Wavelets

What are Wavelets?

Localised "signals" in space which, under translation and scaling, span $\mathbb{L}_{2}(\mathbb{R})$.

What are Wavelets?

Localised "signals" in space which, under translation and scaling, span $\mathbb{L}_{2}(\mathbb{R})$.

A Mother Wavelet is a $\psi \in \mathbb{L}_{2}(\mathbb{R})$ with the property that the set:

$$
\left\{\psi_{j k}(x):=2^{j / 2} \psi\left(2^{j} x-k\right) \mid j, k \in \mathbb{Z}\right\}
$$

constitutes an orthonormal basis of $\mathbb{L}_{2}(\mathbb{R})$.

But we have $\mathbb{L}_{2}(\mathbb{R})$ bases?!

But we have $\mathbb{L}_{2}(\mathbb{R})$ bases?!

- Wavelet coefficients easy to compute! (Multi-Resolution Analysis=MRA)

But we have $\mathbb{L}_{2}(\mathbb{R})$ bases?!

- Wavelet coefficients easy to compute! (Multi-Resolution Analysis=MRA)
- Wavelet representations make "time-frequency" precision trade off (uncertainty principle)

But we have $\mathbb{L}_{2}(\mathbb{R})$ bases?!

- Wavelet coefficients easy to compute! (Multi-Resolution Analysis=MRA)
- Wavelet representations make "time-frequency" precision trade off (uncertainty principle)
- Wavelet bases can be made-to-order: different properties. . .

But we have $\mathbb{L}_{2}(\mathbb{R})$ bases?!

- Wavelet coefficients easy to compute! (Multi-Resolution Analysis=MRA)
- Wavelet representations make "time-frequency" precision trade off (uncertainty principle)
- Wavelet bases can be made-to-order: different properties. . .

Quick description of Wavelet Transforms - via Multi-Resolution Analysis

Think of nested subspaces:

$$
\ldots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \ldots \subset \mathbb{L}_{2}(\mathbb{R})
$$

Quick description of Wavelet Transforms - via Multi-Resolution Analysis

Think of nested subspaces:

$$
\ldots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \ldots \subset \mathbb{L}_{2}(\mathbb{R})
$$

Let V_{0} be spanned by integer translations of φ :

$$
\overline{\operatorname{span}}\left\{\varphi_{0 k}(x):=\varphi(x-k) \mid k \in \mathbb{Z}\right\}=V_{0} .
$$

Quick description of Wavelet Transforms - via Multi-Resolution Analysis

Think of nested subspaces:

$$
\ldots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \ldots \subset \mathbb{L}_{2}(\mathbb{R})
$$

Let V_{0} be spanned by integer translations of φ :

$$
\overline{\operatorname{span}}\left\{\varphi_{0 k}(x):=\varphi(x-k) \mid k \in \mathbb{Z}\right\}=V_{0} .
$$

Let V_{1} be the subspace spanned by integer translations of $\varphi(2 x)$:

$$
\overline{\operatorname{span}}\left\{\varphi_{1 k}(x):=\sqrt{2} \varphi(2 x-k) \mid k \in \mathbb{Z}\right\}=V_{1}
$$

Nesting requirement: find $h \& \varphi$ such that:

Nesting requirement: find $h \& \varphi$ such that:

$$
\varphi(x)=\sum_{n \in \mathbb{Z}} h(n) \sqrt{2} \varphi(2 x-n)
$$

Nesting requirement: find $h \& \varphi$ such that:

$$
\varphi(x)=\sum_{n \in \mathbb{Z}} h(n) \sqrt{2} \varphi(2 x-n)
$$

Multi-Resolution Analysis Equation

Nesting requirement: find $h \& \varphi$ such that:

$$
\varphi(x)=\sum_{n \in \mathbb{Z}} h(n) \sqrt{2} \varphi(2 x-n)
$$

Multi-Resolution Analysis Equation

For a given set $h(n)$,

- existence of φ ?
- uniqueness?

