Exploring patterns enriched in a dataset with contrastive principal component analysis

Abubakar Abid, Martin J. Zhang, Vivek K. Bagaria \& James Zou

Nature Communications, 2018

18th Feb, 2019

Background

- Dimensionality reduction is a fundamental tool for exploratory data analysis and visualization.
- While there are many dimensionality reduction methods these methods typically assume a single dataset.
- However, it is often the case we have multiple datasets and wish to find projections which exhibit interesting differences between the datasets.

Background

- Dimensionality reduction is a fundamental tool for exploratory data analysis and visualization.
- While there are many dimensionality reduction methods these methods typically assume a single dataset.
- However, it is often the case we have multiple datasets and wish to find projections which exhibit interesting differences between the datasets.

Contrastive PCA

- We observe target data $\left\{\mathbf{x}_{i} \in \mathbb{R}^{d}\right\}$ and background data $\left\{\mathbf{y}_{i} \in \mathbb{R}^{d}\right\}$ with sample covariances C_{X} and C_{Y}.
- For any unit vector \mathbf{v}, define:

$$
\begin{aligned}
& \lambda_{X}(\mathbf{v})=\mathbf{v}^{T} C_{X} \mathbf{v} \\
& \lambda_{Y}(\mathbf{v})=\mathbf{v}^{T} C_{Y} \mathbf{v}
\end{aligned}
$$

- Standard PCA simply maximizes $\lambda_{X}(\mathbf{v}) \Rightarrow$ problematic if leading eigenvectors are shared in C_{X} and C_{Y}.

Contrastive PCA

- We observe target data $\left\{\mathbf{x}_{i} \in \mathbb{R}^{d}\right\}$ and background data $\left\{\mathbf{y}_{i} \in \mathbb{R}^{d}\right\}$ with sample covariances C_{X} and C_{Y}.
- For any unit vector \mathbf{v}, define:

$$
\begin{aligned}
& \lambda_{X}(\mathbf{v})=\mathbf{v}^{T} C_{X} \mathbf{v} \\
& \lambda_{Y}(\mathbf{v})=\mathbf{v}^{T} C_{Y} \mathbf{v}
\end{aligned}
$$

- Standard PCA simply maximizes $\lambda_{X}(\mathbf{v}) \Rightarrow$ problematic if leading eigenvectors are shared in C_{X} and C_{Y}.
- For a fixed $\alpha \in \mathbb{R}_{+}$, contrastive PCA solves the following optimization:

$$
\begin{aligned}
\mathbf{v}^{*} & =\underset{\mathbf{v}}{\operatorname{argmax}}\left\{\lambda_{X}(\mathbf{v})-\alpha \lambda_{Y}(\mathbf{v})\right\} \\
& =\underset{\mathbf{v}}{\operatorname{argmax}}\left\{\mathbf{v}^{T}\left(C_{X}-\alpha C_{Y}\right) \mathbf{v}\right\}
\end{aligned}
$$

Special case: simultaneously diagonalizable system

- We assume C_{X} and C_{Y} have shared eigen-structure such that:

$$
C_{X}=Q \Lambda_{X} Q^{T} \quad \text { and } \quad C_{Y}=Q \Lambda_{Y} Q^{T},
$$

for $\Lambda_{X}=\operatorname{diag}\left(\lambda_{x, 1}, \ldots, \lambda_{X, d}\right)$ and where $\mathbf{q}_{1}, \ldots, \mathbf{q}_{d}$ are eigenvectors.

- Then we can write any unit vector in terms of the basis defined by Q as: $\mathbf{v}=\sum_{i=1}^{d} \sqrt{c_{i}} \mathbf{q}_{i}$ where $\sum_{i=1}^{d} c_{i}=1$.

Special case: simultaneously diagonalizable system

- We assume C_{X} and C_{Y} have shared eigen-structure such that:

$$
C_{X}=Q \Lambda_{X} Q^{T} \quad \text { and } \quad C_{Y}=Q \Lambda_{Y} Q^{T}
$$

for $\Lambda_{X}=\operatorname{diag}\left(\lambda_{X, 1}, \ldots, \lambda_{X, d}\right)$ and where $\mathbf{q}_{1}, \ldots, \mathbf{q}_{d}$ are eigenvectors.

- Then we can write any unit vector in terms of the basis defined by Q as: $\mathbf{v}=\sum_{i=1}^{d} \sqrt{c_{i}} \mathbf{q}_{i}$ where $\sum_{i=1}^{d} c_{i}=1$.
- Thus $\lambda_{X}(\mathbf{v})=\sum_{i=1}^{d} c_{i} \lambda_{X, i}$ and similarly for $\lambda_{Y}(\mathbf{v})$.
- \mathbf{v}^{*} will be along bottom right of figure \Rightarrow convex hull of eigenvalues, will be piecewise linear

Final example

