
Convolutional Kernel Networks

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid

Arthur Gretton’s notes

August 6, 2015

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 1 / 10

What the paper is about

Main ideas: explicitly design feature spaces for ML on images (retrieval,
classification) which

1 build more complex (hierarchical) feature spaces from simpler ones
2 achieve similar local invariance, and fine-to-coarse parts-based

features, as convolutional neural nets
The resulting architectures are kernel based (!) and obtain similar
performance to CNNs, but much more shallow (2 layers) and with many
fewer parameters.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 2 / 10

First: a basic kernel for images

A basic kernel between two images:
The image is on coordinate space Ω0 = [−1, 1]2

A coordinate on the image is z ∈ Ω0.
The feature at z is ϕ0(z) ∈ H0. E.g. vector of RGB values, so
ϕ(zk) ∈ R3.

Then a kernel between two images (as described entirely by features ϕ,ϕ′)
is average over kernels at each coordinate pair

K(ϕ,ϕ′) =
∑

z∈Ω

∑

z′∈Ω

‖ϕ0(z)‖H0

∥∥ϕ′0(z′)
∥∥
H0

e−
1
β2 ‖z−z′‖2e−

1
σ2 ‖ϕ̃0(z)−ϕ̃′0(z′)‖2 ,

where
ϕ̃0 (z) =

ϕ0(z)

‖ϕ0(z)‖H0

β is the “local shift invariance” parameter.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 3 / 10

First: a basic kernel for images

Some useful features:
H0 = R2 is the 2-D gradient of the image at pixel z.Then ϕ̃0 (z) is
orientation and ‖ϕ0(z)‖H0

is intensity.
H0 = Rm×m are the pixel intensities centred at patch z. ϕ̃0 (z) is
contrast-normalized map.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 4 / 10

Next: kernel defined on a Hilbert space input

The input feature space is defined as ϕk−1 : Ωk−1 → Hk−1.
i.e. the input feature at coordinate zk ∈ Ωk−1 is ϕ(zk).
From prev. slide: in the case of Ω0 these are e.g. raw RGB values.

Define the local patches

{zk}+ Pk−1 ⊂ Ωk−1

Define the feature space Hk at level k , between two patches at level k − 1,

Kk(zk , z′k) =
∑

z∈Pk

∑

z′∈Pk

‖ϕk−1(zk + z)‖Hk−1

∥∥ϕ′k−1(z′k + z′)
∥∥
Hk−1

× e
− 1

β2
k
‖z−z′‖2

e
− 1

σ2
k
‖ϕ̃k−1(zk+z)−ϕ̃′k−1(z′k+z)‖2Hk−1

=
〈
ϕk(zk), ϕ′k(z′k)

〉
Hk

(1)

Coordinates zk apply to levels Ωk and Ωk−1.
Not average kernel on features over whole image - just the average on
two (local) patches

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 5 / 10

Next: kernel defined on a Hilbert space input

Ω0ϕ0(z0) ∈ H0

{z1} + P1

ϕ1(z1) ∈ H1
Ω1

{z2} + P2

Ω2

ϕ2(z2) ∈ H2

(a) Hierarchy of image feature maps.

Ω′
k–1

ξk–1(z)
ψk–1(zk–1)
(patch extraction)

{zk–1}+P ′
k–1

convolution
+ non-linearity

pk

ζk(zk–1)

Ωk–1

Gaussian filtering
+ downsampling
= pooling

Ω′
k

ξk(z)

(b) Zoom between layer k–1 and k of the CKN.

Figure 1: Left: concrete representation of the successive layers for the multilayer convolutional
kernel. Right: one layer of the convolutional neural network that approximates the kernel.

3 Training Invariant Convolutional Kernel Networks

Generic schemes have been proposed for approximating a non-linear kernel with a linear one, such
as the Nyström method and its variants [5, 31], or random sampling techniques in the Fourier do-
main for shift-invariant kernels [24]. In the context of convolutional multilayer kernels, such an
approximation is critical because computing the full kernel matrix on a database of images is com-
putationally infeasible, even for a moderate number of images (≈ 10 000) and moderate number of
layers. For this reason, Bo et al. [2] use the Nyström method for their hierarchical kernel descriptors.