Let W_{0} be 'all functions in V_{1} but not in V_{0} ' (orthogonal complement of V_{0} w.r.t V_{1})

Let W_{0} be 'all functions in V_{1} but not in V_{0} ' (orthogonal complement of V_{0} w.r.t V_{1})

Suppose ψ is in W_{0} :

Let W_{0} be 'all functions in V_{1} but not in V_{0} ' (orthogonal complement of V_{0} w.r.t V_{1})

Suppose ψ is in W_{0} :

$$
\begin{equation*}
\text { It's in } V_{1} \Rightarrow \psi(x)=\sum_{n} g(n) \sqrt{2} \varphi(2 x-n), \quad n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Let W_{0} be 'all functions in V_{1} but not in V_{0} ' (orthogonal complement of V_{0} w.r.t V_{1})

Suppose ψ is in W_{0} :

$$
\begin{equation*}
\text { It's in } V_{1} \Rightarrow \psi(x)=\sum_{n} g(n) \sqrt{2} \varphi(2 x-n), \quad n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

ψ is our mother wavelet! It's a 'characteristic' function in the orthogonal complement.

Two equations, two filters:

Multi. Res. equation: $\varphi(x)=\sum_{n} h(n) \sqrt{2} \varphi(2 x-n)$
Wavelet equation: $\psi(x)=\sum_{n} g(n) \sqrt{2} \varphi(2 x-n)$

Two equations, two filters:

Multi. Res. equation: $\varphi(x)=\sum_{n} h(n) \sqrt{2} \varphi(2 x-n)$
Wavelet equation: $\psi(x)=\sum_{n} g(n) \sqrt{2} \varphi(2 x-n)$
Most theory deals with special case of:

- finite number of non-zero $h(n)$,

Two equations, two filters:

Multi. Res. equation: $\varphi(x)=\sum_{n} h(n) \sqrt{2} \varphi(2 x-n)$
Wavelet equation: $\psi(x)=\sum_{n} g(n) \sqrt{2} \varphi(2 x-n)$
Most theory deals with special case of:

- finite number of non-zero $h(n)$,
- Orthonormal in $V_{0}:\left\langle\varphi_{0}, \varphi_{k}\right\rangle_{L_{2}}=\delta_{k}$

Two equations, two filters:

Multi. Res. equation: $\varphi(x)=\sum_{n} h(n) \sqrt{2} \varphi(2 x-n)$

$$
\text { Wavelet equation: } \psi(x)=\sum_{n} g(n) \sqrt{2} \varphi(2 x-n)
$$

Most theory deals with special case of:

- finite number of non-zero $h(n)$,
- Orthonormal in $V_{0}:\left\langle\varphi_{0}, \varphi_{k}\right\rangle_{L_{2}}=\delta_{k}$
- Orthonormal between $V_{0} \& W_{0}:\left\langle\psi_{0}, \varphi_{k}\right\rangle_{L_{2}}=\delta_{k}$

Two equations, two filters:

Multi. Res. equation: $\varphi(x)=\sum_{n} h(n) \sqrt{2} \varphi(2 x-n)$

$$
\text { Wavelet equation: } \psi(x)=\sum_{n} g(n) \sqrt{2} \varphi(2 x-n)
$$

Most theory deals with special case of:

- finite number of non-zero $h(n)$,
- Orthonormal in $V_{0}:\left\langle\varphi_{0}, \varphi_{k}\right\rangle_{L_{2}}=\delta_{k}$
- Orthonormal between $V_{0} \& W_{0}:\left\langle\psi_{0}, \varphi_{k}\right\rangle_{L_{2}}=\delta_{k}$

$$
g(n)=(-1)^{n} h(N-1-n)
$$

Wavelet Transforms

So given our hierarchy of embedded functions spaces:

$$
\ldots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \ldots \subset \mathbb{L}_{2}(\mathbb{R})
$$

Wavelet Transforms

So given our hierarchy of embedded functions spaces:

$$
\ldots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \ldots \subset \mathbb{L}_{2}(\mathbb{R})
$$

Start with a lowest resolution: $\varphi \in V_{0}$,

Wavelet Transforms

So given our hierarchy of embedded functions spaces:

$$
\ldots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \ldots \subset \mathbb{L}_{2}(\mathbb{R})
$$

Start with a lowest resolution: $\varphi \in V_{0}$,
Can construct $f(x)$:

$$
f(x)=\sum_{k}^{N} c_{j_{0}}(k) 2^{j_{0} / 2} \phi\left(2^{j_{0}} x-k\right)+\sum_{k}^{N} \sum_{j=j_{0}}^{\infty} d_{j}(k) 2^{j / 2} \psi\left(2^{j} x-k\right)
$$

