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Background

I Dimensionality reduction is a fundamental tool for exploratory
data analysis and visualization.

I While there are many dimensionality reduction methods these
methods typically assume a single dataset.

I However, it is often the case we have multiple datasets and
wish to find projections which exhibit interesting
differences between the datasets.
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Contrastive PCA

I We observe target data {xi ∈ Rd} and background data
{yi ∈ Rd} with sample covariances CX and CY .

I For any unit vector v, define:

λX (v) = vTCXv

λY (v) = vTCY v

I Standard PCA simply maximizes λX (v) ⇒ problematic if
leading eigenvectors are shared in CX and CY .

I For a fixed α ∈ R+, contrastive PCA solves the following
optimization:

v∗ = argmax
v

{λX (v)− αλY (v)}

= argmax
v

{
vT (CX − αCY )v

}
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Special case: simultaneously diagonalizable system
I We assume CX and CY have shared eigen-structure such that:

CX = QΛXQ
T and CY = QΛYQ

T ,

for ΛX = diag(λX ,1, . . . , λX ,d) and where q1, . . . ,qd are
eigenvectors.

I Then we can write any unit vector in terms of the basis
defined by Q as: v =

∑d
i=1

√
ciqi where

∑d
i=1 ci = 1.

I Thus λX (v) =
∑d

i=1 ciλX ,i and
similarly for λY (v).

I v∗ will be along bottom right
of figure ⇒ convex hull of
eigenvalues, will be piecewise
linear
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Final example


