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ABSTRACT

A suboptimal Kalman filter called the ensemble transform Kalman filter (ET KF) is introduced. Like other
Kalman filters, it provides a framework for assimilating observations and also for estimating the effect of
observations on forecast error covariance. It differs from other ensemble Kalman filters in that it uses ensemble
transformation and a normalization to rapidly obtain the prediction error covariance matrix associated with a
particular deployment of observational resources. This rapidity enables it to quickly assess the ability of a large
number of future feasible sequences of observational networks to reduce forecast error variance. The ET KF
was used by the National Centers for Environmental Prediction in the Winter Storm Reconnaissance missions
of 1999 and 2000 to determine where aircraft should deploy dropwindsondes in order to improve 24–72-h
forecasts over the continental United States. The ET KF may be applied to any well-constructed set of ensemble
perturbations.

The ET KF technique supercedes the ensemble transform (ET) targeting technique of Bishop and Toth. In
the ET targeting formulation, the means by which observations reduced forecast error variance was not expressed
mathematically. The mathematical representation of this process provided by the ET KF enables such things as
the evaluation of the reduction in forecast error variance associated with individual flight tracks and assessments
of the value of targeted observations that are distributed over significant time intervals. It also enables a serial
targeting methodology whereby one can identify optimal observing sites given the location and error statistics
of other observations. This allows the network designer to nonredundantly position targeted observations. Serial
targeting can also be used to greatly reduce the computations required to identify optimal target sites. For these
theoretical and practical reasons, the ET KF technique is more useful than the ET technique. The methodology
is illustrated with observation system simulation experiments involving a barotropic numerical model of tropical
cyclonelike vortices. These include preliminary empirical tests of ET KF predictions using ET KF, 3DVAR, and
hybrid data assimilation schemes—the results of which look promising. To concisely describe the future feasible
sequences of observations considered in adaptive sampling problems, an extension to Ide et al.’s unified notation
for data assimilation is suggested.

1. Introduction

Mobile observation platforms, such as dropwindson-
de-equipped aircraft, allow observations to be placed in
atmospheric regions where they are likely to improve
forecasts of significant weather. For example, if a weath-
er forecast was predicting torrential rain for California
in three days, one might decide to deploy dropwind-
sondes somewhere upstream of California in an effort
to obtain a more accurate 2-day forecast of the event.
In this example, we would call California the verifica-
tion region while the dropwindsonde deployment site(s)
would be called the target site(s). The time(s) at which
the dropwindsondes were launched would be called the
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targeting time(s) while the time at which the heavy rain
was expected over California would be called the ver-
ification time. The problem of determining where the
dropwindsondes should be deployed is an example of
the type of adaptive sampling problems we wish to con-
sider here.

More generally, one may consider an observational
network to be composed of a routine component and an
adaptive component. The routine component comprises
observations from the fixed rawinsonde network, sat-
ellite measurements, and other measurements that are
routinely taken. The adaptive component gives the net-
work designer a choice of some finite but possibly large
number Q of future sequences of observational net-
works; for example, the network designer might have
to choose between Q different possible flight paths that
could be taken by a dropwindsonde-equipped plane. The
purpose of this paper is to describe how the ensemble
transform Kalman filter (ET KF) can be used to identify
which of these Q feasible future sequences of obser-
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vational resources would minimize forecast error vari-
ance over some prespecified verification region at some
prespecified verification time.

Other objective strategies for optimally deploying
adaptive observations include the singular vector tech-
nique (Palmer et al. 1998; Gelaro et al. 1999; Buizza
and Montani 1999; Bergot et al. 1999), the gradient
technique (Langland and Rohaly 1996), the inverse
model technique (Pu and Kalnay 1999), the ensemble
spread technique (Lorenz and Emanuel 1998), and the
ensemble transform technique (Bishop and Toth 1999).
With the exception of the ensemble spread technique,
all of these techniques attempt to identify target regions
that are dynamically connected to the verification re-
gion. In order to account for the fact that large-amplitude
but slowly amplifying initial condition errors may some-
times damage a forecast as much as small-amplitude
rapidly growing initial condition errors, targeting tech-
niques also need to incorporate information about the
probability density of analysis errors.

In principle, the singular vector technique (Palmer et
al. 1998) accounts for the analysis error statistics of the
routine observational network by identifying structures
that evolve into the leading eigenvectors of the forecast
error covariance matrix associated with the routine ob-
servational network and the localized verification re-
gion. The singular vector technique does not, however,
quantitatively account for the effect of specific deploy-
ments of supplemental observations on prediction or
analysis error statistics. The need to incorporate such
information has been stressed by Berliner et al. (1999)
and Baker and Daley (2000).

Among other things, Baker and Daley acknowledge
that both the adjoint and singular vector targeting tech-
niques identify target sites in regions where the vector
gradient of a forecast aspect with respect to the analysis
is large (cf. Buizza et al. 1997; Gelaro et al. 1998). They
go on to show that in cases where the spatial scale of
such analysis sensitivity vectors is much smaller than
the correlation length scale assumed by the data assim-
ilation scheme, the analysis sensitivity vectors poorly
represent the sensitivity of the forecast aspect to ob-
servations. They point out that targeting strategies
would be more reliable if they were based on obser-
vation sensitivity rather than analysis sensitivity.

The ET KF directly provides observation sensitivity.
Moreover, it provides quantitative estimates of the re-
duction in forecast error variance likely to result from
each of the possible future sequences of observational
networks. However, ET KF observation sensitivities
only strictly pertain to data assimilation schemes that
assume the same forecast or first-guess error covariance
matrix as that assumed by the ET KF. Consequently, its
observation sensitivities are unreliable when the error
covariances assumed by the data assimilation scheme
used to assimilate the data are very different from those
assumed by the ET KF. Mismatches between the error
statistics assumed by the ET KF and those assumed by

the actual assimilating scheme can, in principle, lead to
many of the same difficulties discussed by Baker and
Daley. Gross mismatches between the ET KF and the
assimilating scheme could be avoided, however, by in-
corporating the ET KF within ensemble-based data as-
similation schemes such as those that have been sug-
gested by Evensen and van Leeuwen (1996), Houtek-
amer and Mitchell (1998), Anderson and Anderson
(1999), and Hamill and Snyder (2000).

Targeted observations taken during the Fronts and
Atlantic Storm-Track Experiment (FASTEX; Snyder
1996; Joly et al. 1997), the North Pacific Experiment
(Langland et al. 1999), and the National Centers for
Environmental Prediction’s (NCEP’s) Winter Storm Re-
connaissance missions of 1999 and 2000 have shown
that, on average, targeted observations improve forecast
skill (Bergot et al. 1999; Szunyogh et al. 1999, 2000).
They have also shown that targeted observations oc-
casionally degrade forecast skill. See Morss (1999) for
an investigation of the conditions under which such deg-
radations are likely to occur. Within the context of sim-
ple models containing data voids of one sort or another,
Fischer et al. (1998), Morss et al. (2001), and Lorenz
and Emanuel (1998) using Kalman filter, 3DVAR and
direct insertion data assimilation schemes, respectively,
have all shown that targeted observations reduce fore-
cast error more than fixed observations. Work by Fischer
et al. (1998), Bergot (2000, manuscript submitted to
Quart. J. Roy. Meteor. Soc.), and Rabier et al. (2000)
indicates that the usefulness of targeted observations is
significantly enhanced when more sophisticated data as-
similation schemes are used to assimilate the data.

In section 2, some general background on Kalman
filters and how they can be used in targeting is given.
In this discussion, we develop a notation for describing
the future feasible sequences of observational networks
that one must consider in addressing adaptive sampling
problems. In section 3, the characteristics that distin-
guish the ET KF from other ensemble Kalman filters
are outlined. The use of the ET KF as a targeting tool
is illustrated in section 4. Concluding remarks follow
in section 5.

