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Why it’s interesting

Metropolis Hastings samplers rely on having a good proposal distriubtion.
How to get this?

1 Clever engineering?
2 HMC/MALA?
3 Adaptive proposal (simplest: Gaussian, more complex: mixture model)

The challenge: how to adapt while preserving the desired target
distribution?
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Toy example: you can’t just assume adaptation will work

Two state distribution X = {1, 2}, θ ∈ Θ := (0, 1),

Pθ :=

[
1− θ θ
θ 1− θ

]
stationary distribution is always π := ( 0.5 0.5 ).

Now adaptive sampler: if in state 1, use θ(1), if in state 2, use θ(2),

Pθ :=

[
1− θ(1) θ(1)
θ(2) 1− θ(2)

]
.

Stationary distribution is now

π =
[
θ(2)/[θ(1) + θ(2)] θ(1)/[θ(1) + θ(2)]

]
.
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Outline: adaptive M-H

Only for the adaptive Gaussian proposal (but can also work when the
proposal is a mixture model)

1 Define the algorithm in two stages:
1 A basic adaptive sampler that can get stuck.
2 A more complex algorithm that re-initialises the simple algorithm when

it gets stuck

2 When does adaptation work?
1 Assuming the algorithm restarts only a finite number of times, what are

the conditions for it to work?
2 How do we know the algorithm will stop re-initialising? (the interesting

bit)
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Basics of M-H with Gaussian proposal

Metropolis Hastings. Given we are in state x ,
propse a candidate y using a proposal q(y − x) = N (x , Γ),
accept with probability

α(x , y) =

{
1 ∧ π(y)

π(x)
q(y−x)
q(x−y) if π(x)q(x − y) > 0

1 otherwise

If we knew the covariance Γπ of the target π, then there are heuristics
for creating a good proposal.
We do not know Γπ, so we need to estimate proposal covariance from
the sampler.
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An adaptive sampler, Gaussian proposal

For case of a Gaussian proposal, Haario, Saksman, and Tamminen (2001)
proposed the updates:

µk+1 = µk + γk+1(Xk+1 − µk)

Γk+1 = Γk + γk+1

[
(Xk+1 − µk) (Xk+1 − µk)> − Γk

]
where γk are non-increasing positive stepsizes. A more concise but less
clear notation:

θk+1 = θk + γk+1Hθk (Xk+1)

where

θk = [µk Γk ] Hθ(X ) =
(
x − µ, (x − µ)(x − µ)> − Γ

)>
.

Does this work? If so, when?
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Step 1: a basic adaptive sampler

A basic adaptive sampler uses:
1 A family Pθ of Markov transition kernels, where Pθπ = π ∀ θ ∈ Θ.
2 A family of update functions: {Hθ(x) : Θ× X 7→ <nθ}.
3 A “cemetary point” θc , where Θ̄ := Θ

⋃
{θc}.

4 A sequence of stepsizes ρ := {ρk} (non-increasing)
Run the sampler on the space (Xk , θk), with proposal density

Qρk (Xk , θk ; A× B︸ ︷︷ ︸
destination

) =

ˆ
A

Pθ(x , dy)I {θ + ρkH(θk , y) ∈ B}

+ δθc (B)

ˆ
A

Pθ(x , dy)I {θ + ρkH(θk , y) 6∈ Θ}

(where B ∈ B(Θ̄)). If the sampler gets in the cemetary state, θk = θc ,
then keep it there (it gets stuck).
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Step 2: a sophisticated adaptive sampler with resets

For a more complex adaptive sampler (that does not get stuck), we need:
A compact coverage {Kq, q ≥ 0} of Θ (Kq are compact, Θ may be
open): ⋃

q≥0

Kq = Θ and Kq ⊂ int(Kq+1)

A reset function:
Π : X× Θ̄→ K×K0

where K a compact subset of X.
A sequence of step sizes γ := {γk} (non-increasing)
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Step 2: a sophisticated adaptive sampler with resets

Define a Markov chain on

Zk := {Xk , θk , κk , νk}

where:
κk tells us which set Kκk we are in
νk counts the number of samples since the last reset.