In this section, we show that when the coordinate sets Ωk are two-dimensional regular grids, a
natural approximation for the multilayer convolutional kernel consists of a sequence of spatial con-
volutions with learned filters, pointwise non-linearities, and pooling operations, as illustrated in
Figure 1(b). More precisely, our scheme approximates the kernel map ofK defined in (1) at layer k
by finite-dimensional spatial maps ξk : Ω′

k → Rpk , where Ω′
k is a set of coordinates related to Ωk,

and pk is a positive integer controlling the quality of the approximation. Consider indeed two images
represented at layer k by image feature maps ϕk and ϕ′

k, respectively. Then,

(A) the corresponding maps ξk and ξ′
k are learned such thatK(ϕk–1,ϕ

′
k–1) ≈ ⟨ξk, ξ′

k⟩, where ⟨., .⟩
is the Euclidean inner-product acting as if ξk and ξ′

k were vectors in R|Ω′
k|pk ;

(B) the set Ω′
k is linked to Ωk by the relation Ω′

k = Ωk + P ′
k where P ′

k is a patch shape, and
the quantities ϕk(zk) in Hk admit finite-dimensional approximations ψk(zk) in R|P′

k|pk ; as
illustrated in Figure 1(b), ψk(zk) is a patch from ξk centered at location zk with shape P ′

k;
(C) an activation map ζk : Ωk–1 &→ Rpk is computed from ξk–1 by convolution with pk filters

followed by a non-linearity. The subsequent map ξk is obtained from ζk by a pooling operation.

We call this approximation scheme a convolutional kernel network (CKN). In comparison to CNNs,
our approach enjoys similar benefits such as efficient prediction at test time, and involves the same
set of hyper-parameters: number of layers, numbers of filters pk at layer k, shape P ′

k of the filters,
sizes of the feature maps. The other parameters βk,σk can be automatically chosen, as discussed
later. Training a CKN can be argued to be as simple as training a CNN in an unsupervised man-
ner [25] since we will show that the main difference is in the cost function that is optimized.

3.1 Fast Approximation of the Gaussian Kernel

A key component of our formulation is the Gaussian kernel. We start by approximating it by a linear
operation with learned filters followed by a pointwise non-linearity. Our starting point is the next
lemma, which can be obtained after a simple calculation.

4

Slightly misleading: so far, the number of coordinates zk is identical at all
levels. Also features ϕk(zk) are not known explicitly, infinite dimensional
(problem if we want to feed to next layer)

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 6 / 10

Approximation of the kernel using sums of features

How to approximate the Gaussian kernel?
The goal is to approximate the kernel by a sum of products of features of
the inputs. Start with

e
−1
2σ2 ‖x−x ′‖2 =

(
2
πσ2

)m/2 ˆ
w∈Rm

e
−1
2σ ‖x−w‖2e

−1
2σ ‖x

′−w‖2dw .

In high dimensions, use the approximation

min
η∈Rp

+,W∈Rm×p

1
n

n∑

i=1

(
e
−1
2σ ‖xi−yi‖2 −

p∑

l=1

ηle
−1
2σ ‖xi−wl‖2e

−1
2σ ‖yi−wl‖2

)2

 ,

where (xi , yi) are candidate pairs of points on which you want to evaluate
the Gaussian.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 7 / 10

Approximation of the kernel using sums of features

Relation to neural network nonlinearity: when ‖x‖ = ‖y‖ = 1, then ‖w‖
will be close to 1, and the nonlinear mapping of feature x is

u 7→ e(2/σ2)(u−1) u = w>x

Lemma 1 (Linear expansion of the Gaussian Kernel). For all x and x′ in Rm, and σ > 0,

e− 1
2σ2 ∥x−x′∥2

2 =

(
2

πσ2

)m
2

∫

w∈Rm

e− 1
σ2 ∥x−w∥2

2e− 1
σ2 ∥x′−w∥2

2dw. (3)

The lemma gives us a mapping of any x inRm to the functionw !→
√

Ce−(1/σ2)∥x−w∥2
2 inL2(Rm),

where the kernel is linear, andC is the constant in front of the integral. To obtain a finite-dimensional
representation, we need to approximate the integral with a weighted finite sum, which is a classical
problem arising in statistics (see [29] and chapter 8 of [6]). Then, we consider two different cases.

