Exploring patterns enriched in a dataset with contrastive principal component analysis

Abubakar Abid, Martin J. Zhang, Vivek K. Bagaria & James Zou

Nature Communications, 2018

18th Feb, 2019

Background

- Dimensionality reduction is a fundamental tool for exploratory data analysis and visualization.
- While there are many dimensionality reduction methods these methods typically assume a single dataset.
- However, it is often the case we have multiple datasets and wish to find projections which exhibit interesting differences between the datasets.

Background

- Dimensionality reduction is a fundamental tool for exploratory data analysis and visualization.
- While there are many dimensionality reduction methods these methods typically assume a single dataset.
- However, it is often the case we have multiple datasets and wish to find projections which exhibit interesting differences between the datasets.

Contrastive PCA

- ▶ We observe target data $\{\mathbf{x}_i \in \mathbb{R}^d\}$ and background data $\{\mathbf{y}_i \in \mathbb{R}^d\}$ with sample covariances C_X and C_Y .
- For any unit vector **v**, define:

$$\lambda_X(\mathbf{v}) = \mathbf{v}^T C_X \mathbf{v}$$
$$\lambda_Y(\mathbf{v}) = \mathbf{v}^T C_Y \mathbf{v}$$

Standard PCA simply maximizes λ_X(v) ⇒ problematic if leading eigenvectors are shared in C_X and C_Y.

Contrastive PCA

- ▶ We observe target data $\{\mathbf{x}_i \in \mathbb{R}^d\}$ and background data $\{\mathbf{y}_i \in \mathbb{R}^d\}$ with sample covariances C_X and C_Y .
- For any unit vector **v**, define:

$$\lambda_X(\mathbf{v}) = \mathbf{v}^T C_X \mathbf{v}$$
$$\lambda_Y(\mathbf{v}) = \mathbf{v}^T C_Y \mathbf{v}$$

- Standard PCA simply maximizes λ_X(v) ⇒ problematic if leading eigenvectors are shared in C_X and C_Y.
- For a fixed α ∈ ℝ₊, contrastive PCA solves the following optimization:

$$\mathbf{v}^* = \underset{\mathbf{v}}{\operatorname{argmax}} \left\{ \lambda_X(\mathbf{v}) - \alpha \lambda_Y(\mathbf{v}) \right\}$$
$$= \underset{\mathbf{v}}{\operatorname{argmax}} \left\{ \mathbf{v}^T (C_X - \alpha C_Y) \mathbf{v} \right\}$$

Special case: simultaneously diagonalizable system

• We assume C_X and C_Y have shared eigen-structure such that:

$$C_X = Q \Lambda_X Q^T$$
 and $C_Y = Q \Lambda_Y Q^T$

for $\Lambda_X = \text{diag}(\lambda_{X,1}, \dots, \lambda_{X,d})$ and where $\mathbf{q}_1, \dots, \mathbf{q}_d$ are eigenvectors.

► Then we can write any unit vector in terms of the basis defined by Q as: $\mathbf{v} = \sum_{i=1}^{d} \sqrt{c_i} \mathbf{q}_i$ where $\sum_{i=1}^{d} c_i = 1$.

Special case: simultaneously diagonalizable system

• We assume C_X and C_Y have shared eigen-structure such that:

$$C_X = Q\Lambda_X Q^T$$
 and $C_Y = Q\Lambda_Y Q^T$

for $\Lambda_X = \text{diag}(\lambda_{X,1}, \dots, \lambda_{X,d})$ and where $\mathbf{q}_1, \dots, \mathbf{q}_d$ are eigenvectors.

► Then we can write any unit vector in terms of the basis defined by Q as: $\mathbf{v} = \sum_{i=1}^{d} \sqrt{c_i} \mathbf{q}_i$ where $\sum_{i=1}^{d} c_i = 1$.

- Thus $\lambda_X(\mathbf{v}) = \sum_{i=1}^d c_i \lambda_{X,i}$ and similarly for $\lambda_Y(\mathbf{v})$.
- v^{*} will be along bottom right of figure ⇒ convex hull of eigenvalues, will be piecewise linear

Final example

