−1

1
xn−xn−1

and carry forward recursion as before,

Dk+1 = D
(n−k)
1︸ ︷︷ ︸

(n−k−1)×(n−k)

· Dk︸︷︷︸
(n−k)×n

∈ R(n−k−1)×n, k = 1, 2, . . .

For the rest of this talk, assume even spacing for simplicity; results
can be extended to uneven case

Uneven spacing

This recursion also reveals a way to deal with uneven spacing: if
y1, . . . yn are observed at x1 < . . . < xn, then we redefine

D1 =

− 1

x2−x1

1
x2−x1

0 . . . 0 0

0 − 1
x3−x2

1
x3−x2

. . . 0 0

. . .
0 0 0 . . . − 1

xn−xn−1

1
xn−xn−1

and carry forward recursion as before,

Dk+1 = D
(n−k)
1︸ ︷︷ ︸

(n−k−1)×(n−k)

· Dk︸︷︷︸
(n−k)×n

∈ R(n−k−1)×n, k = 1, 2, . . .

For the rest of this talk, assume even spacing for simplicity; results
can be extended to uneven case

Outline

• Theory

• Algorithms

• Neuroscience example

• Extensions

What do we know about trend filtering?

Not a whole lot so far!

• Idea and name attributed to Kim et al. (2009), but essentially
same idea appears earlier in Mammen and van de Geer (1997)

• Key property: trend filtering estimates can be viewed as
piecewise polynomials, where knots are chosen adaptively

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

0 20 40 60 80 100

0
2

4
6

8
10

12

• Adaptive selection of knots
comes from use of `1 penalty
‖Dβ‖1

• Smoothing splines are similar
but use an `2 penalty of form
βTΩβ

• Big difference: trend filtering
can achieve exact zeros in
(k + 1)st derivative, smoothing
splines cannot

What do we know about trend filtering?

Not a whole lot so far!

• Idea and name attributed to Kim et al. (2009), but essentially
same idea appears earlier in Mammen and van de Geer (1997)

• Key property: trend filtering estimates can be viewed as
piecewise polynomials, where knots are chosen adaptively

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

0 20 40 60 80 100

0
2

4
6

8
10

12

• Adaptive selection of knots
comes from use of `1 penalty
‖Dβ‖1

• Smoothing splines are similar
but use an `2 penalty of form
βTΩβ

• Big difference: trend filtering
can achieve exact zeros in
(k + 1)st derivative, smoothing
splines cannot

What do we know about trend filtering?

Not a whole lot so far!

• Idea and name attributed to Kim et al. (2009), but essentially
same idea appears earlier in Mammen and van de Geer (1997)

• Key property: trend filtering estimates can be viewed as
piecewise polynomials, where knots are chosen adaptively

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

0 20 40 60 80 100

0
2

4
6

8
10

12

• Adaptive selection of knots
comes from use of `1 penalty
‖Dβ‖1

• Smoothing splines are similar
but use an `2 penalty of form
βTΩβ

• Big difference: trend filtering
can achieve exact zeros in
(k + 1)st derivative, smoothing
splines cannot

What do we know about trend filtering?

Not a whole lot so far!

• Idea and name attributed to Kim et al. (2009), but essentially
same idea appears earlier in Mammen and van de Geer (1997)

• Key property: trend filtering estimates can be viewed as
piecewise polynomials, where knots are chosen adaptively

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

0 20 40 60 80 100

0
2

4
6

8
10

12

• Adaptive selection of knots
comes from use of `1 penalty
‖Dβ‖1

• Smoothing splines are similar
but use an `2 penalty of form
βTΩβ

• Big difference: trend filtering
can achieve exact zeros in
(k + 1)st derivative, smoothing
splines cannot

What do we know about trend filtering?

Not a whole lot so far!

• Idea and name attributed to Kim et al. (2009), but essentially
same idea appears earlier in Mammen and van de Geer (1997)

• Key property: trend filtering estimates can be viewed as
piecewise polynomials, where knots are chosen adaptively

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

0 20 40 60 80 100

0
2

4
6

8
10

12

• Adaptive selection of knots
comes from use of `1 penalty
‖Dβ‖1

• Smoothing splines are similar
but use an `2 penalty of form
βTΩβ

• Big difference: trend filtering
can achieve exact zeros in
(k + 1)st derivative, smoothing
splines cannot

What do we know about trend filtering?

Not a whole lot so far!