2. Kalman filters and the optimal adaptive
network design problem

Estimation theory (Cohn 1997) not only provides
minimum error variance estimates of the state of the
atmosphere x(t | ti) at the time t given observations up
to and including those taken at the time ti, it also pro-
vides the covariance matrix P(t | ti) of the error in the
estimate x(t | ti). The procedure required to obtain x and
P when t $ ti is typically called the Kalman filter (when
t , ti it is called the Kalman smoother). From P(t | ti)
one could estimate the probability density function. Al-
ternatively, one can use it to construct a variety of mea-
sures of forecast error. For example, by summing the
appropriate diagonal elements of P(t | ti) one can obtain
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FIG. 1. Key times in the adaptive sampling problem. The time ti

is the initialization time of the (ensemble) forecast(s) used to decide
by the time td that of all feasible future observational networks should
be deployed to most reduce the forecast error aspect of interest at
the verification time ti1y of a forecast initialized with data from the
final targeting time ti1M. In the case depicted above M 5 3. Obser-
vation times before the decision time td will only contain routine
observations. Observation times after the decision time td may contain
targeted and/or routine observations.

the forecast error variance over a geographic region of
interest.

Future observational networks are made up of a rou-
tine component, an adaptive component, or both. The
routine component consists of all of those aspects of the
observational network that cannot be varied at will such
as the fixed rawinsonde network and the temporally
varying sets of observations available from satellites.
Although certain aspects of the routine observational
network such as the location of future cloud track wind
vectors are difficult to accurately predict, for simplicity
we shall assume that the future states of the routine
component of the observational network can be known
before the first future observing time ti11. The adaptive
component comprises those aspects of the observational
network that can be varied at will such as the flight
tracks taken by reconnaissance planes or the times and
locations at which cloud track wind satellite algorithms
are put into high-resolution rapid-scan mode (C. Velden
1998, personal communication). For simplicity we shall
also assume that the future possible states of the adaptive
component of the observational network are known.

Assuming that ti is an analysis time in the recent past,
let us suppose that there are a series of discrete future
times ti1m, m 5 1, 2, . . . , M at which one of Ji1m feasible
observational networks might be deployed. At some of
these times, there might only be one feasible observa-
tional network (Ji1m 5 1), the ‘‘routine’’ observational
network. At other times adaptive observing facilities
(e.g., reconnaissance planes) might be available to sup-
plement the routine observational network. Since any
feasible observational network chosen at the time ti1m

could be combined with any of the feasible networks
available at ti1m11, there could be as many as Ji1m

MPm51

5 Q distinct combinations of feasible observational re-
sources that could be deployed between ti and ti1M. For
example, if the adaptive component consisted of a single
reconnaissance aircraft that only had permission to fly
on 1 of 20 preset flight paths, each of the flight paths
would correspond to a single sequence of observations
through space time and Q would equal 20.

The state of the observational network at any partic-
ular time is usefully defined by the (possibly nonlinear)
observation operator H that maps state variables x to
observed variables y; that is, xt(ti1m) lists the true state
of the analysis variables, then

y 5 H(xt) 1 «, (1)

where « is the net observational error due to a com-
bination of instrument error and representation error.
The covariance ^««T& of these errors is denoted by R.
Although errors of representation are likely to be cor-
related with first-guess errors, for simplicity, we shall
ignore such correlations.

To distinguish between the Q future possible sequenc-
es of observational networks, we let denote theqH i1m

observation operator at the time ti1m associated with the
qth feasible sequence of future observational networks.

We also let denote the corresponding observationqRi1m

error covariance matrices, x(t | ) denote the estimateqH i1m

of the state of the atmosphere at the time t given the
observations associated with the qth feasible sequence
of observations up to the time ti1m, and P(t | ) denoteqH i1m

the error covariance of the estimate x(t | ). In orderqH i1m

to be consistent with this notation, we hereafter denote
the x(t | ti) introduced at the beginning of this section
by x(t | Hi). A discussion of our suggested extensions
for adaptive sampling problems to Ide et al.’s (1997)
unified notation for data assimilation is given in appen-
dix A.

Generally, adaptive sampling strategies must be able
to identify the ‘‘optimal’’ deployment of observational
resources by some decision time td where ti , td , ti1M

in order to leave time to make deployment arrangements
such as sending reconnaissance aircraft to their optimal
space–time locations; cf. Fig. 1. In terms of forecast
error variance, the adaptive observational network de-
sign problem in its most general form may be stated as
follows. Using the forecast x(t | Hi), determine which of
the future possible sequences of observational networks
minimizes the forecast error variance of the forecast
x(ti1V | ) over some prespecified verification regionqH i1M

at the verification time ti1V given all observations up to
and including those at ti1M. The Kalman filter can be
used to solve this problem provided that the dynamics
operator M(t, ti1m), which maps perturbations about the
trajectory x(t | Hi) at ti1m to perturbations at the later
time t, is not too different from the dynamics operators
one would obtain by linearizing about the trajectories
x(t | ) for m 5 1, 2, . . . , M.qH i1m

The Kalman filter evaluates the analysis error co-
variance matrix P(ti1m | ) from the forecast error co-qH i1m

variance matrix P(ti1m | ) usingqH i1m21

qP(t | H )i1m i1m

q q5 P(t | H ) 2 P(t | H )i1m i1m21 i1m i1m21

qT q q qT q 213 H [H P(t | H )H 1 R ]i1m i1m i1m i1m21 i1m i1m

q q3 H P(t | H ) (2a)i1m i1m i1m21

(cf. Daley 1991 or Cohn 1997), where is the lin-qHi1m

earization of about x(ti1m | Hi). The forecast errorqH i1m
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covariance matrix P(t | ) of forecasts made from theqH i1m

analysis at ti1m using the qth sequence of observational
networks is given by

q q TP(t | H ) 5 M(t, t )P(t | H )M(t, t )i1m i1m i1m i1m i1m

1 Q(t, t ), (2b)i1m

where M(t, ti1m) is the dynamics operator linearized
about x(t | Hi) that maps perturbations about x(t | Hi) at
ti1m to perturbations at the later time t and Q(t, ti1m) is
the model error covariance matrix associated with these
mappings.

Using induction, it is straightforward to show that
Eqs. (2a) and (2b) could be used to predict
P(ti1V | ), the prediction error covariance matrix atqH i1M

the verification time ti1V arising from the qth combi-
nation of feasible observational networks that could be
deployed during the period from ti to ti1M. Note that
these predictions can be made before any actual obser-
vations are taken. Thus, given sufficient computing re-
sources, a Kalman filter could predict the reduction in
prediction error variance that would be imparted by each
of the Q distinct combinations of feasible observational
resources by evaluating P(ti1V | ), for the Q possibleqH i1M

values of q. The optimal combination of deployments
of observational resources would then be identified as
the deployment that minimized prediction error variance
in the verification region at the verification time.

Computational resources are currently not nearly suf-
ficient to run a full Kalman filter for an operational
weather forecasting system for one distinct observa-
tional network let alone Q distinct observational re-
sources. But suppose one had access to a very large
ensemble of forecasts running from ti to ti1V; by sub-
tracting each of the ensemble members from the ensem-
ble mean, one would obtain a vector subspace of en-
semble perturbations. These ensemble perturbations
could be linearly combined to create a huge variety of
differently structured perturbations in the same way that
sine and cosine basis functions can be added together
to create a huge variety of functions. Transforming the
perturbations into orthonormal vectors and attaching
variances to each of the direction vectors enables one
to use the ensemble to describe error covariance within
the vector subspace of the ensemble perturbations. The
basic idea behind the ET KF is to define these trans-
formations so that the transformed perturbations will
describe the forecast error covariance one would obtain
if certain sequences of observations were taken in the
near future. This approach reduces the computational
expense of having to propagate Q covariance matrices
forward in time to the computational expense of running
a single nonlinear ensemble forecast from ti to ti1V and
performing Q 3 M ensemble transformations. This com-
bined with serial observation processing techniques
makes the ET KF a practical tool for distinguishing
between effective and ineffective future deployments of
observational resources.

