Alias method

Source: www.keithschwarz.com/darts-dice-coins/

Balaji Lakshminarayanan

Feb 19, 2015

Why alias method?

You are given an n-sided die where side i has probability p_{i} of being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

Why alias method?

You are given an n-sided die where side i has probability p_{i} of being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

- Vanilla inverse CDF method: $O(n S)$
- each sample costs $O(n)$

Why alias method?

You are given an n-sided die where side i has probability p_{i} of being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

- Vanilla inverse CDF method: $O(n S)$
- each sample costs $O(n)$
- Vose's alias method: $O(n)$ pre-processing + $O(S)$
- each sample costs $O(1)$!

Simulating a fair die

Simulating a fair die

1. Sample x uniformly from $[0,1)$

Simulating a fair die

1. Sample x uniformly from $[0,1)$
2. Return floor $(x n)$

Simulating a fair die

1. Sample x uniformly from $[0,1)$
2. Return floor $(x n)$

- Generate uniform r. v. in $O(1)$
- Find bin in $O(1)$

Simulating a loaded die using inverse cdf method

Simulating a loaded die using inverse cdf method

Pre-processing: compute $c_{i}=\sum_{j=0}^{i} p_{j}$
$c=\operatorname{cumsum}(p)$
For each of the S samples:

1. Sample x uniformly from $[0,1)$
2. Find minimum i such that $x<c_{i} \quad x \in\left[\sum_{j=0}^{i-1} p_{j}, \sum_{j=0}^{i} p_{j}\right)$

Simulating a loaded die using inverse cdf method

Pre-processing: compute $c_{i}=\sum_{j=0}^{i} p_{j}$
$c=\operatorname{cumsum}(p)$
For each of the S samples:

1. Sample x uniformly from $[0,1$)
2. Find minimum i such that $x<c_{i} \quad x \in\left[\sum_{j=0}^{i-1} p_{j}, \sum_{j=0}^{i} p_{j}\right)$

- Generate uniform r. v. in $O(1)$
- Find bin not $O(1)$ anymore

Inverse CDF method: Linear search $O(n)$

Inverse CDF method: Binary search $O(\log n)$

Simulating a loaded die from a fair die - attempt 1

Simulating a loaded die from a fair die - attempt 1

Simulating a loaded die from a fair die - attempt 1

Simulating a loaded die from a fair die - attempt 1

Simulating a loaded die from a fair die - attempt 1

- Can sample in $O(1)$!
- Memory depends on LCM of the denominators: best $O(n)$, worst case $O\left(\prod_{i=1}^{n} d_{i}\right)$

And now for something completely different ...

From 1 dimension to 2 dimensions

- $p=[1 / 2,1 / 3,1 / 12,1 / 12]$
- say width $=w$ and height p_{i}

Darts

1. Throw dart
2. Return i if dart hits $i^{\text {th }}$ rectangle, else go to step 1

Darts

$\operatorname{Pr}($ hit rectangle $i \mid$ hit some rectangle $)=\frac{\text { area of rectangle } i}{\text { total area of valid rectangle }}$

$$
=\frac{w p_{i}}{w \sum_{j} p_{j}}=p_{i}
$$

width w and height h don't matter

Say height is $h \cdot p_{i}$
$\operatorname{Pr}($ hit rectangle $i \mid$ hit some rectangle $)=\frac{\text { area of rectangle } i}{\text { total area of valid rectangle }}$

$$
=\frac{h w p_{i}}{h w}=p_{i}
$$

width w and height h don't matter

Say height is $h \cdot p_{i}$
$\operatorname{Pr}($ hit rectangle i hit some rectangle $)=\quad$ area of rectangle i total area of valid rectangle

$$
=\frac{h w p_{i}}{h w}=p_{i}
$$

Set $h=\frac{1}{p_{\max }}$ and $w=1$ for convenience

A different way of simulating a loaded die

To generate a sample:

1. Choose i uniformly from one of n rectangles
2. Sample x uniformly from $[0,1)$
3. If $x \leq \frac{p_{i}}{p_{\max }}$, return i, else go to step 1

Computational Complexity

- For each sample:

1. Choose i uniformly from one of n rectangles
2. Sample x uniformly from $[0,1)$
3. If $x \leq \frac{p_{i}}{p_{\text {max }}}$, return i, else go to step 1
$\operatorname{Pr}($ some side is chosen)
$=\sum_{i=0}^{n-1}\left(\frac{1}{n} \frac{p_{i}}{p_{\max }}\right)=\frac{1}{n} \sum_{i=0}^{n-1} \frac{p_{i}}{p_{\max }}=\frac{1}{n \cdot p_{\max }} \sum_{i=0}^{n-1} p_{i}=\frac{1}{n \cdot p_{\max }}$

Computational Complexity

- For each sample:

1. Choose i uniformly from one of n rectangles
2. Sample x uniformly from $[0,1)$
3. If $x \leq \frac{p_{i}}{p_{\text {max }}}$, return i, else go to step 1
$\operatorname{Pr}($ some side is chosen)

$$
=\sum_{i=0}^{n-1}\left(\frac{1}{n} \frac{p_{i}}{p_{\max }}\right)=\frac{1}{n} \sum_{i=0}^{n-1} \frac{p_{i}}{p_{\max }}=\frac{1}{n \cdot p_{\max }} \sum_{i=0}^{n-1} p_{i}=\frac{1}{n \cdot p_{\max }}
$$

- Expected number of flips $=n \cdot p_{\max }$
- Best case: $O(1)$ for $p_{\max }=1 / n$
- Worst case: $O(n)$ for $p_{\max }=1$

How do we improve on the worst case performance?

Alias method

Alias method

Set $h=\frac{1}{p_{\text {ave }}}=\frac{1}{4}$ instead of $h=\frac{1}{p_{\max }}$

Alias method

Draw a horizontal line at height 1 and mark invalid regions in red

Alias method

Draw a horizontal line at height 1 and mark invalid regions in red

Key idea: Eliminate the wasteful red region such that each rectangle contains at most 2 valid colors.

Alias method - 2

Alias method - 3

Alias method - 4

Alias method and corresponding alias table

- Prob table contains height of i (probability of coin)
- Alias contains id of alternative color

Constructing alias tables

- An alias table can be constructed for any p
- $O(1)$ for sampling cost once alias table has been constructed
- Pre-processing cost for alias table construction:
- Naive alias method: $O\left(n^{2}\right)$
- Alias method: $O(n \log n)$
- Vose's alias method: $O(n)$

Naive alias table construction - 1

- Find some rectangle that has height at most 1 and place it into its own column, setting the Prob table to the height of that rectangle.
- Find some rectangle that has height at least 1 and use it to top off the column, setting the Alias table to correspond to the side of the die represented by the rectangle.

Naive alias table construction-2

Fill Prob of column 3

Naive alias table construction - 3

Choose column 2 as alias

Naive alias table construction - 4

Fill Prob of column 2

Naive alias table construction - 5

Choose column 1 as alias

Naive alias table construction - 6

Fill Prob of column 4

Naive alias table construction-7

Choose column 1 as alias

Naive alias table construction - 8

Fill Prob of column 1

Prob	1	$2 / 3$	$1 / 3$	$1 / 3$

Naive alias table construction - 8

Fill Prob of column 1

Prob	1	$2 / 3$	$1 / 3$
	$1 / 3$		

- $O\left(n^{2}\right)$ using unsorted arrays
- $O(n \log n)$ using binary search tree
- $O(n)$ using Vose's method

Vose's method - 1

Consider $p=\left(\frac{1}{8}, \frac{1}{5}, \frac{1}{10}, \frac{1}{4}, \frac{1}{10}, \frac{1}{10}, \frac{1}{8}\right)$

- Maintain two (unordered) stacks for small (height ≤ 1) and large (height > 1)

Vose's method - 1

Consider $p=\left(\frac{1}{8}, \frac{1}{5}, \frac{1}{10}, \frac{1}{4}, \frac{1}{10}, \frac{1}{10}, \frac{1}{8}\right)$

- Maintain two (unordered) stacks for small (height ≤ 1) and large (height > 1)
- Pseudocode:

1. Pop top of small stack, say s, and fill in the corresponding prob column
2. Pop top of large stack, say ℓ, to fill in the remaining $1-s$
3. If $\ell-(1-s) \leq 1$, move $\ell-(1-s)$ to top of the small stack

- Use of stack allows $O(n)$ construction

Vose's method - 2

Vose's method - 3

Vose's method - 4

Vose's method - 5

Vose's method - 6

Vose's method - 7

Vose's method - 8

Comparison of different methods

Algorithm	Initialization Time Best Worst	Generation Time Best \quad Worst	Memory Usage Best Worst
Loaded Die from Fair Die	$\Theta(n) \quad O\left(\prod_{i=0}^{n} d_{i}\right)$	$\Theta(1)$	$\Theta(n) \quad O\left(\prod_{i=0}^{n} d_{i}\right)$
Loaded Die from Biased Coins	$\Theta(n)$	$\Theta(1) \quad \Theta(n)$	$\Theta(n)$
Roulette Wheel Selection	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$
Optimal Roulette Wheel Selection	$O\left(n^{2}\right)$	$\Theta(1) \quad O(\log n)$	$\Theta(n)$
Fair Die/Biased Coin Loaded Die	$\Theta(n)$	$\Theta(1) \quad$$\Theta(n)$ (expected)	$\Theta(n)$
Naive Alias Method	$O\left(n^{2}\right)$	$\Theta(1)$	$\Theta(n)$
Alias Method	$O(n \log n)$	$\Theta(1)$	$\Theta(n)$
Vose's Alias Method	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$

Thank you!

