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-
Why it's interesting

Metropolis Hastings samplers rely on having a good proposal distriubtion.
How to get this?

@ Clever engineering?
@ HMC/MALA?

© Adaptive proposal (simplest: Gaussian, more complex: mixture model)
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-
Why it's interesting

Metropolis Hastings samplers rely on having a good proposal distriubtion.
How to get this?

@ Clever engineering?
@ HMC/MALA?

© Adaptive proposal (simplest: Gaussian, more complex: mixture model)

The challenge: how to adapt while preserving the desired target
distribution?
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.
Toy example: you can't just assume adaptation will work

Two state distribution X = {1,2}, 6 € © :=(0,1),

1-0 6
Pa'_[ 0 1—9]

stationary distribution is always 7 := ( 0.5 0.5 ).
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Toy example: you can't just assume adaptation will work

Two state distribution X = {1,2}, 6 € © :=(0,1),

1-0 6
Pﬁ'_[ 0 1—9]

stationary distribution is always 7 := ( 0.5 0.5 ).
Now adaptive sampler: if in state 1, use (1), if in state 2, use 6(2),

CT1o6) 6
%‘:[ 0(2) 1—am}‘

Stationary distribution is now

= [ 6(2)/[8(1) +6(2)] 6(1)/16(1) +6(2)] ] -
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-
Outline: adaptive M-H

Only for the adaptive Gaussian proposal (but can also work when the
proposal is a mixture model)

© Define the algorithm in two stages:

@ A basic adaptive sampler that can get stuck.
@ A more complex algorithm that re-initialises the simple algorithm when
it gets stuck

@ When does adaptation work?

@ Assuming the algorithm restarts only a finite number of times, what are
the conditions for it to work?
® How do we know the algorithm will stop re-initialising? (the interesting

bit)
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Basics of M-H with Gaussian proposal

Metropolis Hastings. Given we are in state x,
e propse a candidate y using a proposal q(y — x) = N (x,T),
@ accept with probability

1A T aly=x) ¢ e
- {1 e

otherwise

o If we knew the covariance I'; of the target 7, then there are heuristics
for creating a good proposal.

@ We do not know I, so we need to estimate proposal covariance from
the sampler.
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.
An adaptive sampler, Gaussian proposal

For case of a Gaussian proposal, Haario, Saksman, and Tamminen (2001)
proposed the updates:

k1 = bk + Vi1 (Kier1 — k)
M1 = Tk + Y41 [(Xk-i-l — ) (Kieyr — i) | — T

where v, are non-increasing positive stepsizes. A more concise but less
clear notation:
Ok+1 = Ok + Vi1 Ho, (Xis1)

where
. T
O = [ Tkl Ho(X) = <x o (x =) (x— )T - r) :
Does this work? If so, when?

ORNTe [TTI =WV E T [T R VG L TS NBION the ergodicity properties of some ada| July 15, 2014 6 /14



Step 1: a basic adaptive sampler

A basic adaptive sampler uses:
@ A family Py of Markov transition kernels, where Pymr = 7V 0 € ©,
@ A family of update functions: {Hp(x) : © x X — R"}.
© A “cemetary point” 0., where © := @ J{0.}.
@ A sequence of stepsizes p := {px} (non-increasing)
Run the sampler on the space (Xk,0x), with proposal density

Qp, (X 0k; Ax B )= /A Po(x. dy)1 {0 + pkH(Ok.y) € B}
destination

+31.(B) [ Palx, )10+ piH(Brcy) # ©)
A
(where B € B(0)). If the sampler gets in the cemetary state, 8, = 6.,
then keep it there (it gets stuck).
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Step 2: a sophisticated adaptive sampler with resets

For a more complex adaptive sampler (that does not get stuck), we need:
e A compact coverage {Kq,q > 0} of © (K4 are compact, © may be
open):
U Kq=0© and KqCint(Kqi1)
q=0
@ A reset function: B
M: Xx0 —Kx Ky
where K a compact subset of X.

@ A sequence of step sizes v := {7x} (non-increasing)
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Step 2: a sophisticated adaptive sampler with resets
Define a Markov chain on
Zy = { X, Ok bk, vic}

where:
o ry tells us which set IC\;, we are in

@ v counts the number of samples since the last reset.
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Step 2: a sophisticated adaptive sampler with resets

Define a Markov chain on
Zic = { X, Ok, ki v}

where:

o ry tells us which set IC\;, we are in

@ v counts the number of samples since the last reset.
The adaptive sampler is defined as follows:

@ Draw (Xk,0k) ~ Q... (Xk, Ok; -) (the simple sampler)...

® ...unless we have just reset (v = 0) in which case draw
(X 0) ~ @y (M(X, b -))-

@ When 0y € Ky set kx11 = kg and v = v+ 1,...
@ ...otherwise reset the sampler: ki1 = ki + 1, Vi1 = 0.