3. Optimal network design with the ET KF

Ensemble transformation

We assume that K forecasts x(t, k | Hi), k 5 1, 2, . . . ,
K have been created at the initialization time ti and that
the outer product of the perturbations of this ensemble
of forecasts about its mean x(t | Hi) approximates the
error covariance matrix P(t | Hi) of the state estimate
x(t | Hi). In mathematical terms, we assume that

P(t | H )i
K

T[x(t, k | H ) 2 x(t | H )][x(t, k | H ) 2 x(t | H )]O i i i i
k515

K 2 1
T5 X(t | H )X (t | H ),i i (3)

where X(t | Hi) is the matrix of perturbations whose kth
column is given by [x(t, k | Hi) 2 x(t | Hi)]/ K 2 1.Ï
Although the estimate (3) is rank deficient, in situations
where the ensemble perturbations capture the dominant
errors, the rank deficiency will only marginally limit its
usefulness. Note that the ensemble generation methods
currently in use at the European Centre for Medium-
Range Weather Forecasts (Molteni et al. 1996), NCEP
(Toth and Kalnay 1993, 1997), and the Canadian weath-
er service (Houtekamer et al. 1996) all attempt to make
(3) accurate. In this sense, the ensemble characteristics
required by the ET KF are similar to those that have
been identified as being important for ensemble weather
forecasting. In a perfect model context, Ehrendorfer and
Tribbia (1997) have described how to construct ensem-
ble perturbations that optimize the approximation (3) at
some prespecified forecast time. Hamill et al. (2000)
provide an interesting discussion of the statistical prop-
erties of the ensembles produced by various ensemble
generation techniques.

The estimate (3) does not allow for the inclusion of
a parameterized form of model error covariance Q such
as that which is present in (2b). Nevertheless, note that
if the forecasts x(t, k | Hi), k 5 1, 2, . . . , K are made
with differing but similarly skillful numerical weather
prediction models, the estimate (3) will implicitly con-
tain certain flow-dependent estimates of model error co-
variance.

The K 2 1 linearly independent ensemble perturba-
tions X(t | ti) provide a basis for a vector subspace within
which one can rapidly solve (2a) and (2b). If we can
repetitively solve (2a) and (2b) for a generic sequence
of observations, we can solve them for any sequence of
observations. According to (3), at ti11, the first-guess or
forecast error covariance matrix P(ti11 | Hi) may be writ-
ten in the form

TP(t | H ) 5 Z(t | H )Z(t | H )i11 i i11 i i11 i

T T5 X(t | H )T T X(t | H ) , (4)i11 i 0 0 i11 i

where T0 is equal to the identity matrix I and Z(t | ti) 5
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X(t | ti)T0. As we shall inductively show, at any later
data assimilation time ti1m, one may express the first-
guess error covariance matrix in a form similar to that
given in (4); namely,

qP(t | H )i1m i1m21

q q T5 Z(t | H )Z(t | H )i1m i1m21 i1m i1m21

T T5 X(t | H )T T X(t | H ) , (5)i1m i i1m21 i1m21 i1m i

where Ti1m21 is a K 3 K transformation matrix that is
generally not equal to the identity.

To prevent our description of the ensemble transform
method for solving (2a) being obfuscated by the ob-
servation conditionality notation, we let forecast and
analysis error covariance matrices of the form
P(ti1m | ) and P(ti1m | ) be denoted by the ge-q qH Hi1m21 i1m

neric Pf and Pa, respectively. Similarly, we let trans-
formed ensemble perturbations of the form
Z(ti1m | ) 5 X(ti1m | Hi)Ti1m21 be denoted by theqH i1m21

generic Zf . This generic notation is in accord with that
of Ide et al. (1997). Our aim is to show how to solve

a f f T f T f f T f T21P 5 P 2 P H (HP H 1 R) HP 5 Z TT Z (6)

for the transformation matrix T given that

Pf 5 Zf Zf T. (7)

Both Evensen and Van Leeuwen (1996) and Houtek-
amer and Mitchell (1998) have commented that the sig-
nificant computational expense of ensemble Kalman fil-
ters is the inversion of the innovation or residual co-
variance matrix (HPf HT 1 R). There are two apparent
difficulties in evaluating (HPf HT 1 R)21. The first is
size. It is a p 3 p matrix where p is the number of
observations. Consequently, for atmospheric applica-
tions where p ; O(105), it can be rather costly to di-
rectly compute the inverse of (HPf HT 1 R). The second
difficulty is that the largest eigenvalue of (HPf HT 1 R)
may be many orders of magnitude larger than its small-
est eigenvalue. When this occurs the matrix is ill-con-
ditioned and it may be extremely difficult to accurately
evaluate the inverse.

The ensemble Kalman filter formulation of Evensen
and Van Leeuwen (1996) solves the size problem by
only using an intelligently chosen subset of observa-
tions. They solve the ill-conditioning problem by means
of a singular value decomposition of (HPf HT 1 R) that
allows them to discard contributions to (HPf HT 1 R)
from eigenvectors corresponding to the least significant
eigenvalues.

Houtekamer and Mitchell’s (1998) ensemble Kalman
filter formulation simultaneously solves the size and ill-
conditioning problem by using a cutoff radius beyond
which covariances between variables are assumed to be
zero. The cutoff radius also serves to guard against spu-
rious long-distance error correlations that arise when
small ensembles are used in the estimation of Pf .

To avoid the size and ill-conditioning problems we
first observe that if we define a normalized observation
operator H̃ 5 R21/2H, then

f T f T f21P H (HP H 1 R) HP
f T 1/2 21/2 f T 21/2 1/2 f215 P H [R (R HP H R 1 I)R ] HP
f T f T p3p f21˜ ˜ ˜ ˜5 P H (HP H 1 I ) HP , (8)

where Ip 3 p is a p 3 p identity matrix. Second, since
the eigenvectors of H̃Pf H̃T are equivalent to the eigen-
vectors of (H̃Pf H̃T 1 Ip 3 p),

(H̃Pf H̃T 1 Ip3p)21 5 Ec(Gc 1 Ip3p)21EcT, (9)

where the p columns of Ec contain the complete set of
orthonormal eigenvectors of H̃Pf H̃T and the diagonal
matrix Gc lists the corresponding eigenvalues. Fortu-
nately, we only need evaluate those eigenvectors that
are not in the right null space of Pf H̃T. Since

Pf H̃T 5 Zf H̃T,TfZ (10)

it follows that the only eigenvectors of H̃Pf H̃T that con-
tribute to the analysis error covariance matrix defined
by (6) are those that can be written as a linear combi-
nation of the column vectors of H̃Zf . Note that the K
columns of H̃Zf are not linearly independent because
the sum of the K ensemble perturbations from which
they are derived is equal to zero. Thus, at most K 2 1
eigenvectors of H̃Pf H̃T will be required to span the sub-
space of linear combinations of the columns of H̃Zf .

