Alias method

Source:
www.keithschwarz.com/darts-dice-coins/

Balaji Lakshminarayanan

Feb 19, 2015

www.keithschwarz.com/darts-dice-coins/

Why alias method?

You are given an n-sided die where side i has probability p; of
being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

Why alias method?

You are given an n-sided die where side i has probability p; of
being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

e Vanilla inverse CDF method: O(nS)
— each sample costs O(n)

Why alias method?

You are given an n-sided die where side i has probability p; of
being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

e Vanilla inverse CDF method: O(nS)
— each sample costs O(n)

¢ Vose’s alias method: O(n) pre-processing + O(S)
— each sample costs O(1)!

Simulating a fair die

Simulating a fair die

1. Sample x uniformly from [0, 1)

Simulating a fair die

1. Sample x uniformly from [0, 1)
2. Return floor(xn)

Simulating a fair die

1. Sample x uniformly from [0, 1)
2. Return floor(xn)

e Generate uniformr. v. in O(1)
e Find binin O(1)

Simulating a loaded die using inverse cdf method

0 1 5/ 1)

2 [} 12

Simulating a loaded die using inverse cdf method

0 1 5/ 1)

2 [} 12

Pre-processing: compute ¢; = Z/’::(, pj ¢ = cumsum(p)

For each of the S samples:
1. Sample x uniformly from [0, 1)
2. Find minimum / such that x < ¢; X € [Z};g, pj; Z}:o ;)

Simulating a loaded die using inverse cdf method

0 1 5/ 11y

2 [} 12

Pre-processing: compute ¢; = Z/’::(, pj ¢ = cumsum(p)

For each of the S samples:
1. Sample x uniformly from [0, 1)
2. Find minimum / such that x < ¢; X € [Z};g, pj; Z}:o ;)

e Generate uniformr. v. in O(1)
e Find bin not O(1) anymore

Inverse CDF method: Linear search O(n)

~d

o
-
—
©
—

23‘||" ?J{ 4‘||" 9‘||’

o
-
—
©
—

23‘||" ?J{ 4‘||" 9‘||’

*

o
-
—
©
—

23‘||" ?J{ 4‘||" 9‘||’

*
Io

o
-
—
©
—

23‘||" ?J{ 4‘||" 9‘||’

Inverse CDF method: Binary search O(log n)

OCLOGIN)[ISINOT.COOL YOUIKNOW
's.‘&cnn‘lﬁn

Simulating a loaded die from a fair die - attempt 1

0 1y 5/ 1y

2] 12

Simulating a loaded die from a fair die - attempt 1

0 1y 5/ 1y

2 L] 12

0 1‘{ 2}’ 3}" 4‘{ 5‘{ 6}’ ?‘i’ 8}’ 9}’ 10}" 11‘ir

12 12 12 12 12 12 12 12 12 12 12

Simulating a loaded die from a fair die - attempt 1

0 1y 5/ 1y

2 L] 12

0 1; 2; 3; 4; 5; 6; ?; 8; 9; 10; 11;

12 12 12 12 12 12 12 12 12 iz iz

12 12 12 12 12 12 12 12 12 12 12

Simulating a loaded die from a fair die - attempt 1

0 1y 5/ 1y

2 L] 12

12 12 12 12 12 12 12 12 12 12 12

Simulating a loaded die from a fair die - attempt 1

0 1y 5/ 1y

2 L] 12

0 1‘||r 2‘||’ 3‘||" 4‘||’ 5‘||r 6‘||’ T‘||’ 8‘||’ ‘3‘||’ 1[J‘||" 11‘||r

12 12 12 12 12 12 12 12 12 12 12

ojojojojojo(1j1{1,112]3

e Can sample in O(1)!
e Memory depends on LCM of the denominators: best O(n),
worst case O([[_, d})

And now for something completely different ...

From 1 dimension to 2 dimensions

e p=[1/2, 1/3, 1/12, 1/12]
e say width = w and height p;

Darts

1. Throw dart
2. Return i if dart hits i rectangle, else go to step 1

Darts

, - area of re le i
Pr(hit rectangle i|hit some rectangle) = ‘otal area of vei;lﬁzr:r?a;z;ngle

w Z/ pj

i

width w and height h don’t matter
Say heightis h- p;

, s area of rectangle i
Pr(hit rectangle i|hit some rectangle) = total area of valid rgectangle

_ fwpi
=20

i

width w and height h don’t matter
Say heightis h- p;

, L rea of rectangle i
Pr(hit rectangle i|hit some rectangle) = totalaareeZ%f 5;:3 rgestellngle

_ fwpi
=20

i

Set h= and w = 1 for convenience

Pmax

A different way of simulating a loaded die

To generate a sample:
1. Choose i uniformly from one of n rectangles

2. Sample x uniformly from [0, 1)
Pi

Pmax

3. Ifx< , return i, else go to step 1

Computational Complexity

e For each sample:

