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Summary

Tasks

@ In continuous spaces, we can define a Stein operator which makes
expectations zero under some distribution P. We use this to compare
to a model without normalising

@ Can we do the same for distributions on discrete spaces?

Why should we care?
o Test in discrete spaces (MRFs)

e application to speech and text modelling

e Can we guarantee that
(and in what sense)?
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The basic result

Consider the vector x € {—1,1}".
Define reference probability 1+ and candidate probability . Write

pi(-[x7)

the conditional probability of the ith entry given the remaining coordinate
values x(~1 .
The basic result is:

Euf—Euf\gEV( S 0l 0) (@) — i1l ~'>)\>
i=1
for any function f : X — R.

e Comparing conditional probabilities easier than comparing full
probabilities.

@ The challenge: what is «;(f, ;)7
ST\ =1 T T D L Y=Y\ EY-CTET I eSS tein's Method for Stationary Distributiol March 20, 2018 3/11



Proof of the basic result: preliminaries

Define the Glauber dynamics P with respect to i, and @ with respect to v.

@ This refers to a Gibbs sampler where you randomly pick which
coordinate i to sample
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Proof of the basic result: preliminaries

Define the Glauber dynamics P with respect to i, and @ with respect to v.

@ This refers to a Gibbs sampler where you randomly pick which
coordinate i to sample

We are able to define a function h associated with p and f as
h—Ph=(l—-P)h=f—E,f
(the Poisson equation). The is (I — P).
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Proof of the basic result: preliminaries

Define the Glauber dynamics P with respect to i, and @ with respect to v.

@ This refers to a Gibbs sampler where you randomly pick which
coordinate i to sample

We are able to define a function h associated with p and f as
h—Ph=(l—-P)h=f—E,f

(the Poisson equation). The is (I — P).
By definition of the transition operator,

E,(h— Ph)=0

Solving for h,
h= (1= P)(f — E.f),
where we use the pseudoinverse.
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Proof of the basic result

By definition of the Gibbs transition,
E,h=E, Qh.
Therefore

E f — E.f = E(f — E.f)
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Proof of the basic result

By definition of the Gibbs transition,
E,h=E, Qh.
Therefore

E f — E,f = E,(f — E,f)
= E,(h— Ph)
= E,(Qh— Ph)
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Proof of the basic result

Write x"T1 as the vector with ith coordinate set to 1. Then

Qh— Ph
= 2 () 1)
By () — h(Xi’_l)ui(—llx(Ni)))
—_——

1y (1[x(~7)

:ZA ) (i) = pi(1x))

where we denote the ith “derivative” as
Ai(h) = h(xH)) — h(x(7)),
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Proof of the basic result

Therefore by the above results and triangle inequality,

1 ¢ ~i ~i
Ef—EfI<E (,,ZA,(h)]u,-(ux( ) = i1l >)]>.

i=1
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The advanced result
Assume P is a-contractive: given two independent X;, Y; with transition
P, and a € [0,1),
E [dn(Xe, Ye)|Xo = x| Yo = y] < a'du(x, y).
Assume a smooth f:

F(Xe) = F(V2) < Ldu(Xe, Ye).
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The advanced result
Assume P is a-contractive: given two independent X;, Y; with transition
P, and a € [0,1),
E [dn(Xt, Ye)[Xo = x| Yo = y] < a'du(x,y).
Assume a smooth f:
f(Xt) — f(Yy) < Ldu(Xe, Yt).

The advanced result is:

|E,, f—Ef|<7E ( Z’“' 1]x(™1) —y;(1|x(~i))‘>
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Proof of the advanced result

Recall the definition
h= (I — P){(f — E.f).

A more interpretable way to write this is:

h(x) = i E[f(X:) — Euf|Xo = x].
t=0
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Proof of the advanced result

Using the new expression for h(x),

Aih(x) = > E | F(Xe) = £(Y2) = Euf + Euf|Xo = x"H1, Yo = x'71

t=0 -0

x 1 means ith coordinate of x set to +1
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Proof of the advanced result

Using the new expression for h(x),

Aih(x) = > E | F(Xe) = £(Y2) = Euf + Euf|Xo = x"H1, Yo = x"71

t=0 -0

o
<Y E[Ldu(Xe, Ye)IXo = x, Yo = Y]
t=0

smooth f(X;) — f(Y:) < Ldy(Xt, Yi) where Hamming distance

n
dH(X, y) - E /Xi;éy;.
i=1
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Proof of the advanced result

Using the new expression for h(x),

Aih(x) = D E | F(Xe) = £(Y2) = Euf + Euf|1Xo = x"H1, Y = X1
—0 \—;6_/
<Y E[Ldu(Xe, Ye)IXo = x, Yo = Y]

t=0
oo

<L ot
t=0

using the a-contractive property

E [dn(Xe, Ye)| Xo = x| Yo = y] < afdu(x,y).
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Proof of the advanced result

Using the new expression for h(x),

Aih(x) = > E | F(Xe) = £(Y2) = Euf + Euf|1Xo = x"H1, Yo = X1
—0 N—

=0
<Y ELdu(Xe, Yo)[Xo = x, Yo = V]
t=0
<L Z at
t=0
L

11—«
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-
The result applied to Ising models

Define two Ising models

1 1
b OC exp <2x—r Lx> UV X exp <2xT /\/Ix>

Define the a-Lipschitz function class
F(x) = FO < Y ailzy, = a Day
i=1

(different Lipschitz constant a; for each coordinate /).
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-
The result applied to Ising models

Define two Ising models

1 1
b OC exp <2x—r Lx> UV X exp <2xT /\/Ix>

Define the a-Lipschitz function class
F(x) = FO < Y ailzy, = a Day
i=1

(different Lipschitz constant a; for each coordinate /).
Then

lallzv/7
E.f—E;, fl<——""——|L—-M|,.
Enf = Enufl < 5 Ty 1H Ml

Unfortunately this result may be wrong...
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