To obtain the subset of eigenvectors E of the complete
set Ec that can be written as linear combinations of the
columns of H̃Zf , let the matrix C contain the orthonormal
eigenvectors of Zf TH̃TH̃Zf . Under this definition,

[Zf TH̃TH̃Zf]C 5 CG, (11)

where G is a diagonal matrix containing the eigenvalues
gkk of Zf TH̃TH̃Zf . Since this matrix is positive semide-
finite, its eigenvalues will be greater than or equal to
zero. We assume that the column vectors ck are ordered
so that the first column c1 corresponds to the largest
eigenvalue gll and the last column cK corresponds to the
smallest eigenvalue gKK 5 0. Equation (11) shows that
if gkk 5 0 for k . kc, then Zf ck is equal to the zero
vector for k . kc. For notational convenience, we define
a new diagonal matrix from G by setting all of theG
zero eigenvalues in G to one. We may then define the
matrix,

E 5 H̃Zf C 21/2.G (12)

By (12) and (11), ETE 5 , where is a diagonalK3K K3KI I0 0

matrix whose first kc elements are all equal to unity,
while the remaining diagonal elements are equal to zero.
Thus, the first kc columns of E are orthonormal, and the
remaining columns are zero vectors. Since G 21/2 5G
G1/2 and CTC 5 CCT 5 IK3K, where IK3K is the regular
K 3 K identity matrix, (11) and (12) imply that
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T f T T f T f T T T T˜ ˜ ˜ ˜E [HP H ]E 5 E [HZ CC Z H ]E 5 E [EGE ]E
K3K K3K5 I GI 5 G.0 0 (13a)

Hence, E contains all of the singular vectors in the vector
subspace spanned by the vectors corresponding to the
columns of H̃Zf . Consequently,

T c K3K K3(p2K )E E 5 [I 0 ] and0

K3K K3(p2K )(G 1 I ) 0p3pc[G 1 I ] 5 , (13b)(p2K )3K (p2K )3(p2K )[ ]0 I

where OK3( p2K ) is a K 3 (p 2 K) zero matrix. Since

Pf H̃T 5 Zf CCTZf TH̃T 5 Zf CG1/2ET, (14)

one can use (13b) to show that
f T f T p3p f21˜ ˜ ˜ ˜P H (HP H 1 I ) HP

f T c p3p cT T f T1/2 c 21 1/25 Z CG E E (G 1 I ) E EG C Z
f K3K T fa 21 a T5 Z (t )CG(G 1 I ) C Z (t ) . (15)

From (6) and (8), it is clear that this quantity is the
reduction in error covariance imparted by the obser-
vations associated with H̃ at the analysis time ta. It is
also equal to the covariance matrix of signals that would
be imparted at ta to the first-guess field by a Kalman
filter data assimilation in assimilating the observations
associated with H̃.

To see this, note that according to the standard Kal-
man filter equations, the signal of the observations y
associated with H̃ at the forecast time t is given by

f T f T p3pa f a 21˜ ˜ ˜x (t) 2 x (t) 5 M(t, t )P H (HP H 1 I )
21/2 f a˜3 [R y 2 Hx (t )]. (16a)

Using (9), (13b), and (14) in this formula gives
fax (t) 2 x (t)

f K3K T 21/2a a 1/2 21 f a˜5 M(t, t )Z (t )CG (G 1 I ) E [R y 2 Hx (t )]
f K3K T 21/21/2 21 f a˜5 Z (t)CG (G 1 I ) E [R y 2 Hx (t )], (16b)

where x f (t) is the mean of the relevant ensemble fore-
cast.

Equation (16b) gives the ET KF formula, not only
for forming an analysis increment at ta, but also for
propagating this increment or signal through time. The
covariance S(t) of this ET KF signal is given by using
(15), (16a) and (16b), and the fact that when observation
and first-guess errors are uncorrelated

21/2 21/2f a f a T˜ ˜^[R y 2 Hx (t )][R y 2 Hx (t )] &
f T p3p˜ ˜5 (HP H 1 I ) (17a)

to show that
a f a f TS(t) 5 ^[x (t) 2 x (t)][x (t) 2 x (t)] &

f T f T p3p fa 21 a T˜ ˜ ˜ ˜5 M(t, t )P H (HP H 1 I ) HP M(t, t )
f K3K T f21 T5 Z (t)CG(G 1 I ) C Z (t) . (17b)

Since M(ta, ta) is the identity matrix, (6) and (17b) imply

that S(ta) 5 Pf 2 Pa and that S(t) 5 M(t, ta)Pf M(t, ta)T

2 M(t, ta)PaM(t, ta)T. It follows that the covariance of
signals S(t) due to the observations is equal to the re-
duction in error variance due to the assimilation of the
observations. However, if the error covariance matrices
are inaccurately specified, this quality may not be
achieved. Also note that (17b) implies that the ET KF
will be better able to predict the covariance of signals
associated with the assimilation of a certain set of ob-
servations when the data assimilation scheme’s Pf is
similar to the Pf in the ET KF. Consequently, since
ensemble Kalman filters assume covariances similar to
those assumed by the ET KF, one would expect the ET
KF to have a reasonable chance of predicting the signal
error covariance produced by ensemble Kalman filters.

Using (15) and (8) in (6) gives the ET KF analysis
error covariance estimate

a f T f T f K3K T f T21P 5 Z CC Z 2 Z CG(G 1 I ) C Z
f K3K K3K K3K21 215 Z C[(G 1 I )(G 1 I ) 2 G(G 1 I ) ]

T f T3 C Z
f K3K T f T215 Z C(G 1 I ) C Z
f T f T5 Z TT Z , (18a)

where

T 5 C(G 1 IK3K)21/2 (18b)

is the sought after transformation matrix explicitly re-
ferred to in (6). In words, Eqs. (18a) and (18b) state
that in order to transform the set of perturbations Zf

whose outer product equals Pf into a set of perturbations
whose outer product equals Pa, one must set the trans-
formation matrix T equal to the orthonormal eigenvector
matrix C of Zf TH̃TH̃Zf postmultiplied by the inverse
square root of the sum of the identity matrix IK3K and
the eigenvalue matrix G.

Equations (4) and (18) imply that ET KF analysis
error covariance matrices may be written in the general
form

P(ti1m | ) 5 X(ti1m | Hi)Ti1m X(ti1m | Hi)T,q TH Ti1m i1m (19)

where Ti1m is a transformation matrix representing an
appropriate product of transformation matrices defined
according to (18b). Consequently,

q q TP(t | H ) 5 M(t, t )P(t | H )M(t, t )i1m i1m i1m i1m i1m

T5 X(t | H )T T X(t | H ) (20)i i1m i1m i

and hence propagating the error covariance matrix
through time only requires that one evaluates the en-
semble perturbations at a later time. Thus, in the ET
KF, error propagation is almost computation free once
the ensemble forecast has been run.

Further reductions in computational expense are ob-
tained by making appropriate use of serial processing
theory. The basic idea is to first estimate the effect of
the routine component of the observational network on
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FIG. 2. (a) The true vorticity at the targeting time (ti11 5 48 h)
and (b) the true vorticity at the verification time (ti1v 5 96 h). Vorticity
contours are every 0.3 3 1024 s21. As the vorticity in the barotropic
model is unforced and the boundary conditions are doubly periodic,
the continental outlines and latitude–longitude lines act merely as a
scale reference. One degree of latitude or longitude corresponds to
100 km in the model.

error covariance before estimating the effect of each of
the feasible deployments of the adaptive component of
the observational network. This serial processing ap-
proach is described in appendix B.

4. A simple test of the ET KF

a. The ‘‘agency’’ ensemble and the ‘‘truth’’ run

A barotropic numerical model was used to perform
a simple observation system simulation experiment
(OSSE). In order to obtain some interesting structures
in the truth run, tropical cyclonelike vortices (cf. Fig.
2) were grown from a barotropically unstable initial
state. This unstable state featured a barotropically un-
stable strip of high cyclonic (positive) vorticity remi-
niscent of the intertropical convergence zone (ITCZ)
and a broad barotropically unstable midlatitude vortex
strip. Broad strips of weak anticyclonic (negative) vor-
ticity lay between the cyclonic strips. The size of the
square domain was 6400 km 3 6400 km.