Write as E,, P, the expectations and probabilities under this chain.
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Does the sampler work? Part 1

Assume that after a time, the sampler never resets again (which is the
more interesting part to prove...):

IF’* (sup/i,, < oo) =1
n>0

What guarantee do we have?
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Does the sampler work? Part 1

Assume that after a time, the sampler never resets again (which is the
more interesting part to prove...):

I@’* <sup/<;,, < oo) =1
n>0

What guarantee do we have?
The guarantee (and its conditions) are in terms of a norm: this norm is:

(%)

flly = supyex ——~ V: X—=][l,0
11l = supex 1,00)
We will use
_ F(91 () _ supex ()
17l = supex (G200 ) Vi = 222
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Does the sampler work: Part 1

Assume the base sampler Py:
e (A.1) converges fast for any fixed 6 € K in some compact K. l.e.
Vf e Lyr, rel0,1], p<1,

|Psf = =t]| < CUFlly. o
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Does the sampler work: Part 1

Assume the base sampler Py:
e (A.1) converges fast for any fixed 6 € K in some compact K. l.e.
Vf e Lyr, rel0,1], p<1,

e o, < ity
e (A.2) does not change much when 6 changes within K: for

0,0 € K,
|Pof — Pyrfllye < ClIflly

00|
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.
Does the sampler work: Part 1
Assume the base sampler Py:

e (A.1) converges fast for any fixed 6 € K in some compact K. l.e.
Vf e Lyr, rel0,1], p<1,

e o, < ity
e (A.2) does not change much when 6 changes within K: for

0,0 € K,
1Pof = Porfllye < CIIflly. |0 — 6]

Assume the adaptive mapping Hp is well behaved (A.3): 5 €[0,1/2],

-1
sup |0/ — 6] |Hy — Hrll\ys < o0.
(6,6") €KX KC,0746"

OR.N Te [ TP =WV PO [T S VG TS NION the ergodicity properties of some ada| July 15, 2014 11 / 14



.
Does the sampler work: Part 1
Assume the base sampler Py:

e (A.1) converges fast for any fixed 6 € K in some compact K. l.e.
Vf e Lyr, rel0,1], p<1,

e o, < ity
e (A.2) does not change much when 6 changes within K: for

0,0 € K,
1Pof = Porfllye < CIIflly. |0 — 6]

Assume the adaptive mapping Hp is well behaved (A.3): 5 €[0,1/2],

-1
sup |0/ — 6] |Hy — Hrll\ys < o0.
(6,6") €KX KC,0746"

Then (Theorem 8) as long as > 7o ; k™1, < oo,

n 1 kZ—l [£(Xk) — 7(£)] %35, O.
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Does the sampler work: Part 2

Why does the sampler stop resetting?
Consider the optimization:

Ok+1 = Ok + Yk+1h(0k) + V418041
where:
Xi+1 ~ Po, (X, *)
h(6) = /X H(0, x)(dx)
Ek = H(Ok—1, Xk) — h(0k—1)

We want this to converge to the set § € ©, h(§) = 0. This is a stochastic
optimization problem.
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Does the sampler work: Part 2

To prove the stability of this sampler: define a Lyapunov function
w : © — [0,00), where
(Vw(0), h(9)) < 0.
The set of stationary points of the optimization is written
Z:={0c0© : (Vw(d),h(0)) =0}.

Under some technical conditions on w (A4):

Q@ Wy :={0€0,w(d) < M} is compact VM > 0

Q@ Z cint(O)

© The closure of w(Z) has an empty interior
and on the stepsizes (A5):

o oo
Sok=oo SRk u) <o
k=1 k=1

then (Theorem 11) the number of resets is a.s. finite, and 6, converges

Q2 NhAoln N
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[[lustration: Gaussian case

In the case of the Gaussian sampler of Haario, Saksman, and Tamminen
(2001), the Lyapunov function is

W('u’ r) = |Og det I + (/’L - MW)TF_I(M - ,U7r) + Tr(r—lrﬂ).

Theset Z:={0c© : (Vw(0),h(0)) = 0} contains a single point
(Lemma 14):

L= {pr T}
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[[lustration: Gaussian case

In the case of the Gaussian sampler of Haario, Saksman, and Tamminen
(2001), the Lyapunov function is

W('u’ r) = |Og det I + (/’L - MW)TF_I(M - ,U7r) + Tr(r—lrﬂ).

Theset Z:={0c© : (Vw(0),h(0)) = 0} contains a single point
(Lemma 14):

L= {pr T}

The sampler (with resets!) is guaranteed to converge (Theorem 15): for
any f € L(w?),
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[[lustration: Gaussian case

In the case of the Gaussian sampler of Haario, Saksman, and Tamminen
(2001), the Lyapunov function is

W('u’ r) = |Og det I + (/’L - MW)TF_I(M - ,U7r) + Tr(r—lrﬂ).

Theset Z:={0c© : (Vw(0),h(0)) = 0} contains a single point
(Lemma 14):

L= {pr T}

The sampler (with resets!) is guaranteed to converge (Theorem 15): for
any f € L(w?),

—12( (Xi) — /f dx>a—s>@o

The analsys can also be done for a mixture model proposal fit by an online
EM algorithm (Section 7).
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