• Idea and name attributed to Kim et al. (2009), but essentially
same idea appears earlier in Mammen and van de Geer (1997)

• Key property: trend filtering estimates can be viewed as
piecewise polynomials, where knots are chosen adaptively

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

0 20 40 60 80 100

0
2

4
6

8
10

12

• Adaptive selection of knots
comes from use of `1 penalty
‖Dβ‖1

• Smoothing splines are similar
but use an `2 penalty of form
βTΩβ

• Big difference: trend filtering
can achieve exact zeros in
(k + 1)st derivative, smoothing
splines cannot

What do we know about trend filtering?

Not a whole lot so far!

• Idea and name attributed to Kim et al. (2009), but essentially
same idea appears earlier in Mammen and van de Geer (1997)

• Key property: trend filtering estimates can be viewed as
piecewise polynomials, where knots are chosen adaptively

●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

0 20 40 60 80 100

0
2

4
6

8
10

12

• Adaptive selection of knots
comes from use of `1 penalty
‖Dβ‖1

• Smoothing splines are similar
but use an `2 penalty of form
βTΩβ

• Big difference: trend filtering
can achieve exact zeros in
(k + 1)st derivative, smoothing
splines cannot

Cubic trend filtering Smoothing spline

0.0 0.2 0.4 0.6 0.8 1.0

0.
94

0.
96

0.
98

1.
00

1.
02

1.
04

1.
06

●

●●

●
●
●

●

●
●●

●
●
●

●

●

●
●

●●●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●
●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0
0.

94
0.

96
0.

98
1.

00
1.

02
1.

04
1.

06

●

●●

●
●
●

●

●
●●

●
●
●

●

●

●
●

●●●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●
●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

d̂f = 16 df = 16

Cubic trend filtering Smoothing spline

0.0 0.2 0.4 0.6 0.8 1.0

0.
94

0.
96

0.
98

1.
00

1.
02

1.
04

1.
06

●

●●

●
●
●

●

●
●●

●
●
●

●

●

●
●

●●●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●
●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0
0.

94
0.

96
0.

98
1.

00
1.

02
1.

04
1.

06

●

●●

●
●
●

●

●
●●

●
●
●

●

●

●
●

●●●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●
●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

d̂f = 16 df = 23

Asymptotic convergence rate

Recall: we observe (x1, y1), . . . (xn, yn) ∈ R× R from model

yi = f(xi) + εi, i = 1, . . . n

and assume x1, . . . xn evenly spaced (hence fixed, nonrandom)

Theorem (Mammen and van de Geer, 1997): Assume errors
εi, i = 1, . . . n are independent with sub-Gaussian tails, and f (k)

has bounded total variation. Then the trend filtering estimate of
order k with λ = Θ(n1/(2k+1)) satisfies

1√
n
‖β̂ − f‖2 = OP (n−k/(2k+1))

Trend filtering achieves the minimax rate of n−k/(2k+1) over
assumed problem class (Nemirovskii et al., 1985). This rate cannot
be achieved by estimates that are linear in observations, e.g.,
kernels and smoothing splines (Donoho and Johnstone, 1992)

Asymptotic convergence rate

Recall: we observe (x1, y1), . . . (xn, yn) ∈ R× R from model

yi = f(xi) + εi, i = 1, . . . n

and assume x1, . . . xn evenly spaced (hence fixed, nonrandom)

Theorem (Mammen and van de Geer, 1997): Assume errors
εi, i = 1, . . . n are independent with sub-Gaussian tails, and f (k)

has bounded total variation. Then the trend filtering estimate of
order k with λ = Θ(n1/(2k+1)) satisfies

1√
n
‖β̂ − f‖2 = OP (n−k/(2k+1))

Trend filtering achieves the minimax rate of n−k/(2k+1) over
assumed problem class (Nemirovskii et al., 1985). This rate cannot
be achieved by estimates that are linear in observations, e.g.,
kernels and smoothing splines (Donoho and Johnstone, 1992)

Asymptotic convergence rate

Recall: we observe (x1, y1), . . . (xn, yn) ∈ R× R from model

yi = f(xi) + εi, i = 1, . . . n

and assume x1, . . . xn evenly spaced (hence fixed, nonrandom)

Theorem (Mammen and van de Geer, 1997): Assume errors
εi, i = 1, . . . n are independent with sub-Gaussian tails, and f (k)

has bounded total variation. Then the trend filtering estimate of
order k with λ = Θ(n1/(2k+1)) satisfies

1√
n
‖β̂ − f‖2 = OP (n−k/(2k+1))

Trend filtering achieves the minimax rate of n−k/(2k+1) over
assumed problem class (Nemirovskii et al., 1985).