The meridional gradient of the Coriolis parameter b
was set equal to its actual value at 208N. The model
included a vortex-preserving relaxation scheme that
used a zonally uniform nudging term to keep the zonal
average of vorticity at each latitude line close to the
initial zonal average of vorticity.

To initiate barotropic instability, random noise was
added to the initially zonally invariant shear flow and
the model was run with a horizontal grid spacing of 50
km. Amplifying barotropic waves grew on the ITCZ-
like shear zone and subsequently rolled up into coherent
vortices. Once vortex rollup was complete, the model
fields were truncated to a horizontal resolution of 100
km and saved.

The initial condition for the base member of our hy-
pothetical forecasting agency’s ensemble forecast was
obtained by adding a random perturbation to the saved
field. An additional 64 agency initial conditions for a
65-member ensemble were obtained by adding the 64
largest scale-orthogonal sine and cosine perturbations
that are periodic on our chosen domain to the base mem-
ber. The perturbations were all given the same initial
streamfunction amplitude of 1414 m2 s21. With this
streamfunction amplitude, the largest scale perturbation
had a wind maximum of 0.2 m s21 while the smallest
scale wind perturbation had a wind maximum of 0.8 m
s21. For comparison, the maximum wind in the agency’s
base member was 25 m s21. All of the agency’s initial
conditions were integrated forward in time at a hori-
zontal resolution of 100 km.

In real atmosphere applications, model error makes
forecasts systematically different to reality. Such sys-
tematic differences make it impossible for ensemble per-
turbations to represent unbiased realizations of forecast
error (Smith 2000). Some models systematically over-
estimate the speed of coherent features such as low pres-
sure systems moving across significant topography (J.

M. Fritsch 1999, personal communication). In order to
emulate this type of error in our first-guess field, the
‘‘truth run’’ shown in Fig. 2 is made to be 24 h ahead
of the agency’s forecasts. To achieve this, we take the
agency’s base member, subtract the random perturbation
by which it differs from the saved fields, integrate the
resulting field for 24 h and then use this field as the
initial condition for the truth run. Since the truth run is
also run at 100 km, the models used for the truth and
agency runs are effectively equivalent. Consequently,
one can only count on the agency’s forecasts being sys-
tematically different to the truth for a finite number of
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FIG. 3. (a) The agency’s first-guess vorticity field (the ensemble
mean) at the targeting time and (b) the leading eigenvector of the
first-guess error covariance matrix. (c) A plot of the first-guess error
variance (the square of the ensemble spread). Contours are every 0.3
3 1024 s21 in (a) and every 0.03 3 1024 s21 in (b). First-guess error
variance shading intervals are every 0.3 3 1024 s22 in (c).

data assimilation cycles. That need not concern us here,
as we shall only be analyzing a single cycle.

To further increase the difference between the
agency’s forecast and the truth run, the agency’s forecast
was run for 48 h before any observations were taken.
For simplicity, in this experiment, we assume that there
is just one targeting time. Consequently, M 5 1 so that
the targeting time ti1M 5 ti11 5 (ti 1 48) h. The mean
x(ti11 | Hi) of the agency’s ti11 5 48 h vorticity forecast
is shown in Fig. 3a. The leading eigenvector of the
forecast error covariance matrix P(ti11 | Hi) is shown in
Fig. 3b. The ensemble X(ti11 | Hi) has more variance in
this direction than any other. The eigenvector has a but-
terfly pattern associated with each of the vortices in-
dicating disagreement between the ensemble members

about the location of the vortices. The butterfly pattern
associated with vortex C has positive values to the north
and negative to the south whereas vortex B has the
converse pattern. This indicates that there was signifi-
cant disagreement between the ensemble members about
the rate at which vortex B and C would rotate around
each other.

The vorticity variance of the ensemble X(ti11 | Hi)
about its mean is shown in Fig. 3c. The difference be-
tween x(ti11 | Hi) and the true vorticity (2a) is shown in
Fig. 4a. A comparison of Fig. 4a with Fig. 3b shows
that the first-guess error is somewhat similar to the lead-
ing eigenvector of the first guess error covariance ma-
trix.

b. Selection of two observation sites

For simplicity, suppose that just two targeted vorticity
observations at ti11 5 (ti 1 48) h could be used to sample
the first-guess error field shown in Fig. 4a at any of the
4096 grid points defining the model state. (We observe
vorticity simply because it is relatively easy to under-
stand how the vorticity field evolves through time.) To
achieve the observational objective of minimizing the
48-h forecast error variance for a verification region
covering the whole domain at a verification time ti1v 5
ti11 1 48 5 ti 1 96 h, where should the observations
be placed?

To answer this question, the ET KF could be used to
assess the error reducing effectiveness of all 4096!/
(4094!2!) ù 8.4 3 106 distinct possible combinations
of observations. However, in order to illustrate how the
serial observation processing discussed in appendix B
can greatly reduce the computational burden of iden-
tifying optimal combinations of adaptive observational
resources, we will find a suboptimal solution to the prob-
lem by first identifying the best site for a single obser-
vation of vorticity. The site for the second vorticity
observation will be obtained by using the serial assim-
ilation theory discussed in appendix B to find the best
site for an observation given that the best site for a
single observation was also observed. This serial pro-
cessing approach only requires the evaluation of 8192
future feasible observational networks.

Specifically, Eq. (17b) together with the ti1v 5 96 h
ensemble perturbations were used to find which of the
4096 grid points should be observed at ti11 5 48 h in
order to maximize the trace of the signal covariance
matrix, S(ti1v | ), associated with a single vorticityqH i11

observation at the qth grid point. As discussed in section
3, if the error covariances in both the ET KF and the
data assimilation scheme are accurately specified, then
the reduction in error covariance due to assimilating the
observation will be equal to the signal covariance due
to assimilating the observation. Under this assumption,
maximizing the trace of S(ti1v | ) is equivalent toqH i11

minimizing forecast error variance. To implement the
normalization of variables described by (8), it was as-
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FIG. 4. (a) The difference between the truth and the agency’s first
guess at the targeting time. (b) The ET KF analysis increment pro-
duced by vorticity observations at (128N, 838W) and (88N, 688W).
(c) The corresponding 3DVAR increment. (d) The 3DVAR increment
obtained if observations are taken at the four largest local maxima
of the signal variance map shown in Fig. 8. Contours are every 0.1
3 1024 s21 (the zero contour has been suppressed).

sumed that observations of vorticity had an uncorrelated
rms error of 0.01 3 1024 s21; that is, the observational
error covariance matrix 5 (0.01 3 1024)2 ,q p 3pa aR Ii11

where is a pa 3 pa identity matrix. Figure 4a showsp 3pa aI
how the trace of S(ti1v | ) varies as a function of theqH i11

location of the grid point observed. From this map, grid-
point number 481 at 88N and 688W was identified as
the best location to take a single observation.

The location of the second observation site was ob-
tained by constructing a map of the trace of the signal
covariance matrix as a function of the location of the
second observation given that the an observation was
also to be taken at 88N and 688W using the serial pro-
cessing approach described in section 3. This map is

shown in Fig. 5b. It indicates that there is little point
in taking additional observations near the vortex that
was sampled by the first observation and that the best
site for the second observation is at 128N, 838W. Note
that the two sites selected by the ET KF are intuitively
reasonable given that Fig. 2b indicates that, at the ver-
ification time ti12 5 96 h, the two vortices sampled rotate
around each other as if they were in the initial stages
of a vortex pairing instability. Note also that Figs. 5a
and 5b are the ET KF counterparts of Baker and Daley’s
(2000) single observation and marginal observation sen-
sitivity maps, respectively.

c. Effects of assimilating the observations

1) DATA ASSIMILATION WITH THE ET KF

To assimilate the observations with the ET KF, a nor-
malized observational operator H̃ to map the state vector
to the two selected sites was constructed. The values of
the vorticity observations at the two sites were taken to
be equal to the vorticity of the truth run at the two sites.
We chose not to add observational error onto the true
values for this ‘‘single cycle’’ illustration because it
eliminates concern that detrimental (or even beneficial)
aspects of the analysis increment might be due to ran-
dom observational error rather than the interaction be-
tween the first-guess error and the assimilation scheme.

