Dependent Wild Bootstrap for Degenerate U- and VStatistics

A. Leucht, M. Neumann

Arthur Gretton's notes

March 28, 2014

Why it's interesting

The MMD is a distance between probabilities P and Q, based on i.i.d. samples from each.
What if we want to compute the distance when P and Q are random processes?
Applications:
(1) Most real data (eg music, text),
(2) Comparison of MCMC methods (convergence diagnostics, benchmarking of MCMC)

Why it's interesting

The MMD is a distance between probabilities P and Q, based on i.i.d. samples from each.
What if we want to compute the distance when P and Q are random processes?
Applications:
(1) Most real data (eg music, text),
(2) Comparison of MCMC methods (convergence diagnostics, benchmarking of MCMC)
The challenges:
(1) What is the asymptotic distribution?
(2) What is a good empirical construction (e.g. bootstrap) for the asymptotic distribution?

Assumptions on statistic

We want an estimate of the asymptotic distribution of an empirical quantity

$$
V_{n}=\frac{1}{n} \sum_{s, t=1}^{n} h\left(x_{s}, x_{t}\right)
$$

(which is a V -statistic - very close to a U -statistic, easier to analyse). This statistic is:
(1) Degenerate: $E_{X} h(x, X)=0$.
(2) Symmetric, positive definite (MMD is the sum of several of these, so more complicated)

- Lipschitz continuous:

$$
\sup _{x, x^{\prime}, y, x^{\prime} \neq x}\left|h(x, y)-h\left(x^{\prime}, y\right)\right| /\left\|x-x^{\prime}\right\|_{1}=\operatorname{Lip}(h)<\infty .
$$

Assumptions on time series

The time series $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is:
(1) Strictly stationary,
(2) τ-dependent, with $\sum_{r=1}^{\infty} \sqrt{\tau(r)}<\infty$.

The formal definition of the second condition is complicated. But the property which makes the proofs work is

$$
E\left\|X_{r}-\tilde{X}_{r}\right\|_{1}<\tau(r)
$$

where X_{r} is dependent on X_{0}, whereas \tilde{X}_{r} is a copy of X_{r} independent of X_{0}.

Asymptotics of V_{n} under the assumption

By a generalization of Mercer's theorem, we can write:

$$
h(x, y)=\sum_{k=1}^{\infty} \lambda_{k} \phi_{k}(x) \phi_{k}(y)
$$

where λ_{k}, ϕ_{k} are solutions of the eigenvalue equation

$$
E_{P_{0}}\left[h\left(x, X_{0}\right) \phi\left(X_{0}\right)\right]=\lambda \phi(x)
$$

and P_{0} is the stationary distribution of $\left(X_{t}\right)_{t \in \mathbb{Z}}$.

Asymptotics of V_{n} under the assumption

By a generalization of Mercer's theorem, we can write:

$$
h(x, y)=\sum_{k=1}^{\infty} \lambda_{k} \phi_{k}(x) \phi_{k}(y)
$$

where λ_{k}, ϕ_{k} are solutions of the eigenvalue equation

$$
E_{P_{0}}\left[h\left(x, X_{0}\right) \phi\left(X_{0}\right)\right]=\lambda \phi(x),
$$

and P_{0} is the stationary distribution of $\left(X_{t}\right)_{t \in \mathbb{Z}}$.
Asymptotic distribution : $\quad V_{n} \xrightarrow{d} Z:=\sum_{k=1}^{\infty} \lambda_{k} Z_{k}^{2}$,
where

$$
\operatorname{cov}\left(Z_{j}, Z_{k}\right):=\sum_{r=-\infty}^{\infty} \operatorname{cov}\left(\phi_{j}\left(X_{0}\right), \phi_{k}\left(X_{r}\right)\right)
$$

Asymptotics of V_{n} : proof idea (1)

First define a truncation of $h(x, y)$:

$$
h^{(K)}(x, y)=\sum_{k=1}^{K} \lambda_{k} \phi_{k}(x) \phi_{k}(y) .
$$

We can prove that as $K \rightarrow \infty$ the asymptotics of the truncation approach those of h.
The associated V-statistic is:

$$
\begin{aligned}
V_{n}^{(K)} & =\frac{1}{n} \sum_{s, t=1}^{n} \underbrace{\left(\sum_{k=1}^{K} \lambda_{k} \phi_{k}\left(X_{s}\right) \phi_{k}\left(X_{t}\right)\right)}_{h^{(K)}\left(X_{s}, X_{t}\right)} \\
& =\sum_{k=1}^{K} \lambda_{k}\left(n^{-1 / 2} \sum_{t=1}^{n} \phi_{k}\left(X_{t}\right)\right)^{2}
\end{aligned}
$$