This rate cannot
be achieved by estimates that are linear in observations, e.g.,
kernels and smoothing splines (Donoho and Johnstone, 1992)

Asymptotic convergence rate

Recall: we observe (x1, y1), . . . (xn, yn) ∈ R× R from model

yi = f(xi) + εi, i = 1, . . . n

and assume x1, . . . xn evenly spaced (hence fixed, nonrandom)

Theorem (Mammen and van de Geer, 1997): Assume errors
εi, i = 1, . . . n are independent with sub-Gaussian tails, and f (k)

has bounded total variation. Then the trend filtering estimate of
order k with λ = Θ(n1/(2k+1)) satisfies

1√
n
‖β̂ − f‖2 = OP (n−k/(2k+1))

Trend filtering achieves the minimax rate of n−k/(2k+1) over
assumed problem class (Nemirovskii et al., 1985). This rate cannot
be achieved by estimates that are linear in observations, e.g.,
kernels and smoothing splines (Donoho and Johnstone, 1992)

How do we actually get solutions?
Trend filtering problem is generally much harder to solve than
other nonparametric regression problems (e.g., smoothing splines,
kernels, wavelets)

• Can apply many generic convex optimization techniques, but
performance is bad: discrete derivative operator D is very ill-
conditioned (note D = Dk, worse for larger k)

●

●

●

●

●

100 200 500 1000 2000 5000

1e
+

03
1e

+
05

1e
+

07
1e

+
09

1e
+

11

n

C
on

di
tio

n
nu

m
be

r

●

●

●

●

●

●

●

●

●

●

k=1
k=2
k=3

How do we actually get solutions?
Trend filtering problem is generally much harder to solve than
other nonparametric regression problems (e.g., smoothing splines,
kernels, wavelets)

• Can apply many generic convex optimization techniques, but
performance is bad: discrete derivative operator D is very ill-
conditioned (note D = Dk, worse for larger k)

●

●

●

●

●

100 200 500 1000 2000 5000

1e
+

03
1e

+
05

1e
+

07
1e

+
09

1e
+

11

n

C
on

di
tio

n
nu

m
be

r

●

●

●

●

●

●

●

●

●

●

k=1
k=2
k=3

How do we actually get solutions?
Trend filtering problem is generally much harder to solve than
other nonparametric regression problems (e.g., smoothing splines,
kernels, wavelets)

• Can apply many generic convex optimization techniques, but
performance is bad: discrete derivative operator D is very ill-
conditioned (note D = Dk, worse for larger k)

●

●

●

●

●

100 200 500 1000 2000 5000

1e
+

03
1e

+
05

1e
+

07
1e

+
09

1e
+

11

n

C
on

di
tio

n
nu

m
be

r

●

●

●

●

●

●

●

●

●

●

k=1
k=2
k=3

How do we actually get solutions?

• First order methods?

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●
●●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

0 100 200 300 400 500

0
2

4
6

8
10

12

5K iterations

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●
●●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

0 100 200 300 400 500

0
2

4
6

8
10

12

10K iterations

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●
●●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

0 100 200 300 400 500

0
2

4
6

8
10

12

20K iterations

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●
●●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

0 100 200 300 400 500

0
2

4
6

8
10

12

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
Lasso PG
Lasso APG

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
Dual PG
Dual APG

n = 1000, estimated solution after 20, 000 iterations.

How do we actually get solutions?

• First order methods?

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●
●●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

0 100 200 300 400 500

0
2

4
6

8
10

12

5K iterations

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●
●●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

0 100 200 300 400 500
0

2
4

6
8

10
12

10K iterations

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●
●●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

0 100 200 300 400 500

0
2

4
6

8
10

12

20K iterations

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●
●●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

0 100 200 300 400 500

0
2

4
6

8
10

12

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
Lasso PG
Lasso APG

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
Dual PG
Dual APG

n = 1000, estimated solution after 20, 000 iterations.

How do we actually get solutions?

• Let us try to solve this problem via ADMM (Alternating
Direction Method of Multipliers).

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
Coordinate descent
Standard ADMM

After 5000 iterations, still not good enough...

How do we actually get solutions?

• Let us try to solve this problem via ADMM (Alternating
Direction Method of Multipliers).