Small dimension, m ≤ 2. When the data lives in a compact set of Rm, the integral in (3) can be
approximated by uniform sampling over a large enough set. We choose such a strategy for two types

of kernels from Eq. (1): (i) the spatial kernels e−
(

1
2β2

)
∥z−z′∥2

2 ; (ii) the terms e−(1
2σ2)∥ϕ̃(z)−ϕ̃′(z′)∥2

H

when ϕ is the “gradient map” presented in Section 2. In the latter case, H = R2 and ϕ̃(z) is the
gradient orientation. We typically sample a few orientations as explained in Section 4.
Higher dimensions. To prevent the curse of dimensionality, we learn to approximate the kernel on
training data, which is intrinsically low-dimensional. We optimize importance weights η = [ηl]

p
l=1

in Rp
+ and sampling pointsW = [wl]

p
l=1 in Rm×p on n training pairs (xi,yi)i=1,...,n in Rm × Rm:

min
η∈Rp

+,W∈Rm×p

[
1

n

n∑

i=1

(
e− 1

2σ2 ∥xi−yi∥2
2 −

p∑

l=1

ηle
− 1

σ2 ∥xi−wl∥2
2e− 1

σ2 ∥yi−wl∥2
2

)2
]
. (4)

Interestingly, we may already draw some links with neural networks. When applied to unit-norm
vectors xi and yi, problem (4) produces sampling points wl whose norm is close to one. After
learning, a new unit-norm point x in Rm is mapped to the vector [

√
ηle

−(1/σ2)∥x−wl∥2
2]pl=1 in Rp,

which may be written as [f(w⊤
l x)]pl=1, assuming that the norm of wl is always one, where f is the

function u !→ e(2/σ2)(u−1) for u = w⊤
l x in [−1, 1]. Therefore, the finite-dimensional representation

of x only involves a linear operation followed by a non-linearity, as in typical neural networks. In
Figure 2, we show that the shape of f resembles the “rectified linear unit” function [30].

u

f(u)
f(u) = e(2/σ2)(u−1)

f(u) = max(u, 0)

0 1-1
Figure 2: In dotted red, we plot the “rectified linear unit” function u !→ max(u, 0). In blue, we plot
non-linear functions of our network for typical values of σ that we use in our experiments.

3.2 Approximating the Multilayer Convolutional Kernel

We have now all the tools in hand to build our convolutional kernel network. We start by making as-
sumptions on the input data, and then present the learning scheme and its approximation principles.
The zeroth layer. We assume that the input data is a finite-dimensional map ξ0 : Ω′

0 → Rp0 , and
that ϕ0 : Ω0 → H0 “extracts” patches from ξ0. Formally, there exists a patch shape P ′

0 such that
Ω′

0 = Ω0 + P ′
0, H0 = Rp0|P′

0|, and for all z0 in Ω0, ϕ0(z0) is a patch of ξ0 centered at z0. Then,
property (B) described at the beginning of Section 3 is satisfied for k = 0 by choosing ψ0 = ϕ0.
The examples of input feature maps given earlier satisfy this finite-dimensional assumption: for the
gradient map, ξ0 is the gradient of the image along each direction, with p0 = 2, P ′

0 = {0} is a 1×1
patch, Ω0 =Ω′

0, and ϕ0 =ξ0; for the patch map, ξ0 is the input image, say with p0 =3 for RGB data.
The convolutional kernel network. The zeroth layer being characterized, we present in Algo-
rithms 1 and 2 the subsequent layers and how to learn their parameters in a feedforward manner. It
is interesting to note that the input parameters of the algorithm are exactly the same as a CNN—that
is, number of layers and filters, sizes of the patches and feature maps (obtained here via the sub-
sampling factor). Ultimately, CNNs and CKNs only differ in the cost function that is optimized for
learning the filters and in the choice of non-linearities. As we show next, there exists a link between
the parameters of a CKN and those of a convolutional multilayer kernel.

5

η,W optimized via L-BFGS on 300,000 training points, σ by 0.1 quantile
of (‖xi − yi‖2)n

i=1. “Our goal is to demonstrate the preliminary performance
of a new type of convolutional network, and we leave as future work any
speed improvement.”

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 8 / 10

Putting it all together

1 Inputs from previous layer: represent ϕk−1(z) by a vector of length
pk−1, written ξk−1(z).

2 Define ψk−1(zi) to be a patch of these ξk−1 centered at zi .
Dimension is R|Pk−1|pk−1 . NOT the same feature space as the average
over patches in (1).

