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What are Wavelets?

Localised “signals” in space which, under translation and scaling, span
Lo (R).
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What are Wavelets?

Localised “signals” in space which, under translation and scaling, span
Lo (R).

A Mother Wavelet is a 1 € Lo(R) with the property that the set:
{win(e) =220~ k)| ok € 2

constitutes an orthonormal basis of La(R).
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Quick description of Wavelet Transforms - via

Multi-Resolution Analysis

Think of nested subspaces:

LL.cVacWwao V... CcLo(R)

Wayvelets

March 19, 2019

4/ 15



Quick description of Wavelet Transforms - via

Multi-Resolution Analysis

Think of nested subspaces:

LL.cVacWwao V... CcLo(R)

Let Vj be spanned by integer translations of ¢:

span{pok(z) == ¢z — k)|k € Z} = Vo
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Quick description of Wavelet Transforms - via

Multi-Resolution Analysis

Think of nested subspaces:
LL.cVacWwao V... CcLo(R)
Let Vj be spanned by integer translations of ¢:
spa{por(x) == ol — K|k € Z} = Vi
Let V} be the subspace spanned by integer translations of ¢(2z):

span{pin(z) == V20(22 — k)|k € Z} = 1.
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Zh V20 (2z — n)

neL
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Nesting requirement: find h & ¢ such that:

Zh V20 (2z — n)

neL

Multi-Resolution Analysis Equation

For a given set h(n),
@ existence of ¢?

@ uniqueness?
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Let Wy be ‘all functions in V; but not in V' (orthogonal complement
of Vo wrt Vi)
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Let Wy be ‘all functions in V; but not in V' (orthogonal complement
of Vo wrt Vi)

Suppose ¥ is in Wy:

It's in Vi = ¢(z) = Y g(n)V2p(2z —n), neZ (1)

n

1 is our mother wavelet! It’s a ‘characteristic’ function in the
orthogonal complement.
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Two equations, two filters:

Multi. Res. equation: ¢(z Zh \fgo (22 —n)

Wavelet equation: ¢ (x Z g(n \[ 20(2x —n)
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Two equations, two filters:

Multi. Res. equation: ¢(z Zh \fgo (22 —n)

Wavelet equation: ¢ (x Z g(n \[ 20(2x —n)

Most theory deals with special case of:
e finite number of non-zero h(n),
e Orthonormal in Vo: (@0, k)L, = O
e Orthonormal between Vo & Wo: (o, 0k)r, = 0k

g(n) = (=1)"h(N =1 —n)
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Wavelet Transforms

So given our hierarchy of embedded functions spaces:

LL.CVaa oV ... cLe(R)
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Wavelet Transforms

So given our hierarchy of embedded functions spaces:
.CcVaacVyacic...cLy(R)

Start with a lowest resolution: ¢ € Vj,

Can construct f(x):

N
F@) =" cjo(k)202p(200x — k) + Z Z dj (k)27 22z — k)
k

k j=jo
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Coefficients from orthogonality:

(f(z),0(x —m)) =: co(m)
=(f(2), Y h(2)V2p(22 — 2m — 2))
Z€Z
let n =2m+ z:

= 3" b — 2m) (£ (), o1.0)

nez

co(m) = Z h(n —2m)cy(n)
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Coefficients from orthogonality:

(f(x), p(x —m)) =: co(m)
=(f(2), Y h(z)V2p(2z — 2m — 2))

2EL
let n=2m-+z:

= 3" b — 2m) (£ (), o1.0)

nez

co(m) = Z h(n —2m)cy(n)

So we can iteratively obtain lower resolution coefficients. . .
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Convolve & Cascade

Decimation
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Time-Frequency trade-off

DISCRETE FOURIER TRANSFORM

Time
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WAVELET TRANSFORM
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src: http://www.ws. blnghamton edu/fowler/fowler%20personal%20page/EE523_files/Wavelet_Charts.pdf
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Localized Fourier wavelet

FREQUENCY

TIME

src: Statistical modeling by wavelets, Brani Vidakovic, Wiley & Sons, 1999
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Uncertainty Principle

”

“Area of time-frequency tile is bounded from below. ..

Localized Fourier wavelet

FREQUENCY

>

TIME

Time resi
freqres " "

Wavelets naturally trade this off: different levels different
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let theory well developed, includes. . .

o Parameterised ways to “generate” wavelet bases with desired
smoothness / orthogonality / fractal structure (see Daubechies
wavelets. . . )
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elet theory well developed, includes. ..

o Parameterised ways to “generate” wavelet bases with desired

smoothness / orthogonality / fractal structure (see Daubechies
wavelets. . . )

e Discrete & continuous transforms. . .

@ Since wavelets are scaling+translation nonlinear functions. . .

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992 889

Wavelet Networks

Qinghua Zhang and Albert Benveniste, Fellow, IEEE

Abstract— Based on the wavelet transform theory, the new
notion of wavelet network is proposed as an alternative to feed-
forward neural networks for approximating arbitrary nonlinear
functions. An algorithm of backpropagation type is proposed for
wavelet network training and experimental results are reported.

1. INTRODUCTION

HE approximation of general continuous functions by
nonlinear networks such as discussed in [1], [2] is very
useful for system modeling and identification. Such approx-
imation methods can be used, for example, in black-box

A. Neural Networks

Fig. 1 depicts a so-called (1 + %)—layer neural network.
Recently, the ability of such neural networks to approximate
continuous functions has been widely studied [3], [S]-[7]. In
particular, the following result has been proved in [3]:

If o(-) is a continuous discriminatory function', then finite
sums of the form

¥
g(z) = Y wiolalz+b) (1)
=1
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