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
Coordinate descent
Standard ADMM

After 5000 iterations, still not good enough...

How do we actually get solutions?

• Let us try to solve this problem via ADMM (Alternating
Direction Method of Multipliers).

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
Coordinate descent
Standard ADMM

After 5000 iterations, still not good enough...

How do we actually get solutions?

• Let us try to solve this problem via ADMM (Alternating
Direction Method of Multipliers).

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
Coordinate descent
Standard ADMM

After 5000 iterations, still not good enough...

A Specialized ADMM

• Kim et al. (2009) propose specialized primal-dual interior
point method for linear trend filtering.

• This is the current state of the art - way better than first
order methods, coordinate descent, ADMM, etc.

• Our proposal: A Specialized ADMM.

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
PDIP
Special ADMM

After just twenty (yes, 20) iterations.

A Specialized ADMM

• Kim et al. (2009) propose specialized primal-dual interior
point method for linear trend filtering.

• This is the current state of the art - way better than first
order methods, coordinate descent, ADMM, etc.

• Our proposal: A Specialized ADMM.

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
PDIP
Special ADMM

After just twenty (yes, 20) iterations.

A Specialized ADMM

• Kim et al. (2009) propose specialized primal-dual interior
point method for linear trend filtering.

• This is the current state of the art - way better than first
order methods, coordinate descent, ADMM, etc.

• Our proposal: A Specialized ADMM.

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Exact
PDIP
Special ADMM

After just twenty (yes, 20) iterations.

A Specialized ADMM

Standard ADMM:

min
β∈Rn, α∈Rn−k−1

1

2
‖y − β‖22 + λ‖α‖1 subject to α = D(k+1)β.

Specialized ADMM:

min
β∈Rn, α∈Rn−k

1

2
‖y − β‖22 + λ‖D(1)α‖1 subject to α = D(k)β,

At every iteration:

β ←
(
I + ρ(D(k))TD(k)

)−1(
y + ρ(D(k))T (α+ u)

)
,

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

u← u+ α−D(k)β.

A Specialized ADMM

Standard ADMM:

min
β∈Rn, α∈Rn−k−1

1

2
‖y − β‖22 + λ‖α‖1 subject to α = D(k+1)β.

Specialized ADMM:

min
β∈Rn, α∈Rn−k

1

2
‖y − β‖22 + λ‖D(1)α‖1 subject to α = D(k)β,

At every iteration:

β ←
(
I + ρ(D(k))TD(k)

)−1(
y + ρ(D(k))T (α+ u)

)
,

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

u← u+ α−D(k)β.

A Specialized ADMM

Standard ADMM:

min
β∈Rn, α∈Rn−k−1

1

2
‖y − β‖22 + λ‖α‖1 subject to α = D(k+1)β.

Specialized ADMM:

min
β∈Rn, α∈Rn−k

1

2
‖y − β‖22 + λ‖D(1)α‖1 subject to α = D(k)β,

At every iteration:

β ←
(
I + ρ(D(k))TD(k)

)−1(
y + ρ(D(k))T (α+ u)

)
,

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

u← u+ α−D(k)β.

α-Update for Standard ADMM:

α← argmin
α∈Rn−k−1

1

2
‖α− (D(k+1)β − u)‖22 + λ/ρ‖α‖1,

This is just soft-thresholding the vector (D(k+1)β − u)!

α-Update for Specialized ADMM:

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

Solved exactly by Dynamic Programming in linear time!

0 50 100 150 200 250

5e
+

03
2e

+
04

5e
+

04
2e

+
05

5e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

1e
+

03
5e

+
03

2e
+

04
5e

+
04

2e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

50
0

10
00

20
00

50
00

10
00

0
20

00
0

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

Doppler function, k = 2, n = 10, 000, high, medium and low λ.

α-Update for Standard ADMM:

α← argmin
α∈Rn−k−1

1

2
‖α− (D(k+1)β − u)‖22 + λ/ρ‖α‖1,

This is just soft-thresholding the vector (D(k+1)β − u)!

α-Update for Specialized ADMM:

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

Solved exactly by Dynamic Programming in linear time!

0 50 100 150 200 250

5e
+

03
2e

+
04

5e
+

04
2e

+
05

5e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

1e
+

03
5e

+
03

2e
+

04
5e

+
04

2e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

50
0

10
00

20
00

50
00

10
00

0
20

00
0

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

Doppler function, k = 2, n = 10, 000, high, medium and low λ.