With the observational operator H̃ and the observation
vector y defined for the two selected observation sites,
(16b) was used to obtain the ET KF analysis increment
at ti11 5 48 h. This increment is shown in Fig. 4b.
Comparison of this increment with Fig. 4a shows that
the increment made a qualitatively correct improvement
of vortices B and C. Figures 6 and 7 show that the
domain-averaged squared vorticity error of the ET KF
analysis and subsequent forecast are both substantially
smaller than the corresponding error of the first-guess
field.

2) QUASI-ISOTROPIC ERROR CORRELATION DATA

ASSIMILATION (3DVAR)

Currently, many operational data assimilation
schemes assume that the correlation function for pres-
sure and vorticity errors is quasi-isotropic, (e.g., Cour-
tier et al. 1998; Cohn et al. 1998; da Silva and Guo
1996; Parrish and Derber 1992). Thus, it is appropriate
for us to determine the analysis increment that results
if one approximates the first-guess error covariance ma-
trix by

Pf 5 aB, (21)

where a is a scalar coefficient and B is an isotropic
correlation matrix formed by assuming that the corre-
lation between the first-guess streamfunction errors be-
tween two points attenuates with the distance between
the two points according to
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FIG. 5. The vorticity signal variance at the verification time (ti1v

5 96 h) imparted by a single observation at the targeting time (ti11

5 48 h) is plotted as a function of the location of the observation in
(a). In order that our measure of vorticity error variance be repre-
sentative of the mean variance at each grid point, here and in all
subsequent diagrams, the variance has been divided by the number
of grid points. The further reduction in forecast error variance im-
parted by a second observation given the existence of a first obser-
vation at 88N, 688W is plotted as a function of the location of the
second observation in (b). Contour intervals are 0.01 3 10210 s22 for
(a) (beginning at 0.02 3 10210 s22) and 0.003 3 10210 s22 for (b)
(beginning at 0.006 3 10210 s22).

FIG. 6. Mean gridpoint enstrophy error (squared vorticity error) at
the analysis time, 24 and 48 h. Enstrophy errors are in multiples of
10210 s22.

rc 5 exp[ln(0.1)(r/D)2]. (22a)

As will be described in section 4e, the decorrelation
length scale D was optimized for taking vorticity ob-
servations at the targeting time. The optimal value was
found to be 500 km. The corresponding correlation func-
tion for vorticity errors is given by

c1] r]r
(r)1 2r]r ]r 2 cD 1] r]r

zr (r) 5 5 1 2 1 24r ln(0.1) r]r ]rc1] r]r
(0)1 2r]r ]r

2r
c5 r 1 1 ln(0.1) . (22b)

21 2D

Although there are not enough observations in our two-
observation experiment to justify the use of the online
estimation technique of Dee (1995),1 we used it here to
determine the scaling factor a because it is simple and
we found that our results were highly insensitive to a
wide range of reasonable choices of a.

The analysis increment obtained by assimilating the
two observations with this formulation is shown in Fig.
4c. Figures 6 and 7 show that the forecast for the ver-
ification time made from the analysis increment based
on the isotropic error correlation function (22b) is not
nearly as good as the improvement obtained from the
ET KF assimilation.

3) HAMILL AND SNYDER–TYPE HYBRID ENSEMBLE

KALMAN FILTER

The purely ensemble based forecast error covariances
assumed by the ET KF are unlikely to be used in an
operational data assimilation scheme because, among
other things, they are highly rank deficient. Reasonable
methods for increasing the rank of the forecast error
covariance matrices assumed by the ensemble Kalman
filter have been suggested by Houtekamer and Mitchell
(1998) and by Hamill and Snyder (2000). Here we fol-
low Hamill and Snyder (2000) and let

1 The application of Dee’s online estimation of a single scalar co-
efficient to the ET KF did not affect the ET KF increment very much.
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K 
T [x(t , k | H ) 2 x(t | H )][x(t , k | H ) 2 x(t | H )]O i11 i i11 i i11 i i11 i

 k51f  P 5 (1 2 a) 1 aB. (23)
K 2 1 

FIG. 7. The forecast error at the verification time from (a) the
agency’s first-guess field, (b) the two-observation ET KF increment,
(c) the two-observation 3DVAR increment, and (d) the four-obser-
vation 3DVAR increment. Vorticity contours are every 0.2 3 1024

s21 except for the zero contour, which has not been drawn.

The analysis increment obtained by assimilating the two
observations with this formulation is not shown in Figs.
4 and 6 because for these two observation sites the ET
KF increment is virtually indistinguishable from the hy-
brid ensemble KF (Ens KF).

d. Additional observations required to make 3DVAR
respond like an ensemble KF

We have seen that ET KF analysis increments are
strikingly different to three-dimensional variational
(3DVAR) increments that assume isotropic error cor-
relations. If the ET KF is used to position observations
that will be assimilated by 3DVAR it may be desirable
to choose a targeting strategy that will increase the
chances of the 3DVAR increment having the same qual-
itative features as a corresponding ET KF increment for
a number of reasons. First, the ET KF will be trust-
worthier if the 3DVAR increment is similar to the cor-
responding ET KF increment. Second, in our experi-
ments, the ET KF increments reduce forecast error more
than 3DVAR increments.

Figure 4c suggests that such 3DVAR increments may
be loosely thought of as being composed of overlaying
bull’s-eye patterns. The general features of an ET KF
increment may be anticipated before observations are
actually taken by examining a plot of the variances listed
on the diagonal of the signal covariance matrix S(ti11 | H)
(ti11 is the targeting time). Such plots show the estimated
reduction in analysis error variance produced by the
assimilation of the observations with the ET KF. Since
Eq. (17b) shows that the diagonal elements of S(ti11 | H)
give the expected variance of analysis increments, we
shall refer to such plots as signal variance plots.

Figure 8 shows an example of such a plot for the
observation sites selected in section 4b. A comparison
of Fig. 8 with Fig. 4b shows that the signal variance
field has similar qualitative features to the actual ET KF
analysis increment. To give the 3DVAR increment a
chance of attaining the qualitative features of an ET KF
increment, additional observations would need to be
taken to the south of vortex B and the north of vortex
C, respectively. The analysis increment obtained by as-
similating all four observations with 3DVAR is shown
in Fig. 4d. Figures 6 and 7 show that the skill of the
forecast that results from this four-observation 3DVAR
analysis is substantially better than the skill of the two-
observation 3DVAR forecast but still slightly less skilful
than the two-observation ET KF forecast.

e. Comparison of ET KF ranking of observation sites
with empirically determined ranking

As noted in section 3, in the simple targeting situa-
tions considered here, the signal variance at the veri-
fication time is equal to the reduction in error variance
at the verification time when error covariances are ac-
curately specified. Figure 5a shows a map of the signal
variance at the verification time as a function of the
location of a single observation. By actually assimilat-
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FIG. 8. The signal variance at the targeting time from the two
observation sites selected via the ET KF serial selection algorithm.
Shading contours are every 0.3 3 10210 s22.