Asymptotics of V_{n} : proof idea (2)

Under the assumptions on x_{t}, we can apply a central limit theorem for weakly dependent random variables on the inner sum:

$$
n^{-1 / 2} \sum_{t=1}^{n}\left[\begin{array}{lll}
\phi_{1}\left(X_{t}\right) & \ldots & \phi_{K}\left(X_{t}\right)
\end{array}\right] \xrightarrow{d}\left[\begin{array}{lll}
Z_{1} & \ldots & Z_{K}
\end{array}\right]
$$

Bootstrap estimate of the asymptotic distribution

Define a new time series W_{t}^{*} with the property

$$
\operatorname{cov}\left(W_{s}^{*}, W_{t}^{*}\right)=\rho\left(|s-t| / \ell_{n}\right),
$$

where ℓ_{n} is a width parameter growing with n, and ρ is a window, e.g.

$$
\operatorname{cov}\left(W_{s}^{*}, W_{t}^{*}\right)=\exp \left(-|s-t| / \ell_{n}\right) .
$$

Make a stronger assumption on X_{t} : it is τ-dependent with

$$
\sum_{r=1}^{\infty} r^{2} \sqrt{\tau(r)}<\infty
$$

Then

$$
V_{n}^{*}:=\frac{1}{n} \sum_{s, t=1}^{n} h\left(X_{s}, X_{t}\right) W_{s}^{*} W_{t}^{*} \xrightarrow{d} Z \quad \text { in probability }
$$

Meaning: as measured via Prokhorov metric d_{p},

$$
d_{p}\left(V_{n}^{*}, Z\right) \xrightarrow{p} 0 \quad \text { as } \quad n \rightarrow \infty .
$$

How the proof works (1)
Again define a finite approximation,

$$
\begin{aligned}
V_{n}^{(K) *} & =\frac{1}{n} \sum_{s, t=1}^{n} h^{(K)}\left(X_{s}, X_{t}\right) W_{s}^{*} W_{t}^{*} \\
& =\sum_{k=1}^{K} \lambda_{k}\left(n^{-1 / 2} \sum_{t=1}^{n} \phi_{k}\left(X_{t}\right) W_{t}^{*}\right)^{2}
\end{aligned}
$$

which can be shown to converge as $K \rightarrow \infty$. Define

$$
Y_{t}^{*}:=\left[\begin{array}{lll}
\phi_{1}\left(X_{t}\right) & \ldots & \phi_{K}\left(X_{t}\right)
\end{array}\right] W_{t}^{*}
$$

We need that in probability (as $n \rightarrow \infty$),

$$
\frac{1}{\sqrt{n}} \sum_{t=1}^{n} Y_{t}^{*} \xrightarrow{d} \mathcal{N}\left(0, \Sigma_{K}\right)
$$

How the proof works (2)

$$
\begin{aligned}
& \operatorname{cov}\left(n^{-1 / 2} \sum_{s=1}^{n} \phi_{j}\left(X_{s}\right) W_{s}^{*}, n^{-1 / 2} \sum_{t=1}^{n} \phi_{k}\left(X_{t}\right) W_{t}^{*}\right) \\
& =\frac{1}{n} \sum_{s, t=1}^{n} \phi_{j}\left(X_{s}\right) \phi_{k}\left(X_{t}\right) \rho\left(|s-t| \ell_{n}\right) \\
& =\underbrace{\frac{1}{n} \sum_{s, t=1}^{n}\left(\phi_{j}\left(X_{s}\right) \phi_{k}\left(X_{t}\right)-E\left[\phi_{j}\left(X_{s}\right) \phi_{k}\left(X_{t}\right)\right]\right) \rho\left(|s-t| \ell_{n}\right)}_{\text {converges to } 0} \\
& +\underbrace{\sum_{r=-\infty}^{\infty} E\left(\phi_{j}\left(X_{0}\right) \phi_{k}\left(X_{r}\right)\right) \rho\left(|r| / \ell_{n}\right) \max \{1-|r| / n, 0\}}_{\text {converges to }\left(\Sigma_{k}\right)_{j, k}}
\end{aligned}
$$

Appendix: More detail on window assumptions

Requirements on ℓ_{n} :

$$
\lim _{n \rightarrow \infty} \ell_{n}=\infty \quad \lim _{n \rightarrow \infty} \ell_{n} / n=0
$$

Requirements on ρ :

$$
\sum_{r=1}^{n-1} \rho\left(r / \ell_{n}\right)=O\left(I_{n}\right)
$$

This being the case, W_{t}^{*} are weakly τ-dependent.