α-Update for Standard ADMM:

α← argmin
α∈Rn−k−1

1

2
‖α− (D(k+1)β − u)‖22 + λ/ρ‖α‖1,

This is just soft-thresholding the vector (D(k+1)β − u)!

α-Update for Specialized ADMM:

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

Solved exactly by Dynamic Programming in linear time!

0 50 100 150 200 250

5e
+

03
2e

+
04

5e
+

04
2e

+
05

5e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

1e
+

03
5e

+
03

2e
+

04
5e

+
04

2e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

50
0

10
00

20
00

50
00

10
00

0
20

00
0

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

Doppler function, k = 2, n = 10, 000, high, medium and low λ.

α-Update for Standard ADMM:

α← argmin
α∈Rn−k−1

1

2
‖α− (D(k+1)β − u)‖22 + λ/ρ‖α‖1,

This is just soft-thresholding the vector (D(k+1)β − u)!

α-Update for Specialized ADMM:

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

Solved exactly by Dynamic Programming in linear time!

0 50 100 150 200 250

5e
+

03
2e

+
04

5e
+

04
2e

+
05

5e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

1e
+

03
5e

+
03

2e
+

04
5e

+
04

2e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

50
0

10
00

20
00

50
00

10
00

0
20

00
0

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

Doppler function, k = 2, n = 10, 000, high, medium and low λ.

α-Update for Standard ADMM:

α← argmin
α∈Rn−k−1

1

2
‖α− (D(k+1)β − u)‖22 + λ/ρ‖α‖1,

This is just soft-thresholding the vector (D(k+1)β − u)!

α-Update for Specialized ADMM:

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

Solved exactly by Dynamic Programming in linear time!

0 50 100 150 200 250

5e
+

03
2e

+
04

5e
+

04
2e

+
05

5e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

1e
+

03
5e

+
03

2e
+

04
5e

+
04

2e
+

05

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

0 50 100 150 200 250

50
0

10
00

20
00

50
00

10
00

0
20

00
0

Iteration

C
rit

er
io

n

Standard ADMM
Special ADMM

Doppler function, k = 2, n = 10, 000, high, medium and low λ.

Specialized ADMM vs. Primal-Dual IP

0 20 40 60 80 100

80
0

10
00

12
00

14
00

16
00

20
00

Iteration

C
rit

er
io

n
ga

p
Primal−dual IP
Special ADMM

0 20 40 60 80 100

60
0

80
0

10
00

12
00

16
00

Iteration

C
rit

er
io

n
ga

p

Primal−dual IP
Special ADMM

0 20 40 60 80 100

42
.5

43
.0

43
.5

44
.0

Iteration

C
rit

er
io

n
ga

p

Primal−dual IP
Special ADMM

Sinusoidal function, k = 1, n = 10, 000, high, medium and low λ.

0 50 100 150 200

10
00

0
15

00
0

20
00

0
25

00
0

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200

50
00

10
00

0
15

00
0

20
00

0

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200

40
00

60
00

80
00

10
00

0
12

00
0

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

Sinusoidal function, k = 1, n = 100, 000, high, medium and low λ.

Specialized ADMM vs. Primal-Dual IP

0 20 40 60 80 100

80
0

10
00

12
00

14
00

16
00

20
00

Iteration

C
rit

er
io

n
ga

p
Primal−dual IP
Special ADMM

0 20 40 60 80 100

60
0

80
0

10
00

12
00

16
00

Iteration

C
rit

er
io

n
ga

p

Primal−dual IP
Special ADMM

0 20 40 60 80 100

42
.5

43
.0

43
.5

44
.0

Iteration

C
rit

er
io

n
ga

p

Primal−dual IP
Special ADMM

Sinusoidal function, k = 1, n = 10, 000, high, medium and low λ.

0 50 100 150 200

10
00

0
15

00
0

20
00

0
25

00
0

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200

50
00

10
00

0
15

00
0

20
00

0

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200
40

00
60

00
80

00
10

00
0

12
00

0

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

Sinusoidal function, k = 1, n = 100, 000, high, medium and low λ.

Specialized ADMM vs. Primal-Dual IP

0 50 100 150 200

5e
+

03
2e

+
04

5e
+

04
2e

+
05

5e
+

05

Iteration

C
rit

er
io

n
Primal−dual IP
Special ADMM

0 50 100 150 200

10
00

20
00

30
00

40
00

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200

50
0

10
00

15
00

20
00

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

Sinusoidal function, k = 2, n = 10, 000, high, medium and low λ.