3 Compute a vector of pk output features at each zk ∈ Ωk−1,

ζk(z) = ‖ψk−1‖2
[√

ηke
−1/σ2

k‖ψ̃k−1(z)−wkl‖22
]pk

l=1
.

4 Outputs are pooled with Gaussian weights (after downsampling by a
factor of 2),

ξk(z) =
√

2/π
∑

u∈Ωk−1

e−1/β2
k‖u−z‖2ζk(z)

where the u are summed over a grid in Ωk−1.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 9 / 10

Putting it all together

Ω0ϕ0(z0) ∈ H0

{z1} + P1

ϕ1(z1) ∈ H1
Ω1

{z2} + P2

Ω2

ϕ2(z2) ∈ H2

(a) Hierarchy of image feature maps.

Ω′
k–1

ξk–1(z)
ψk–1(zk–1)
(patch extraction)

{zk–1}+P ′
k–1

convolution
+ non-linearity

pk

ζk(zk–1)

Ωk–1

Gaussian filtering
+ downsampling
= pooling

Ω′
k

ξk(z)

(b) Zoom between layer k–1 and k of the CKN.

Figure 1: Left: concrete representation of the successive layers for the multilayer convolutional
kernel. Right: one layer of the convolutional neural network that approximates the kernel.

3 Training Invariant Convolutional Kernel Networks

Generic schemes have been proposed for approximating a non-linear kernel with a linear one, such
as the Nyström method and its variants [5, 31], or random sampling techniques in the Fourier do-
main for shift-invariant kernels [24]. In the context of convolutional multilayer kernels, such an
approximation is critical because computing the full kernel matrix on a database of images is com-
putationally infeasible, even for a moderate number of images (≈ 10 000) and moderate number of
layers. For this reason, Bo et al. [2] use the Nyström method for their hierarchical kernel descriptors.

In this section, we show that when the coordinate sets Ωk are two-dimensional regular grids, a
natural approximation for the multilayer convolutional kernel consists of a sequence of spatial con-
volutions with learned filters, pointwise non-linearities, and pooling operations, as illustrated in
Figure 1(b). More precisely, our scheme approximates the kernel map ofK defined in (1) at layer k
by finite-dimensional spatial maps ξk : Ω′

k → Rpk , where Ω′
k is a set of coordinates related to Ωk,

and pk is a positive integer controlling the quality of the approximation. Consider indeed two images
represented at layer k by image feature maps ϕk and ϕ′

k, respectively. Then,

(A) the corresponding maps ξk and ξ′
k are learned such thatK(ϕk–1,ϕ

′
k–1) ≈ ⟨ξk, ξ′

k⟩, where ⟨., .⟩
is the Euclidean inner-product acting as if ξk and ξ′

k were vectors in R|Ω′
k|pk ;

(B) the set Ω′
k is linked to Ωk by the relation Ω′

k = Ωk + P ′
k where P ′

k is a patch shape, and
the quantities ϕk(zk) in Hk admit finite-dimensional approximations ψk(zk) in R|P′

k|pk ; as
illustrated in Figure 1(b), ψk(zk) is a patch from ξk centered at location zk with shape P ′

k;
(C) an activation map ζk : Ωk–1 &→ Rpk is computed from ξk–1 by convolution with pk filters

followed by a non-linearity. The subsequent map ξk is obtained from ζk by a pooling operation.

We call this approximation scheme a convolutional kernel network (CKN). In comparison to CNNs,
our approach enjoys similar benefits such as efficient prediction at test time, and involves the same
set of hyper-parameters: number of layers, numbers of filters pk at layer k, shape P ′

k of the filters,
sizes of the feature maps. The other parameters βk,σk can be automatically chosen, as discussed
later. Training a CKN can be argued to be as simple as training a CNN in an unsupervised man-
ner [25] since we will show that the main difference is in the cost function that is optimized.

3.1 Fast Approximation of the Gaussian Kernel

A key component of our formulation is the Gaussian kernel. We start by approximating it by a linear
operation with learned filters followed by a pointwise non-linearity. Our starting point is the next
lemma, which can be obtained after a simple calculation.

4

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid (Arthur Gretton’s notes)Convolutional Kernel Networks August 6, 2015 10 / 10

