#### Source: www.keithschwarz.com/darts-dice-coins/

Balaji Lakshminarayanan

Feb 19, 2015

# Why alias method?

You are given an *n*-sided die where side *i* has probability  $p_i$  of being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

# Why alias method?

You are given an *n*-sided die where side *i* has probability  $p_i$  of being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

- Vanilla inverse CDF method: O(nS)
  - each sample costs O(n)

# Why alias method?

You are given an *n*-sided die where side *i* has probability  $p_i$  of being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

- Vanilla inverse CDF method: O(nS)
  - each sample costs O(n)
- Vose's alias method: O(n) pre-processing + O(S)
  - each sample costs O(1)!





#### 1. Sample *x* uniformly from [0, 1)



- 1. Sample *x* uniformly from [0, 1)
- 2. Return floor(xn)



- 1. Sample *x* uniformly from [0, 1)
- 2. Return floor(xn)
  - Generate uniform r. v. in O(1)
  - Find bin in O(1)

## Simulating a loaded die using inverse cdf method



## Simulating a loaded die using inverse cdf method



Pre-processing: compute  $c_i = \sum_{j=0}^i p_j$ 

c = cumsum(p)

For each of the *S* samples:

- 1. Sample x uniformly from [0, 1)
- 2. Find minimum *i* such that  $x < c_i$

 $x \in [\sum_{j=0}^{i-1} p_j, \sum_{j=0}^{i} p_j)$ 

## Simulating a loaded die using inverse cdf method



Pre-processing: compute  $c_i = \sum_{j=0}^i p_j$ 

c = cumsum(p)

For each of the S samples:

- 1. Sample x uniformly from [0, 1)
- 2. Find minimum *i* such that  $x < c_i$ 
  - Generate uniform r. v. in O(1)
  - Find bin not O(1) anymore

$$x \in [\sum_{j=0}^{i-1} p_j, \sum_{j=0}^{i} p_j)$$

# Inverse CDF method: Linear search O(n)



# Inverse CDF method: Binary search $O(\log n)$

















- Can sample in O(1)!
- Memory depends on LCM of the denominators: best O(n), worst case O(∏<sup>n</sup><sub>i=1</sub> d<sub>i</sub>)

And now for something completely different ...

### From 1 dimension to 2 dimensions

- p = [1/2, 1/3, 1/12, 1/12]
- say width = w and height  $p_i$



#### Darts



- 1. Throw dart
- 2. Return *i* if dart hits *i*<sup>th</sup> rectangle, else go to step 1

#### Darts



 $Pr(\text{hit rectangle } i|\text{hit some rectangle}) = \frac{\text{area of rectangle } i}{\text{total area of valid rectangle}} \\ = \frac{wp_i}{w\sum_j p_j} = p_i$ 

# width w and height h don't matter

Say height is  $h \cdot p_i$ 

 $Pr(\text{hit rectangle } i|\text{hit some rectangle}) = \frac{\text{area of rectangle } i}{\text{total area of valid rectangle}} \\ = \frac{hwp_i}{hw} = p_i$ 

# width *w* and height *h* don't matter Say height is $h \cdot p_i$

 $Pr(\text{hit rectangle } i|\text{hit some rectangle}) = \frac{\text{area of rectangle } i}{\text{total area of valid rectangle}}$  $= \frac{hwp_i}{hw} = p_i$ 

Set 
$$h = \frac{1}{p_{\text{max}}}$$
 and  $w = 1$  for convenience



# A different way of simulating a loaded die



To generate a sample:

- 1. Choose *i* uniformly from one of *n* rectangles
- 2. Sample x uniformly from [0, 1)

3. If 
$$x \leq \frac{p_i}{p_{\max}}$$
, return *i*, else go to step 1

## **Computational Complexity**

- For each sample:
  - 1. Choose *i* uniformly from one of *n* rectangles
  - 2. Sample x uniformly from [0, 1)

3. If 
$$x \le \frac{p_i}{p_{\max}}$$
, return *i*, else go to step 1

Pr(some side is chosen)

$$=\sum_{i=0}^{n-1} \left(\frac{1}{n} \frac{p_i}{p_{max}}\right) = \frac{1}{n} \sum_{i=0}^{n-1} \frac{p_i}{p_{max}} = \frac{1}{n \cdot p_{max}} \sum_{i=0}^{n-1} p_i = \frac{1}{n \cdot p_{max}}$$

# **Computational Complexity**

- For each sample:
  - 1. Choose *i* uniformly from one of *n* rectangles
  - 2. Sample x uniformly from [0, 1)

