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Background

» Dimensionality reduction is a fundamental tool for exploratory
data analysis and visualization.

> While there are many dimensionality reduction methods these
methods typically assume a single dataset.

» However, it is often the case we have multiple datasets and
wish to find projections which exhibit interesting
differences between the datasets.
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Contrastive PCA

» We observe target data {x; € R} and background data
{y; € R?} with sample covariances Cx and Cy.

» For any unit vector v, define:
Ax(v) = v Cxv
Ay(v) = v Cyv

» Standard PCA simply maximizes Ax(v) = problematic if
leading eigenvectors are shared in Cx and Cy.
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» We observe target data {x; € R} and background data
{y; € R?} with sample covariances Cx and Cy.

» For any unit vector v, define:
Ax(v) = v Cxv
Ay(v) = v Cyv

» Standard PCA simply maximizes Ax(v) = problematic if
leading eigenvectors are shared in Cx and Cy.

» For a fixed « € R, contrastive PCA solves the following
optimization:

vt = arg‘rlnax {Ax(v) — aiy(v)}

= argmax {VT(CX — osz)v}



Special case: simultaneously diagonalizable system

» We assume Cx and Cy have shared eigen-structure such that:
Cx = QAxQT and Cy = QAvQT,

for Ax = diag(Ax 1,...,Ax,q) and where qy,...,qy are
eigenvectors.
» Then we can write any unit vector in terms of the basis

defined by @ as: v =9 \/Ciq; where Y9 a=1
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Final example
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