Coefficients from orthogonality:

$$
\begin{aligned}
\langle f(x), \varphi(x-m)\rangle & =: c_{0}(m) \\
& =\left\langle f(x), \sum_{z \in \mathbb{Z}} h(z) \sqrt{2} \varphi(2 x-2 m-z)\right\rangle
\end{aligned}
$$

let $n=2 m+z$:

$$
\begin{aligned}
& =\sum_{n \in \mathbb{Z}} h(n-2 m)\left\langle f(x), \varphi_{1, n}\right\rangle \\
c_{0}(m) & =\sum_{n} h(n-2 m) c_{1}(n)
\end{aligned}
$$

Coefficients from orthogonality:

$$
\begin{aligned}
\langle f(x), \varphi(x-m)\rangle & =: c_{0}(m) \\
& =\left\langle f(x), \sum_{z \in \mathbb{Z}} h(z) \sqrt{2} \varphi(2 x-2 m-z)\right\rangle
\end{aligned}
$$

$$
\text { let } n=2 m+z:
$$

$$
\begin{aligned}
& =\sum_{n \in \mathbb{Z}} h(n-2 m)\left\langle f(x), \varphi_{1, n}\right\rangle \\
c_{0}(m) & =\sum_{n} h(n-2 m) c_{1}(n)
\end{aligned}
$$

So we can iteratively obtain lower resolution coefficients...

Convolve \& Cascade

$$
\begin{aligned}
y_{0}(n) & =c_{j_{\max }}(n) * h(-n) \\
& =\sum_{m} h(m-n) c_{j_{\max }}(m)
\end{aligned}
$$

| \bullet | \bullet | \bullet | \bullet | \bullet | \circ | \bullet | \circ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $k=0$ | 1 | | 2 | 3 | 4 | | |
| $2 k=0$ | 2 | | 4 | | 6 | 8 | |

Time-Frequency trade-off

Discrete Fourier Transform

Wavelet Transform

Uncertainty Principle

"Area of time-frequency tile is bounded from below..."

Wavelets naturally trade this off: different levels different $\frac{\text { Time resi }}{\text { freq res }} \ldots$

Wavelet theory well developed, includes. . .

- Parameterised ways to "generate" wavelet bases with desired smoothness / orthogonality / fractal structure (see Daubechies wavelets...)

Wavelet theory well developed, includes. . .

- Parameterised ways to "generate" wavelet bases with desired smoothness / orthogonality / fractal structure (see Daubechies wavelets...)
- Discrete \& continuous transforms...

Wavelet theory well developed, includes. . .

- Parameterised ways to "generate" wavelet bases with desired smoothness / orthogonality / fractal structure (see Daubechies wavelets...)
- Discrete \& continuous transforms...
- Since wavelets are scaling+translation nonlinear functions...

Wavelet theory well developed, includes. . .

- Parameterised ways to "generate" wavelet bases with desired smoothness / orthogonality / fractal structure (see Daubechies wavelets...)
- Discrete \& continuous transforms...
- Since wavelets are scaling+translation nonlinear functions...

Wavelet Networks

Qinghua Zhang and Albert Benveniste, Fellow, IEEE

Abstract

Based on the wavelet transform theory, the new notion of wavelet network is proposed as an alternative to feedforward neural networks for approximating arbitrary nonlinear functions. An algorithm of backpropagation type is proposed for wavelet network training and experimental results are reported.

I. Introduction

TTHE approximation of general continuous functions by nonlinear networks such as discussed in [1], [2] is very useful for system modeling and identification. Such approximation methods can be used, for example, in black-box

A. Neural Networks

Fig. 1 depicts a so-called ($1+\frac{1}{2}$)-layer neural network. Recently, the ability of such neural networks to approximate continuous functions has been widely studied [3], [5]-[7]. In particular, the following result has been proved in [3]:

If $\sigma(\cdot)$ is a continuous discriminatory function ${ }^{1}$, then finite sums of the form

$$
\begin{equation*}
g(\boldsymbol{x})=\sum_{i=1}^{N} w_{i} \sigma\left(\boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i}\right) \tag{1}
\end{equation*}
$$