3. If 
$$x \le \frac{p_i}{p_{\max}}$$
, return *i*, else go to step 1

Pr(some side is chosen)

$$=\sum_{i=0}^{n-1} \left(\frac{1}{n} \frac{p_i}{p_{max}}\right) = \frac{1}{n} \sum_{i=0}^{n-1} \frac{p_i}{p_{max}} = \frac{1}{n \cdot p_{max}} \sum_{i=0}^{n-1} p_i = \frac{1}{n \cdot p_{max}}$$

- Expected number of flips =  $n \cdot p_{max}$
- Best case: O(1) for  $p_{max} = 1/n$
- Worst case: O(n) for  $p_{max} = 1$

#### How do we improve on the worst case performance?





Draw a horizontal line at height 1 and mark invalid regions in red



Draw a horizontal line at height 1 and mark invalid regions in red



Key idea: Eliminate the wasteful red region such that each rectangle contains at most 2 valid colors.







### Alias method and corresponding alias table



- Prob table contains height of *i* (probability of coin)
- · Alias contains id of alternative color

# Constructing alias tables

- An alias table can be constructed for any p
- *O*(1) for sampling cost once alias table has been constructed
- Pre-processing cost for alias table construction:
  - Naive alias method:  $O(n^2)$
  - Alias method:  $O(n \log n)$
  - Vose's alias method: O(n)



- Find some rectangle that has height at most 1 and place it into its own column, setting the Prob table to the height of that rectangle.
- Find some rectangle that has height at least 1 and use it to top off the column, setting the Alias table to correspond to the side of the die represented by the rectangle.



Choose column 2 as alias





Choose column 1 as alias







Choose column 1 as alias







| Prob  | 1 | <sup>2</sup> / <sub>3</sub> | 1/ <sub>3</sub> | 1/ <sub>3</sub> |
|-------|---|-----------------------------|-----------------|-----------------|
| Alias |   |                             |                 |                 |





- $O(n^2)$  using unsorted arrays
- $O(n \log n)$  using binary search tree
- O(n) using Vose's method

# Vose's method - 1 Consider $p = (\frac{1}{8}, \frac{1}{5}, \frac{1}{10}, \frac{1}{4}, \frac{1}{10}, \frac{1}{10}, \frac{1}{8})$



- Maintain two (unordered) stacks for small (height  $\leq$  1) and large (height > 1)

# Vose's method - 1 Consider $p = (\frac{1}{8}, \frac{1}{5}, \frac{1}{10}, \frac{1}{4}, \frac{1}{10}, \frac{1}{8})$



- Maintain two (unordered) stacks for small (height  $\leq$  1) and large (height > 1)
- Pseudocode:
  - 1. Pop top of small stack, say *s*, and fill in the corresponding prob column
  - 2. Pop top of large stack, say  $\ell$ , to fill in the remaining 1 s
  - 3. If  $\ell (1 s) \le 1$ , move  $\ell (1 s)$  to top of the small stack
- Use of stack allows *O*(*n*) construction















# Comparison of different methods

| Algorithm                           | Initialization Time<br>Best Worst       | Generation Time<br>Best Worst      | Memory Usage<br>Best Worst              |
|-------------------------------------|-----------------------------------------|------------------------------------|-----------------------------------------|
| Loaded Die from Fair Die            | $\Theta(n) \qquad O(\prod_{i=0}^n d_i)$ | $\Theta(1)$                        | $\Theta(n) \qquad O(\prod_{i=0}^n d_i)$ |
| Loaded Die from Biased<br>Coins     | $\Theta(n)$                             | $\Theta(1)$ $\Theta(n)$            | $\Theta(n)$                             |
| Roulette Wheel Selection            | $\Theta(n)$                             | $\Theta(\log n)$                   | $\Theta(n)$                             |
| Optimal Roulette Wheel<br>Selection | $O(n^2)$                                | $\Theta(1)$ $O(\log n)$            | $\Theta(n)$                             |
| Fair Die/Biased Coin<br>Loaded Die  | $\Theta(n)$                             | $\Theta(1)$ $\Theta(n)$ (expected) | $\Theta(n)$                             |
| Naive Alias Method                  | $O(n^2)$                                | $\Theta(1)$                        | $\Theta(n)$                             |
| Alias Method                        | $O(n \log n)$                           | $\Theta(1)$                        | $\Theta(n)$                             |
| Vose's Alias Method                 | $\Theta(n)$                             | $\Theta(1)$                        | $\Theta(n)$                             |

Thank you!