0 50 100 150 200

1e
+

05
1e

+
07

1e
+

09
1e

+
11

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200

1e
+

04
1e

+
06

1e
+

08
1e

+
10

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200

50
00

10
00

0
20

00
0

50
00

0

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

Sinusoidal function, k = 2, n = 100, 000, high, medium and low λ.

Specialized ADMM vs. Primal-Dual IP

0 50 100 150 200

5e
+

03
2e

+
04

5e
+

04
2e

+
05

5e
+

05

Iteration

C
rit

er
io

n
Primal−dual IP
Special ADMM

0 50 100 150 200

10
00

20
00

30
00

40
00

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200

50
0

10
00

15
00

20
00

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

Sinusoidal function, k = 2, n = 10, 000, high, medium and low λ.

0 50 100 150 200

1e
+

05
1e

+
07

1e
+

09
1e

+
11

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200

1e
+

04
1e

+
06

1e
+

08
1e

+
10

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

0 50 100 150 200
50

00
10

00
0

20
00

0
50

00
0

Iteration

C
rit

er
io

n

Primal−dual IP
Special ADMM

Sinusoidal function, k = 2, n = 100, 000, high, medium and low λ.

An example with uneven points

0 20 40 60 80 100

1
2

3
4

5
6

Iteration number

C
rit

er
io

n
(s

ca
le

d)

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

x

E
st

im
at

e

0 20 40 60 80 100

5
10

15
20

Iteration number

C
rit

er
io

n
(s

ca
le

d)

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●
●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

● ●

−2 −1 0 1 2

−
2

−
1

0
1

x

E
st

im
at

e

Sinusoidal function, k = 2, n = 1000, evenly spaced (top) vs.
mixture of gaussians (bottom).

An example with uneven points

0 20 40 60 80 100

1
2

3
4

5
6

Iteration number

C
rit

er
io

n
(s

ca
le

d)

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

x

E
st

im
at

e

0 20 40 60 80 100

5
10

15
20

Iteration number

C
rit

er
io

n
(s

ca
le

d)

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●
●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

● ●

−2 −1 0 1 2

−
2

−
1

0
1

x

E
st

im
at

e

Sinusoidal function, k = 2, n = 1000, evenly spaced (top) vs.
mixture of gaussians (bottom).

Object recognition in the brain

Lateral occipital complex
(LOC): region of the oc-
cipital lobe believed to play
a role in object recognition

1

Question: how long does it take LOC to pick up differences
between objects?

Experimental data from Yang Xu, Ph.D. student in Machine
Learning at Carnegie Mellon University (advisor: Rob Kass)

1(From http://www.siemens.com/innovation/en/publikationen/

publications_pof/pof_spring_2007/functional_mr_imaging.htm)

http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2007/functional_mr_imaging.htm
http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2007/functional_mr_imaging.htm

Object recognition in the brain

Lateral occipital complex
(LOC): region of the oc-
cipital lobe believed to play
a role in object recognition

1

Question: how long does it take LOC to pick up differences
between objects?

Experimental data from Yang Xu, Ph.D. student in Machine
Learning at Carnegie Mellon University (advisor: Rob Kass)

1(From http://www.siemens.com/innovation/en/publikationen/

publications_pof/pof_spring_2007/functional_mr_imaging.htm)

http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2007/functional_mr_imaging.htm
http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2007/functional_mr_imaging.htm

Object recognition in the brain

Lateral occipital complex
(LOC): region of the oc-
cipital lobe believed to play
a role in object recognition

1

Question: how long does it take LOC to pick up differences
between objects?

Experimental data from Yang Xu, Ph.D. student in Machine
Learning at Carnegie Mellon University (advisor: Rob Kass)

1(From http://www.siemens.com/innovation/en/publikationen/

publications_pof/pof_spring_2007/functional_mr_imaging.htm)

http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2007/functional_mr_imaging.htm
http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2007/functional_mr_imaging.htm

Measuring tool: magnetoencephalography (MEG), high temporal
resolution

Simple setup:

• Show someone a face:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more faces)

• Show someone a house:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more houses)

Measuring tool: magnetoencephalography (MEG), high temporal
resolution

Simple setup:

• Show someone a face:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more faces)

• Show someone a house:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more houses)

Measuring tool: magnetoencephalography (MEG), high temporal
resolution

Simple setup:

• Show someone a face:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more faces)

• Show someone a house:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more houses)

