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Why alias method?

You are given an n-sided die where side i has probability pi of
being rolled.

How do you efficiently simulate S rolls of the die (for large S)?

• Vanilla inverse CDF method: O(nS)

– each sample costs O(n)
• Vose’s alias method: O(n) pre-processing + O(S)

– each sample costs O(1)!
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Simulating a fair die

1. Sample x uniformly from [0,1)
2. Return floor(xn)

• Generate uniform r. v. in O(1)
• Find bin in O(1)
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Simulating a loaded die using inverse cdf method

Pre-processing: compute ci =
∑i

j=0 pj c = cumsum(p)

For each of the S samples:
1. Sample x uniformly from [0,1)
2. Find minimum i such that x < ci x ∈ [

∑i−1
j=0 pj ,

∑i
j=0 pj)

• Generate uniform r. v. in O(1)
• Find bin not O(1) anymore
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Inverse CDF method: Linear search O(n)
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Inverse CDF method: Binary search O(log n)
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Simulating a loaded die from a fair die - attempt 1

• Can sample in O(1)!
• Memory depends on LCM of the denominators: best O(n),

worst case O(
∏n

i=1 di)
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And now for something completely different ...
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From 1 dimension to 2 dimensions
• p = [1/2, 1/3, 1/12, 1/12]
• say width = w and height pi
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Darts

1. Throw dart
2. Return i if dart hits i th rectangle, else go to step 1
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Darts

Pr(hit rectangle i |hit some rectangle) =
area of rectangle i

total area of valid rectangle

=
wpi

w
∑

j pj
= pi
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width w and height h don’t matter
Say height is h · pi

Pr(hit rectangle i |hit some rectangle) =
area of rectangle i

total area of valid rectangle

=
hwpi

hw
= pi

Set h =
1

pmax
and w = 1 for convenience
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A different way of simulating a loaded die

To generate a sample:
1. Choose i uniformly from one of n rectangles
2. Sample x uniformly from [0,1)

3. If x ≤ pi

pmax
, return i , else go to step 1
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Computational Complexity
• For each sample:

1. Choose i uniformly from one of n rectangles
2. Sample x uniformly from [0,1)

3. If x ≤ pi

pmax
, return i , else go to step 1

Pr(some side is chosen)

=
n−1∑
i=0

(
1
n

pi

pmax
) =

1
n

n−1∑
i=0

pi

pmax
=

1
n · pmax

n−1∑
i=0

pi =
1

n · pmax

• Expected number of flips = n · pmax

• Best case: O(1) for pmax = 1/n
• Worst case: O(n) for pmax = 1

How do we improve on the worst case performance?
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Alias method

Set h =
1

pave
=

1
4

instead of h =
1

pmax

16



Alias method

Set h =
1

pave
=

1
4

instead of h =
1

pmax

16



Alias method

Draw a horizontal line at height 1 and mark invalid regions in
red

Key idea: Eliminate the wasteful red region such that each
rectangle contains at most 2 valid colors.
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Alias method - 2
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Alias method - 3
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Alias method - 4
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Alias method and corresponding alias table

• Prob table contains height of i (probability of coin)
• Alias contains id of alternative color
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Constructing alias tables

• An alias table can be constructed for any p
• O(1) for sampling cost once alias table has been

constructed
• Pre-processing cost for alias table construction:

– Naive alias method: O(n2)
– Alias method: O(n log n)
– Vose’s alias method: O(n)
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Naive alias table construction - 1

• Find some rectangle that has height at most 1 and place it
into its own column, setting the Prob table to the height of
that rectangle.

• Find some rectangle that has height at least 1 and use it to
top off the column, setting the Alias table to correspond to
the side of the die represented by the rectangle.
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Naive alias table construction - 2

Fill Prob of column 3
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Naive alias table construction - 3

Choose column 2 as alias
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Naive alias table construction - 4

Fill Prob of column 2
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Naive alias table construction - 5

Choose column 1 as alias
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Naive alias table construction - 6

Fill Prob of column 4
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Naive alias table construction - 7

Choose column 1 as alias
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Naive alias table construction - 8

Fill Prob of column 1

• O(n2) using unsorted arrays
• O(n log n) using binary search tree
• O(n) using Vose’s method

30



Naive alias table construction - 8

Fill Prob of column 1

• O(n2) using unsorted arrays
• O(n log n) using binary search tree
• O(n) using Vose’s method
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Vose’s method - 1
Consider p = (1

8 ,
1
5 ,

1
10 ,

1
4 ,

1
10 ,

1
10 ,

1
8)

• Maintain two (unordered) stacks for small (height ≤ 1) and
large (height > 1)

• Pseudocode:
1. Pop top of small stack, say s, and fill in the corresponding

prob column
2. Pop top of large stack, say `, to fill in the remaining 1− s
3. If `− (1− s) ≤ 1, move `− (1− s) to top of the small stack

• Use of stack allows O(n) construction
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Vose’s method - 2
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Vose’s method - 3
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Vose’s method - 4

34



Vose’s method - 5
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Vose’s method - 6
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Vose’s method - 7
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Vose’s method - 8
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Comparison of different methods
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Thank you!
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