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Nonparametric regression

Nonparametric regression: observe (x1, y1), . . . (xn, yn) ∈ Rp×R
from model

yi = f(xi) + εi, i = 1, . . . n

Errors εi have zero mean conditional on X = xi. Want to estimate

f(x) = E[Y |X = x]

Rich literature, lots of interesting work (mostly for p = 1). E.g.,

• Local polynomials

• Kernels

• Splines

• Wavelets

This talk: relative newcomer in nonparametric regression. Assume
p = 1 and x1, . . . xn are evenly spaced (for now)
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Constant-order trend filtering
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Setup: we make observations
y = (y1, . . . yn) ∈ Rn at suc-
cessive, equally spaced loca-
tions

We want to approximate y by
piecewise constant sequence,
in red

Given by solving 1-dimensional fused lasso problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ
n−1∑
i=1

|βi − βi+1|

(Also called 1-dimensional total variation denoising)
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Linear trend filtering
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Same setup, but now we be-
lieve underlying trend is piece-
wise linear

(Or well-approximated by such
a function)

Solve linear trend filtering problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ
n−2∑
i=1

|βi − 2βi+1 + βi+2|

Note βi − 2βi+1 + βi+2 = 0 ⇔ βi+1 = (βi + βi+2)/2
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Quadratic trend filtering
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Same setup, but now we be-
lieve underlying trend is piece-
wise quadratic

(Or well-approximated by such
a function)

Solve quadratic trend filtering problem

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ
n−3∑
i=1

|βi − 3βi+1 + 3βi+2 − βi+3|

(Where did this come from?)
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Quadratic trend filtering
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Why those penalty terms?

Write 1d fused lasso problem as

min
β∈Rn

1

2
‖y − β‖22 + λ‖D1β‖1

where D1 =

 −1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . .
0 0 0 . . . −1 1

 ∈ R(n−1)×n

Linear trend filtering replaces penalty by ‖D2β‖1, where

D2 =

 −1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0

. . .
0 0 0 . . . −1 2 −1

 ∈ R(n−2)×(n−1)
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Important relationship: note

D2 = D
(n−1)
1︸ ︷︷ ︸

(n−2)×(n−1)

· D1︸︷︷︸
(n−1)×n

Using this recursion: for polynomial trend filtering of order k, the
penalty term is ‖Dk+1β‖1, where

Dk+1 = D
(n−k)
1︸ ︷︷ ︸

(n−k−1)×(n−k)

· Dk︸︷︷︸
(n−k)×n

∈ R(n−k−1)×n

This is discrete derivative operator of order k + 1, i.e., kth order
trend filtering penalizes discrete (k + 1)st derivatives
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Uneven spacing

This recursion also reveals a way to deal with uneven spacing: if
y1, . . . yn are observed at x1 < . . . < xn, then we redefine

D1 =


− 1

x2−x1

1
x2−x1

0 . . . 0 0

0 − 1
x3−x2

1
x3−x2

. . . 0 0

. . .
0 0 0 . . . − 1

xn−xn−1

1
xn−xn−1



and carry forward recursion as before,

Dk+1 = D
(n−k)
1︸ ︷︷ ︸

(n−k−1)×(n−k)

· Dk︸︷︷︸
(n−k)×n

∈ R(n−k−1)×n, k = 1, 2, . . .

For the rest of this talk, assume even spacing for simplicity; results
can be extended to uneven case
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Outline

• Theory

• Algorithms

• Neuroscience example

• Extensions



What do we know about trend filtering?

Not a whole lot so far!