Measuring tool: magnetoencephalography (MEG), high temporal
resolution

Simple setup:

• Show someone a face:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more faces)

• Show someone a house:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more houses)

Measuring tool: magnetoencephalography (MEG), high temporal
resolution

Simple setup:

• Show someone a face:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more faces)

• Show someone a house:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more houses)

Measuring tool: magnetoencephalography (MEG), high temporal
resolution

Simple setup:

• Show someone a face:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more faces)

• Show someone a house:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more houses)

Measuring tool: magnetoencephalography (MEG), high temporal
resolution

Simple setup:

• Show someone a face:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more faces)

• Show someone a house:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more houses)

Measuring tool: magnetoencephalography (MEG), high temporal
resolution

Simple setup:

• Show someone a face:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more faces)

• Show someone a house:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more houses)

Question: at what timepoint does the LOC start to process faces
and houses differently?

Data processing:

• MEG recordings are actually made at multiple spatial
locations across LOC

• Hence at each time point t, we have two arrays

Fij(t) and Hij(t)

with i indexing pictures, j indexing locations

• As a distance measure at t, we compute the sample
Mahalanobis distance

∆t = dMahalanobis

(
F (t), H(t)

)
(Just choosing one as reference distribution)

Question: at what timepoint does the LOC start to process faces
and houses differently?

Data processing:

• MEG recordings are actually made at multiple spatial
locations across LOC

• Hence at each time point t, we have two arrays

Fij(t) and Hij(t)

with i indexing pictures, j indexing locations

• As a distance measure at t, we compute the sample
Mahalanobis distance

∆t = dMahalanobis

(
F (t), H(t)

)
(Just choosing one as reference distribution)

Question: at what timepoint does the LOC start to process faces
and houses differently?

Data processing:

• MEG recordings are actually made at multiple spatial
locations across LOC

• Hence at each time point t, we have two arrays

Fij(t) and Hij(t)

with i indexing pictures, j indexing locations

• As a distance measure at t, we compute the sample
Mahalanobis distance

∆t = dMahalanobis

(
F (t), H(t)

)
(Just choosing one as reference distribution)

Question: at what timepoint does the LOC start to process faces
and houses differently?

Data processing:

• MEG recordings are actually made at multiple spatial
locations across LOC

• Hence at each time point t, we have two arrays

Fij(t) and Hij(t)

with i indexing pictures, j indexing locations

• As a distance measure at t, we compute the sample
Mahalanobis distance

∆t = dMahalanobis

(
F (t), H(t)

)
(Just choosing one as reference distribution)

Question: at what timepoint does the LOC start to process faces
and houses differently?

Data processing:

• MEG recordings are actually made at multiple spatial
locations across LOC

• Hence at each time point t, we have two arrays

Fij(t) and Hij(t)

with i indexing pictures, j indexing locations

• As a distance measure at t, we compute the sample
Mahalanobis distance

∆t = dMahalanobis

(
F (t), H(t)

)
(Just choosing one as reference distribution)

●
●

●
●●

●●
●●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●●

●●

●●

●●
●

●●

●
●

●

●
●

●

●

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

time

di
st

Could fit trend filtering or smoothing spline, but these methods
would never zero out a region

Cubic trend filtering Smoothing spline

●
●

●
●●

●●
●●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●●

●●

●●

●●
●

●●

●
●

●

●
●

●

●

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

time

di
st

●
●

●
●●

●●
●●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●●

●●

●●

●●
●

●●

●
●

●

●
●

●

●

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

time

di
st

(Both with 13 degrees of freedom)

Could fit trend filtering or smoothing spline, but these methods
would never zero out a region

Cubic trend filtering Smoothing spline

●
●

●
●●

●●
●●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●●

●●

●●

●●
●

●●

●
●

●

●
●

●

●

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

time

di
st

●
●

●
●●

●●
●●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●●

●●

●●

●●
●

●●

●
●

●

●
●

●

●

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

time

di
st

(Both with 13 degrees of freedom)

