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What are Wavelets?

Localised “signals” in space which, under translation and scaling, span
L2(R).

A Mother Wavelet is a ψ ∈ L2(R) with the property that the set:{
ψjk(x) := 2j/2ψ(2jx− k)| j, k ∈ Z

}
constitutes an orthonormal basis of L2(R).
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But we have L2(R) bases?!

Wavelet coefficients easy to compute! (Multi-Resolution
Analysis=MRA)

Wavelet representations make “time-frequency” precision trade off
(uncertainty principle)

Wavelet bases can be made-to-order: different properties. . .
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Quick description of Wavelet Transforms - via
Multi-Resolution Analysis

Think of nested subspaces:

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R)

Let V0 be spanned by integer translations of ϕ:

span{ϕ0k(x) := ϕ(x− k)|k ∈ Z} = V0.

Let V1 be the subspace spanned by integer translations of ϕ(2x):

span{ϕ1k(x) :=
√

2ϕ(2x− k)|k ∈ Z} = V1.
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Nesting requirement: find h & ϕ such that:

ϕ(x) =
∑
n∈Z

h(n)
√

2ϕ(2x− n)

Multi-Resolution Analysis Equation

For a given set h(n),

existence of ϕ?

uniqueness?

Alex (Gatsby) Wavelets March 19, 2019 5 / 15



Nesting requirement: find h & ϕ such that:

ϕ(x) =
∑
n∈Z

h(n)
√

2ϕ(2x− n)

Multi-Resolution Analysis Equation

For a given set h(n),

existence of ϕ?

uniqueness?

Alex (Gatsby) Wavelets March 19, 2019 5 / 15



Nesting requirement: find h & ϕ such that:

ϕ(x) =
∑
n∈Z

h(n)
√

2ϕ(2x− n)

Multi-Resolution Analysis Equation

For a given set h(n),

existence of ϕ?

uniqueness?

Alex (Gatsby) Wavelets March 19, 2019 5 / 15



Nesting requirement: find h & ϕ such that:

ϕ(x) =
∑
n∈Z

h(n)
√

2ϕ(2x− n)

Multi-Resolution Analysis Equation

For a given set h(n),

existence of ϕ?

uniqueness?

Alex (Gatsby) Wavelets March 19, 2019 5 / 15



Let W0 be ‘all functions in V1 but not in V0’ (orthogonal complement
of V0 w.r.t V1)

Suppose ψ is in W0:

It’s in V1 ⇒ ψ(x) =
∑
n

g(n)
√

2ϕ(2x− n), n ∈ Z (1)

ψ is our mother wavelet! It’s a ‘characteristic’ function in the
orthogonal complement.
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Two equations, two filters:

Multi. Res. equation: ϕ(x) =
∑
n

h(n)
√

2ϕ(2x− n)

Wavelet equation: ψ(x) =
∑
n

g(n)
√

2ϕ(2x− n)

Most theory deals with special case of:

finite number of non-zero h(n),

Orthonormal in V0: 〈ϕ0, ϕk〉L2 = δk

Orthonormal between V0 & W0: 〈ψ0, ϕk〉L2 = δk

g(n) = (−1)nh(N − 1− n)
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Wavelet Transforms

So given our hierarchy of embedded functions spaces:

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R)

Start with a lowest resolution: ϕ ∈ V0,

Can construct f(x):

f(x) =
N∑
k

cj0(k)2j0/2φ(2j0x− k) +
N∑
k

∞∑
j=j0

dj(k)2j/2ψ(2jx− k)
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Coefficients from orthogonality:

〈f(x), ϕ(x−m)〉 = : c0(m)

=〈f(x),
∑
z∈Z

h(z)
√

2ϕ(2x− 2m− z)〉

let n = 2m+ z :

=
∑
n∈Z

h(n− 2m)〈f(x), ϕ1,n〉

c0(m) =
∑
n

h(n− 2m)c1(n)

So we can iteratively obtain lower resolution coefficients. . .
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Convolve & Cascade

y0(n) =cjmax(n) ∗ h(−n)

=
∑
m

h(m− n)cjmax(m)
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Time-Frequency trade-off

27

Time

Fr
eq

DISCRETE FOURIER TRANSFORM

src: http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/EE523 files/Wavelet Charts.pdf
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src: Statistical modeling by wavelets, Brani Vidakovic, Wiley & Sons, 1999
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Uncertainty Principle

“Area of time-frequency tile is bounded from below. . . ”

Wavelets naturally trade this off: different levels different Time resi
freq res . . .
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Wavelet theory well developed, includes. . .

Parameterised ways to “generate” wavelet bases with desired
smoothness / orthogonality / fractal structure (see Daubechies
wavelets. . . )

Discrete & continuous transforms. . .

Since wavelets are scaling+translation nonlinear functions. . .
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