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Collatz map and Collatz conjecture

Let n ∈ N. Define the Collatz map:

if n is even n =⇒ Col(n) = n
2

if n is odd n =⇒ Col(n) = 3n + 1

What happens then? does it grows to infinity? does it get small?
Let’s see what happens with 7.

People have tried lots of numbers beginning this way, and so far all
have gone to 1 (up to 1020)

This leads to the Collatz conjecture (1937):
every number will ”fall” on 1:
Colmin(n) = inf j∈N Col j(n) = inf{Col(n),Col2(n)...} = 1
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Collatz trajectories

Some numbers have particularly nice trajectories: e.g. n = 27 goes
up to 9232, but after 111 steps (”flight duration”) it falls onto 1.

”Hailstone numbers”: patterns the rise and fall of hailstones in the
clouds.

http://l.pellegrino.free.fr/syracuse/index.php

on the left: Orbits of the first 1000 numbers. on the right: Another visualization for
n’s smaller than 10000 (does it help understanding why no one’s got a clue?)

http://l.pellegrino.free.fr/syracuse/index.php


Interest around Collatz conjecture

It is the simplest
open problem in
mathematics, yet
still not solved.

Paul Erdös : ”Math-
ematics is not yet
ready for such prob-
lem”.



Why would we care about this conjecture?

I It is expected to answer to the question: In what ways does
the prime factorization of n affects the prime factorization of
n + 1?
(adding 1 ”shuffles” the prime factors). Virtually all of
modern security relies upon the current limitations of the
understanding of prime numbers.

I Even if the problem does not seem important, it might bring
new important branches in mathematics:
Example: Fermat’s last theorem 6 ∃a, b, c ∈ N∗ s.t.
an + bn = cn for n ≥ 2. Wiles’s proof in 1994 involved new
techniques that revolutionized number theory and implied new
results on elliptic curves

I Some mathematicians think it might be an example of a
statement unprovable with the current axioms of mathematics
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Two subproblems

Collatz’s conjecture is that every trajectory ends on 1. It is natural
to ask ourselves what is the long-term behavior of a trajectory.
There are thus two subproblems (none of them solved yet)

1. is there any divergent trajectory? (going to ∞)

2. If a trajectory is upperbounded, it contains repetitions and get
stuck in a cycle. Is 1 =⇒ 4 =⇒ 2 the only cycle?



Some known results
I It has been proved that the Collatz map admits no cycle of

length between 4 and around 17 000 000 000 on N+.

There are three (maybe the only ones) known cycles on the negative integers:

I trajectory of −1 is a cycle of length 2: −1 =⇒ 3× (−1) = −2 =⇒ −1

I trajectory of −5 is a cycle of length 5:
−5 =⇒ −14 =⇒ −7 =⇒ −20 =⇒ −10 =⇒ −5

I −17 gives a cycle of length 18

I what about other related maps? e.g. Conway’s generalized
maps: g(n) = ain + bi , n ≡ i (mod P) where
a0, b0, . . . , aP−1, bP−1 ∈ Q.

It was shown that this family is undecidable (=some elements
in the family are): no algorithm can take as input a
Collatz-like function and decide yes/no to whether every
integer iterates to 1 under the inputted Collatz function.

But it does not say anything on the decidability of the particular Collatz
problem...
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Some news this week

Terence Tao (2006 Field’s medal) came with new results this week.

on the left: Terence Tao with Paul Erdös in 1985. on the right: Terence’s paper (8th

September 2019)



Definition

An almost bounded grows more slowly than any function that
tends to infinity.
For example, N0.00000001 , or log log log log N grow ”slowly” but they tend towards
infinity as N gets larger. An almost bounded function grows more slowly than both of
them by definition (it can also be bounded).

Definition

Let A ⊂ N set of integers and x a cutoff. The natural density and
log density of A are respectively:

∆(A) = lim
x→∞

|A ∩ [1, x ]|
x

δ(A) = lim
x→∞

∑
n∈A,n≤x

1
n

log x

So we still don’t have a ”for all N” result...