• Idea and name attributed to Kim et al. (2009), but essentially
same idea appears earlier in Mammen and van de Geer (1997)

• Key property: trend filtering estimates can be viewed as
piecewise polynomials, where knots are chosen adaptively
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• Adaptive selection of knots
comes from use of `1 penalty
‖Dβ‖1

• Smoothing splines are similar
but use an `2 penalty of form
βTΩβ

• Big difference: trend filtering
can achieve exact zeros in
(k + 1)st derivative, smoothing
splines cannot
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Cubic trend filtering Smoothing spline
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Asymptotic convergence rate

Recall: we observe (x1, y1), . . . (xn, yn) ∈ R× R from model

yi = f(xi) + εi, i = 1, . . . n

and assume x1, . . . xn evenly spaced (hence fixed, nonrandom)

Theorem (Mammen and van de Geer, 1997): Assume errors
εi, i = 1, . . . n are independent with sub-Gaussian tails, and f (k)

has bounded total variation. Then the trend filtering estimate of
order k with λ = Θ(n1/(2k+1)) satisfies

1√
n
‖β̂ − f‖2 = OP (n−k/(2k+1))

Trend filtering achieves the minimax rate of n−k/(2k+1) over
assumed problem class (Nemirovskii et al., 1985). This rate cannot
be achieved by estimates that are linear in observations, e.g.,
kernels and smoothing splines (Donoho and Johnstone, 1992)
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How do we actually get solutions?
Trend filtering problem is generally much harder to solve than
other nonparametric regression problems (e.g., smoothing splines,
kernels, wavelets)

• Can apply many generic convex optimization techniques, but
performance is bad: discrete derivative operator D is very ill-
conditioned (note D = Dk, worse for larger k)
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How do we actually get solutions?

• First order methods?
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How do we actually get solutions?

• First order methods?
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n = 1000, estimated solution after 20, 000 iterations.



How do we actually get solutions?

• Let us try to solve this problem via ADMM (Alternating
Direction Method of Multipliers).
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How do we actually get solutions?

• Let us try to solve this problem via ADMM (Alternating
Direction Method of Multipliers).
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After 5000 iterations, still not good enough...



How do we actually get solutions?

• Let us try to solve this problem via ADMM (Alternating
Direction Method of Multipliers).
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How do we actually get solutions?

• Let us try to solve this problem via ADMM (Alternating
Direction Method of Multipliers).
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A Specialized ADMM

• Kim et al. (2009) propose specialized primal-dual interior
point method for linear trend filtering.

• This is the current state of the art - way better than first
order methods, coordinate descent, ADMM, etc.

• Our proposal: A Specialized ADMM.
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A Specialized ADMM

• Kim et al. (2009) propose specialized primal-dual interior
point method for linear trend filtering.

• This is the current state of the art - way better than first
order methods, coordinate descent, ADMM, etc.

• Our proposal: A Specialized ADMM.
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A Specialized ADMM

• Kim et al. (2009) propose specialized primal-dual interior
point method for linear trend filtering.

• This is the current state of the art - way better than first
order methods, coordinate descent, ADMM, etc.

• Our proposal: A Specialized ADMM.
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A Specialized ADMM

Standard ADMM:

min
β∈Rn, α∈Rn−k−1

1

2
‖y − β‖22 + λ‖α‖1 subject to α = D(k+1)β.

Specialized ADMM:

min
β∈Rn, α∈Rn−k

1

2
‖y − β‖22 + λ‖D(1)α‖1 subject to α = D(k)β,

At every iteration:

β ←
(
I + ρ(D(k))TD(k)

)−1(
y + ρ(D(k))T (α+ u)

)
,

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

u← u+ α−D(k)β.



A Specialized ADMM

Standard ADMM:

min
β∈Rn, α∈Rn−k−1

1

2
‖y − β‖22 + λ‖α‖1 subject to α = D(k+1)β.

Specialized ADMM:

min
β∈Rn, α∈Rn−k

1

2
‖y − β‖22 + λ‖D(1)α‖1 subject to α = D(k)β,

At every iteration:

β ←
(
I + ρ(D(k))TD(k)

)−1(
y + ρ(D(k))T (α+ u)

)
,

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

u← u+ α−D(k)β.



A Specialized ADMM

Standard ADMM:

min
β∈Rn, α∈Rn−k−1

1

2
‖y − β‖22 + λ‖α‖1 subject to α = D(k+1)β.