Sparse trend filtering

Sparse trend filtering: additionally penalize the magnitude of the
coefficients directly, i.e., solve

min
β∈Rn

1

2

n∑
i=1

(yi−βi)2+λ
n−k−1∑
i=1

∣∣∣∣∣
i+k+1∑
j=i

(−1)j−i
(
k + 1

j − i

)
βj

∣∣∣∣∣+λγ
n∑
i=1

|βi|

or

min
β∈Rn

1

2
‖y − β‖22 + λ‖Dk+1β‖1 + λγ‖β‖

Now we have two tuning parameters: λ and γ

Sparse trend filtering

Sparse trend filtering: additionally penalize the magnitude of the
coefficients directly, i.e., solve

min
β∈Rn

1

2

n∑
i=1

(yi−βi)2+λ
n−k−1∑
i=1

∣∣∣∣∣
i+k+1∑
j=i

(−1)j−i
(
k + 1

j − i

)
βj

∣∣∣∣∣+λγ
n∑
i=1

|βi|

or

min
β∈Rn

1

2
‖y − β‖22 + λ‖Dk+1β‖1 + λγ‖β‖

Now we have two tuning parameters: λ and γ

Sparse trend filtering

Sparse trend filtering: additionally penalize the magnitude of the
coefficients directly, i.e., solve

min
β∈Rn

1

2

n∑
i=1

(yi−βi)2+λ
n−k−1∑
i=1

∣∣∣∣∣
i+k+1∑
j=i

(−1)j−i
(
k + 1

j − i

)
βj

∣∣∣∣∣+λγ
n∑
i=1

|βi|

or

min
β∈Rn

1

2
‖y − β‖22 + λ‖Dk+1β‖1 + λγ‖β‖

Now we have two tuning parameters: λ and γ

Sparse trend filtering

Sparse trend filtering: additionally penalize the magnitude of the
coefficients directly, i.e., solve

min
β∈Rn

1

2

n∑
i=1

(yi−βi)2+λ
n−k−1∑
i=1

∣∣∣∣∣
i+k+1∑
j=i

(−1)j−i
(
k + 1

j − i

)
βj

∣∣∣∣∣+λγ
n∑
i=1

|βi|

or

min
β∈Rn

1

2
‖y − β‖22 + λ‖Dk+1β‖1 + λγ‖β‖

Now we have two tuning parameters: λ and γ

●
●

●
●●

●●
●●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●●

●●

●●

●●
●

●●

●
●

●

●
●

●

●

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

time

di
st

●
●

●
●●

●●
●●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●●

●●

●●

●●
●

●●

●
●

●

●
●

●

●

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

time

di
st

Leaves zero at t = 14, i.e. ≈ 70 ms, consistent with literature

Other Extensions - Easy to Derive

Key advantage of our ADMM over PDIP - easy to extend!

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●
●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●
●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

0 100 200 300 400 500

−
2

−
1

0
1

2 Regular
Sparse

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

●●
●

●

●

Regular
Outlier adjusted

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

0 100 200 300 400 500

−
1

0
1

2
3

4

Regular
Isotonic

Sparsity (left), Outlier detection (middle), isotonic (right).

Other Extensions - Easy to Derive

Key advantage of our ADMM over PDIP - easy to extend!

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●
●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●
●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

0 100 200 300 400 500

−
2

−
1

0
1

2 Regular
Sparse

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

●●
●

●

●

Regular
Outlier adjusted

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

0 100 200 300 400 500

−
1

0
1

2
3

4

Regular
Isotonic

Sparsity (left), Outlier detection (middle), isotonic (right).

Summary

Trend Filtering is a new and competitive alternative to splines.

• Minimax optimal, if you believe underlying function (or its
derivatives) have bounded total variation (is piecewise
constant/linear/...).

• Computationally efficient and numerically robust schemes are
now available for large problems.

• Experiments on real and simulated data are very promising.

• Extensions are really easy!

People should try it out and develop their own opinions (see
function trendfilter, in R package genlasso).

Summary

Trend Filtering is a new and competitive alternative to splines.

• Minimax optimal, if you believe underlying function (or its
derivatives) have bounded total variation (is piecewise
constant/linear/...).

• Computationally efficient and numerically robust schemes are
now available for large problems.

• Experiments on real and simulated data are very promising.

• Extensions are really easy!

People should try it out and develop their own opinions (see
function trendfilter, in R package genlasso).

Summary

Trend Filtering is a new and competitive alternative to splines.

• Minimax optimal, if you believe underlying function (or its
derivatives) have bounded total variation (is piecewise
constant/linear/...).

• Computationally efficient and numerically robust schemes are
now available for large problems.

• Experiments on real and simulated data are very promising.

• Extensions are really easy!

People should try it out and develop their own opinions (see
function trendfilter, in R package genlasso).

Acknowledgements

Ryan Tibshirani (CMU)

Thank you for listening