1. Choose i uniformly from one of n rectangles
2. Sample x uniformly from [0, 1)

3. Ifx <

L return i, else go to step 1
pmax

Pr (some side is chosen)

1 pi 1 o
_Z npmax n - _n'Pmasz:;p’

Computational Complexity

e For each sample:
1. Choose i uniformly from one of n rectangles
2. Sample x uniformly from [0, 1)

3. If x < —, return i, else go to step 1

pmax

Pr (some side is chosen)

n—1

_1 pi 1 T
_Z npmax n- _n-pmax,;p’_n-pmax

e Pmax

e Expected number of flips = n - pmax
e Best case: O(1) for pmax = 1/n
e Worst case: O(n) for pmax = 1

How do we improve on the worst case performance?

Alias method

/ /

2 3

Y

Alias method

= 1 instead of h = 1
ave 4 Pmax

Set h=

Y

1

1

Alias method

Draw a horizontal line at height 1 and mark invalid regions in
red

Alias method

Draw a horizontal line at height 1 and mark invalid regions in
red

Key idea: Eliminate the wasteful red region such that each
rectangle contains at most 2 valid colors.

Alias method - 2

Alias method - 3

Alias method - 4

20

Alias method and corresponding alias table

e Prob table contains height of i (probability of coin)
e Alias contains id of alternative color

21

Constructing alias tables

¢ An alias table can be constructed for any p

e O(1) for sampling cost once alias table has been
constructed

e Pre-processing cost for alias table construction:
— Naive alias method: O(n?)

— Alias method: O(nlog n)
— Vose’s alias method: O(n)

22

Naive alias table construction - 1

Prob

)

3

)

3

|Alias

¢ Find some rectangle that has height at most 1 and place it
into its own column, setting the Prob table to the height of

that rectangle.

e Find some rectangle that has height at least 1 and use it to
top off the column, setting the Alias table to correspond to
the side of the die represented by the rectangle.

23

Naive alias table construction - 2

Fill Prob of column 3

Prob A

', |Alias

Naive alias table construction - 3

Choose column 2 as alias

Prob

¥/

¥/

3

|Alias

¥/

25

Naive alias table construction - 4

Fill Prob of column 2

Prob 2, A
', |Alias

Naive alias table construction - 5

Choose column 1 as alias

°

Prob 2, A
', |Alias

Naive alias table construction - 6

Fill Prob of column 4

°

Prob
Alias

28

Naive alias table construction - 7

Choose column 1 as alias

Prob
Alias

29

Naive alias table construction - 8

Fill Prob of column 1

Prob
Alias

1

1,

g

¥/

',

30

Naive alias table construction - 8

Fill Prob of column 1

Prob 1 A A
Alias

e O(r?) using unsorted arrays
e O(nlog n) using binary search tree
e O(n) using Vose’s method

30

Vose’s method - 1

ﬁ Prob

Small Large Alias

¢ Maintain two (unordered) stacks for small (height < 1) and
large (height > 1)

31

Vose’s method - 1

ﬁ Prob

Small Large Alias

¢ Maintain two (unordered) stacks for small (height < 1) and
large (height > 1)
e Pseudocode:

1. Pop top of small stack, say s, and fill in the corresponding
prob column

2. Pop top of large stack, say /, to fill in the remaining 1 — s

3. If¢—(1—s) <1, move ¢ — (1 — s) to top of the small stack

e Use of stack allows O(n) construction

31

Vose’s method - 2

2.

Small Large Alias

32

Vose’s method - 3

Prob
Small Large Alias

33

Vose’s method - 4

ﬁ Prob

Small Large Alias

34

?{5
?!s

Vose’s method - 5

-

Small Large Alias

35

?{5
?!s

29

Vose’s method - 6

Small

Large

Alias

36

Vose’s method - 7

[] Prob

Small Large Alias

37

Vose’s method - 8

[] Prob

Small Large Alias

38

Comparison of different methods

Algorithm Initialization Time Generation Time Memory Usage
Best Worst Best Worst Best Worst
Loaded Die from Fair Die| ©(n) O([T, di) O(1) om) O(IL,d)
Loaded Dcl;%if;%m Biased) o)))
Roulette Wheel Selection O(n) O(log n) BO(n)
OptlmalSZf;lélﬁgr? Wheel O(nz) (1) O(log n))
Fair Die/Biased Coin B(n
Loaded Die) o) (expéct)ed) O@)
Naive Alias Method o(n?) (1) O(n)
Alias Method O(nlogn) (1) B(n)
Vose's Alias Method B(n) (1) BOn)

39

Thank you!

40