Specialized ADMM:

min
β∈Rn, α∈Rn−k

1

2
‖y − β‖22 + λ‖D(1)α‖1 subject to α = D(k)β,

At every iteration:

β ←
(
I + ρ(D(k))TD(k)

)−1(
y + ρ(D(k))T (α+ u)

)
,

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

u← u+ α−D(k)β.



α-Update for Standard ADMM:

α← argmin
α∈Rn−k−1

1

2
‖α− (D(k+1)β − u)‖22 + λ/ρ‖α‖1,

This is just soft-thresholding the vector (D(k+1)β − u)!

α-Update for Specialized ADMM:

α← argmin
α∈Rn−k

1

2
‖α− (D(k)β − u)‖22 + λ/ρ‖D(1)α‖1,

Solved exactly by Dynamic Programming in linear time!
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α-Update for Standard ADMM:

α← argmin
α∈Rn−k−1

1

2
‖α− (D(k+1)β − u)‖22 + λ/ρ‖α‖1,

This is just soft-thresholding the vector (D(k+1)β − u)!
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Specialized ADMM vs. Primal-Dual IP
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An example with uneven points
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Sinusoidal function, k = 2, n = 1000, evenly spaced (top) vs.
mixture of gaussians (bottom).



An example with uneven points
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Sinusoidal function, k = 2, n = 1000, evenly spaced (top) vs.
mixture of gaussians (bottom).



Object recognition in the brain

Lateral occipital complex
(LOC): region of the oc-
cipital lobe believed to play
a role in object recognition

1

Question: how long does it take LOC to pick up differences
between objects?

Experimental data from Yang Xu, Ph.D. student in Machine
Learning at Carnegie Mellon University (advisor: Rob Kass)

1(From http://www.siemens.com/innovation/en/publikationen/

publications_pof/pof_spring_2007/functional_mr_imaging.htm)

http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2007/functional_mr_imaging.htm
http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2007/functional_mr_imaging.htm
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Measuring tool: magnetoencephalography (MEG), high temporal
resolution

Simple setup:

• Show someone a face:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more faces)

• Show someone a house:

• Record activity (magnetic
responses) using MEG
over 300 ms window

• Do this 191 more times
(191 more houses)
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Question: at what timepoint does the LOC start to process faces
and houses differently?

Data processing:

• MEG recordings are actually made at multiple spatial
locations across LOC

• Hence at each time point t, we have two arrays

Fij(t) and Hij(t)

with i indexing pictures, j indexing locations

• As a distance measure at t, we compute the sample
Mahalanobis distance

∆t = dMahalanobis

(
F (t), H(t)

)
(Just choosing one as reference distribution)
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Could fit trend filtering or smoothing spline, but these methods
would never zero out a region

Cubic trend filtering Smoothing spline
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(Both with 13 degrees of freedom)



Could fit trend filtering or smoothing spline, but these methods
would never zero out a region
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Sparse trend filtering

Sparse trend filtering: additionally penalize the magnitude of the
coefficients directly, i.e., solve

min
β∈Rn

1

2

n∑
i=1

(yi−βi)2+λ
n−k−1∑
i=1

∣∣∣∣∣
i+k+1∑
j=i

(−1)j−i
(
k + 1

j − i

)
βj

∣∣∣∣∣+λγ
n∑
i=1

|βi|

or

min
β∈Rn

1

2
‖y − β‖22 + λ‖Dk+1β‖1 + λγ‖β‖

Now we have two tuning parameters: λ and γ
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Leaves zero at t = 14, i.e. ≈ 70 ms, consistent with literature



Other Extensions - Easy to Derive

Key advantage of our ADMM over PDIP - easy to extend!
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Other Extensions - Easy to Derive

Key advantage of our ADMM over PDIP - easy to extend!
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Summary

Trend Filtering is a new and competitive alternative to splines.

• Minimax optimal, if you believe underlying function (or its
derivatives) have bounded total variation (is piecewise
constant/linear/...).

• Computationally efficient and numerically robust schemes are
now available for large problems.

• Experiments on real and simulated data are very promising.

• Extensions are really easy!

People should try it out and develop their own opinions (see
function trendfilter, in R package genlasso).
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