FIG. 9. The squared signal due to assimilation of a single obser-
vation plotted as a function of the location of the observation. (a),
(b), and (c) Signals produced by the ET KF, hybrid Ens KF, and
3DVAR, respectively.

ing an observation at each of the sites and integrating
the resulting analysis forward in time, one can build
maps of the squared signal magnitude at the verification
time as a function of the observation location. These
maps are similar to those introduced by Morss (1999)
for a 3DVAR scheme. Figure 9 shows such maps for
the three data assimilation schemes mentioned in section
4c. Each point on these contour maps gives the squared
magnitude of a single signal realization as a function of
the observation site. In contrast, each point on the con-
tour map shown in Fig. 5a gives the expected or mean
squared signal magnitude as a function of observation
site.

While the ET KF data assimilation scheme map (Fig.
9a) is most similar to Fig. 5a, both the hybrid Ens KF
and the 3DVAR data assimilation schemes give patterns
that are also qualitatively similar to Fig. 5a. Thus, in
this case, the ET KF successfully anticipated the qual-
itative features of signal squared amplitude as a function
of observation site for a variety of data assimilation
schemes. Note also that the contour interval for Fig. 9c
is one-fifth of that used in Figs. 9a and 9b. This reflects
the fact that 3DVAR increments cover less geographical
area than the other types of increments.

When error covariances are perfectly specified in the
data assimilation scheme, taking observations always
reduces forecast error variance. Reducing forecast error
variance is, however, a very different thing than reduc-
ing forecast error in every single case. When error co-
variances are imperfectly specified, the signal variance
associated with observations will not necessarily be
equal to the reduction in forecast error variance.

With these points in mind, compare Fig. 5a with Figs.
10a and 10b, which show plots of the reduction in
squared forecast vorticity error as a function of the lo-
cation of a single error free observation that was assim-
ilated using the ET KF and hybrid Ens KF, respectively.
They show that, as might have been hoped, significant
forecast improvements result from placing observations
near vortices B and C in the manner indicated by the
reduction in forecast error variance plot shown in Fig.
5a. Note that while Fig. 5a indicates that observing vor-
tex C would reduce expected forecast error variance
slightly more than observing vortex B, Figs. 10a and

10b show that observations of vortex B reduced forecast
error more than observations of vortex C. This fact alone
does not mean that the information in Fig. 5a is incor-
rect. Figures 10a and 10b represent individual realiza-
tions of forecast error reduction whereas Fig. 5a rep-
resents the average reduction in forecast error variance
over many different realizations of first-guess and ob-
servation error.

The contour interval in Fig. 10c is half of that used
in Figs. 10b and 10c. Thus, assimilating a single ob-
servation with the 3DVAR scheme has much less impact
on the forecast than assimilating with either the hybrid
or ET KF schemes. For all of the schemes, there are a
considerable number of sites where assimilating a single
observation degrades forecast accuracy. Interestingly,
Fig. 11 shows that many of the observation sites that
led to improved analyses went on to produce forecasts
of degraded accuracy, for example, observation sites
near 108N, 558W. An attractive feature of the hybrid
scheme is that while the large forecast improvements it
yields from observations near vortices B and C are sim-
ilar to those produced by the ET KF, it produces smaller
and less frequent forecast degradations than those pro-
duced by the ET KF.

To assess the extent that improvements outweigh deg-
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FIG. 10. As in Fig. 9 but here the reduction in squared vorticity
forecast error due to the assimilation of a single observation plotted
as a function of the location of the observation. This reduction in
squared vorticity error is the difference between the domain-averaged
squared error of a 48-h forecast that did not use the targeted obser-
vations and one that did. Positive values correspond to forecast im-
provements. Contour intervals are 0.25 3 10210 s22 in (a) and (b),
but are 0.125 3 10210 s22 in (c).

FIG. 11. As in Fig. 10 but here the reduction in squared vorticity
analysis error is plotted. Contour intervals are 0.05 3 10210 s22 for
(a) and (b), but are 0.025 3 10210 s22 in (c).

FIG. 12. The horizontal average of the reductions in enstrophy error
(squared vorticity error) from the single observation increments at
the targeting time, 24 h later, and at the verification time. Note that
the values given by the curves at the verification time represent hor-
izontal averages of the three fields plotted in Fig. 10.

radations, Fig. 12 shows the horizontal average of the
reductions in enstrophy error from single observations.
It indicates that forecast improvements outweigh fore-
cast degradations for all of the data assimilation schemes
and that the improvement is larger for the hybrid Ens
KF scheme than it is for the other two schemes. In
considering this diagram, one should note that the cor-
relation length scale D required by the 3DVAR data
assimilation scheme was chosen by searching for the
correlation length scale D that maximized the mean fore-
cast improvement delivered by 3DVAR. Thus, the
3DVAR result shown in Fig. 12 represents an upper
bound on what could be achieved with 3DVAR. In con-
trast, the ensemble covariances used by the ET KF and
hybrid schemes were deliberately degraded by making
the agency’s first-guess field lag the truth by 24 h. De-
spite this both schemes outperformed 3DVAR. Finally,
we note that the hybrid’s a was tuned to maximize the
mean forecast improvement produced by the hybrid
scheme.
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5. Concluding remarks

Forecast signal variance has been defined to be the
variance of forecast signals that could be imparted by
targeted observations. If the error covariances in the data
assimilation scheme are accurately specified, forecast
signal variance corresponds to the reduction in forecast
error variance. To test the ET KF’s predictions of the
forecast signal variance associated with a single future
observation, OSSEs were performed. In these OSSEs,
maps of the ET KF–predicted forecast signal variance
as a function of the location of a single observation
were compared with empirically determined maps of
squared forecast signal and maps of the reduction in
squared forecast error as a function of observation sites.
The empirical maps were produced by performing sep-
arate assimilation and forecast cycles for every possible
location of a single observation using an ET KF, a
3DVAR, and a hybrid ensemble Kalman filter data as-
similation scheme.

For all of the data assimilation schemes tested, the
maps of ET KF–predicted signal variance as a function
of observation site were found to capture the same qual-
itative features as the empirically determined maps of
squared forecast signal as a function of observation site.
The degree of correspondence between these empiri-
cally determined squared forecast signal maps and cor-
responding empirically determined reduction in squared
forecast error maps was higher for the ensemble-based
data assimilation schemes than it was for the 3DVAR
data assimilation scheme. This finding indicates that the
error covariance model of the ensemble-based data as-
similation schemes was superior to the 3DVAR co-
variance model. It is also consistent with the fact that
the overall forecast error reduction produced by the en-
semble-based data assimilation schemes was signifi-
cantly greater than that produced by the 3DVAR data
assimilation scheme.

The ET KF was better able to anticipate the signals
produced by ensemble-based data assimilation schemes
than 3DVAR. As such, the ET KF is likely to be a more
reliable targeting tool in cases where data assimilation
schemes capable of inferring flow-dependent error sta-
tistics are used to assimilate targeted data. The ensem-
ble-based data assimilation schemes of Houtekamer and
Mitchell (1998), Anderson and Anderson (1999), and
Hamill and Snyder (2000) fall into this category as do
4DVAR schemes such as those discussed by Desroziers
et al. (1999) and Rabier et al. (2000). Via dynamical
constraints, 4DVAR schemes produce analysis incre-
ments qualitatively similar to those that would be ob-
tained from a scheme that incorporated flow-dependent
error covariances similar to those used by the ET KF.
A detailed analysis of the importance of flow-dependent
error covariances to assimilating targeted data can be
found in Fischer et al. (1998).

To improve the performance of 3DVAR in targeting
experiments, we have suggested that additional obser-

vations be placed at the maxima of the appropriate ET
KF signal variance field. Whether such a strategy would
be effective in a more sophisticated model or in a field
program is a subject for future research.

The 3DVAR scheme used in this paper assumed iso-
tropic first-guess error correlations qualitatively similar
to those assumed by the data assimilation schemes used
in the assessments of adaptive observations made by
Szunyogh et al. (1999a,b), Langland et al. (1999), Ber-
got (1999), and Morss et al. (2001). Our finding that
ensemble-based data assimilation schemes are much
better than 3DVAR at extracting forecast improvements
from a couple of irregularly distributed observations
suggests that the positive effects of adaptive observa-
tions on forecast accuracy reported by these authors
might be greatly enhanced by more sophisticated data
assimilation schemes. Indeed, work by Fischer et al.
(1998), Bergot (2000), and Rabier et al. (2000) indicates
that the positive effect of FASTEX targeted observa-
tions is much greater when a 4DVAR data assimilation
scheme is used.
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APPENDIX A

Extension to Unified Data Assimilation Notation

Ide et al.’s (1997) unified data assimilation notation
does not provide a symbolic means for representing the
error covariances and estimates associated with future
feasible sequences of observational networks. To suit-
ably extend Ide et al.’s nomenclature, in section 2, we
borrowed from Cohn et al.’s (1994) and Todling et al.’s
(1998) conditional subscript notation. This subscript no-
tation made explicit the fact that every estimate of the
state of the atmosphere and its corresponding error co-
variance matrix is conditional on some temporal se-
quence of observations. Their notation specified the last
observations used in making an estimate of the state of
the atmosphere; for example, the subscripts on fxi21

would indicate that it represents the state estimate at ti

given observations up to and including those taken at
ti21. In adaptive sampling, one considers state estimates
that will be based on a choice of future possible ob-
servational networks. Thus, one not only needs to spec-
ify the time of the last observations used in estimating
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the state of the atmosphere but also which of the future
feasible sequences of observations were used in obtain-
ing the estimate. As discussed in section 2, this goal is
achieved by letting denote the observation operatorqH i1m

at the time ti1m associated with the qth feasible sequence
of future observational networks, denote the cor-qRi1m

responding observation error covariance matrix,
x(t | ) denote the estimate of the state of the at-qH i1m

mosphere at the time t given the observations associated
with the qth feasible sequence of observations up to the
time ti1m, and P(t | ) denote the error covariance ofqH i1m

the estimate. This conditionality on a sequence of ob-
servations is the key change to Ide et al.’s notation re-
quired by the adaptive sampling problem. Note that we
do not add to our conditional notation Ide et al.’s f and
a superscripts for forecasts and analyses, respectively.
Such superscripts are redundant when our observation
operator conditional notation is used.

APPENDIX B

Serial Observation Processing

The effect on error covariance of serially assimilating
mutually noncovariant subsets of observational data is
equivalent to assimilating all of the observations all at
once (cf. Bierman 1977; Berliner et al. 1999). Two
proofs of this fact, a lengthy one in terms of the rank
deficient matrices used in this paper and a shorter one
based on Bayes’ theorem can be obtained from the au-
thors of this paper. In the context of targeting, serial
observation processing is particularly useful when all
of the targeted observations are taken at one time ti1M

and/or when there are many reconnaissance aircraft that
one must simultaneously deploy.

In cases where all of the targeted observations are
taken at just one time ti1M and only the routine com-
ponent of the observational network is used between ti

and ti1M, the analysis error covariance matrix at
P(ti1M21 | ) is the same for all values q. Thus, oneqHi1M

only needs to evaluate this matrix for one of the feasible
sequences of observational networks. At ti1M however,
there are Q feasible observational deployments that one
must test. Each of these deployments is composed of
pr routine and pa adaptive observations (p 5 pr 1 pa).
Since pa is typically several orders of magnitude smaller
than pr ; O(105), one achieves a significant compu-
tational advantage by first finding the analysis error co-
variance matrix associated with the routine observa-
tional network at ti1M and then using this matrix as the
prior or first-guess error covariance matrix for the as-
similation of differing deployments of the adaptive com-
ponent of the observational network at ti1M.

To see this, it is convenient to decompose the obser-
vation operator into its routine and adaptive com-qHi1M

ponents using

rĤi1MqH 5 , (B1)i1M qˆ[ ]Hi1M

where is a p 3 L matrix where L is the length ofqHi1M

the state vector, is a pr 3 L matrix observationrĤi1M

operator for the routine component of the observational
network at ti1M, and is a pa 3 L matrix observationqĤi1M

operator for the adaptive part of the qth feasible se-
quence of observations at ti1m. We let andr qˆ ˆR Ri1M i1M

denote the corresponding routine and adaptive com-
ponents of the observation error covariance matrix

. This partition of the observation error covarianceqR̂i1M

matrix is only possible when adaptive observation errors
are uncorrelated with routine observation errors.

The analysis error covariance matrix P(ti1M | )rĤi1M

that would result from the assimilation of routine ob-
servations at ti1M is given by

r q q rTˆ ˆP(t | H ) 5 P(t | H ) 2 P(t | H )Hi1m i1M i1M i1M21 i1M i1M21 i1M

r q rT r 21ˆ ˆ3 [H P(t | H )H 1 R ]i1M i1M i1M21 i1M i1M

r qˆ3 H P(t | H ).i1M i1M i1M21 (B2)

Using P(ti1M | ) as the prior or first-guess error co-rĤi1M

variance matrix to estimate the additional effect on error
covariance due to the qth feasible deployment of the
adaptive component of observational resources gives

q r r qTˆ ˆ ˆP[t | H ] 5 P(t | H ) 2 P(t | H )Hi1M i1M i1M i1M i1M i1M i1M

q r qT q 21ˆ ˆ ˆ ˆ3 [H P(t | H )H 1 R ]i1M i1M i1M i1M i1M

q rˆ ˜3 H P(t | H ).i1M i1m i1m (B3)

As discussed in section 3, to express the right-hand side
of (B3) in terms of an outer product of ensemble per-
turbations, one needs to evaluate a K 3 K matrix of the
form Zf T ( )21 Zf . In evaluating the terms ofqT q qˆ ˆ ˆH R Hi1M i1M i1M

this matrix, one incurs a computational cost proportional
to the cost of evaluating the inner product of two vectors
of length pa. This cost is many orders of magnitude
smaller than the cost of evaluating the inner products
of vectors of length p that would have been required to
evaluate Zf T ( )21 Zf if we had not used serialqT q qH R Hi1M i1M i1M

observation processing. Since this cost gain is achieved
for each of the Q feasible deployments of observations,
this type of serial observation processing yields a huge
computational advantage whenever there are many more
routine observations than adaptive observations.

Serial processing of observations may also be used
to rapidly find a highly skillful deployment of obser-
vational resources when there are just too many possible
deployments of adaptive observations to assess all of
them individually. For example, suppose one had 10
dropwindsonde-equipped planes with which to deploy
targeted observations and that each of those planes was
capable of 103 distinct deployments of dropwindsondes.
The number of feasible observational deployments
would then be equal to 103!/[(103 2 10)!10!] 5 2.6 3
1023. The individual evaluation of the merits of such a
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large number of observational networks would be im-
practical. Serial processing of observations offers a
computationally tractable alternative. First, the ET KF
is used to determine how to deploy just one of the planes
if only one of the planes were available. The analysis
error covariance matrix associated with this particular
deployment is then used as the prior error covariance
matrix to determine how to deploy the second plane
given that the first plane was to be deployed under the
assumption that it was the only plane being deployed.
One then repeats this procedure until flight paths for all
10 planes have been determined. Such a calculation
would only require the assessment of 104 individual
deployments. Although this serial approach to deciding
how to deploy the 10 planes does not necessarily yield
the optimal deployment of the 10 planes, it does provide
an objective framework for selecting 10 nonredundant
observation deployments.
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