The adaptive sampler is defined as follows:
1 Draw (Xk , θk) ∼ Qγκ+ν (Xk , θk ; ·) (the simple sampler)...

1 ...unless we have just reset (ν = 0) in which case draw
(Xk , θk) ∼ Qγκ(Π(Xk , θk ; ·)).

2 When θk ∈ Kκ set κk+1 = κk and νk+1 = νk + 1,...
1 ...otherwise reset the sampler: κk+1 = κk + 1, νk+1 = 0.

Write as Ē?, P̄? the expectations and probabilities under this chain.
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Write as Ē?, P̄? the expectations and probabilities under this chain.
C. Andrieu, E. Moulines (Arthur Gretton’s notes)On the ergodicity properties of some adaptive MCMC algorithmsJuly 15, 2014 9 / 14



Does the sampler work? Part 1

Assume that after a time, the sampler never resets again (which is the
more interesting part to prove...):

P̄?
(
sup
n≥0

κn <∞
)

= 1

What guarantee do we have?

The guarantee (and its conditions) are in terms of a norm: this norm is:

‖f ‖V = supx∈X
|f (x)|
V (x)

V : X→ [1,∞)

We will use

‖f ‖V = supx∈X

(
|f (x)|π(x)

supx ′∈X π(x ′)

)
V (x) =

supx ′∈X π(x ′)
π(x)
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Does the sampler work: Part 1

Assume the base sampler Pθ:
(A.1) converges fast for any fixed θ ∈ K in some compact K. I.e.
∀f ∈ LV r , r ∈ [0, 1], ρ < 1,∥∥∥Pk

θ f − πf
∥∥∥

V r
≤ C ‖f ‖V r ρ

k

(A.2) does not change much when θ changes within K: for
θ, θ′ ∈ K,

‖Pθf − Pθ′ f ‖V r ≤ C ‖f ‖V r

∣∣θ − θ′∣∣
Assume the adaptive mapping Hθ is well behaved (A.3): β ∈ [0, 1/2],

sup
(θ,θ′)∈K×K,θ 6=θ′

∣∣θ′ − θ∣∣−1 ‖Hθ − Hθ′‖V β <∞.

Then (Theorem 8) as long as
∑∞

k=1 k−1γk <∞,

n−1
n∑

k=1

[f (Xk)− π(f )]
a.s.→P̄? 0.
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Does the sampler work: Part 2

Why does the sampler stop resetting?
Consider the optimization:

θk+1 = θk + γk+1h(θk) + γk+1ξk+1

where:

Xk+1 ∼ Pθk (Xk , ·)

h(θ) =

ˆ
X

H(θ, x)π(dx)

ξk = H(θk−1,Xk)− h(θk−1)

We want this to converge to the set θ ∈ Θ, h(θ) = 0. This is a stochastic
optimization problem.
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Does the sampler work: Part 2

To prove the stability of this sampler: define a Lyapunov function
w : Θ→ [0,∞), where

〈∇w(θ), h(θ)〉 ≤ 0.

The set of stationary points of the optimization is written

Z := {θ ∈ Θ : 〈∇w(θ), h(θ)〉 = 0} .
Under some technical conditions on w (A4):

1 WM := {θ ∈ Θ,w(θ) ≤ M} is compact ∀M > 0
2 Z ∈ int(Θ)
3 The closure of w(Z) has an empty interior

and on the stepsizes (A5):
∞∑

k=1

γk =∞
∞∑

k=1

{
γ2

k + k−1/2γk

}
<∞,

then (Theorem 11) the number of resets is a.s. finite, and θk converges
to a point in L.
This is proved in another paper (reference [3] - next tea talk?).
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Illustration: Gaussian case

In the case of the Gaussian sampler of Haario, Saksman, and Tamminen
(2001), the Lyapunov function is

w(µ, Γ) = log det Γ + (µ− µπ)>Γ−1(µ− µπ) + Tr(Γ−1Γπ).

The set Z := {θ ∈ Θ : 〈∇w(θ), h(θ)〉 = 0} contains a single point
(Lemma 14):

L := {µπ, Γπ}.

The sampler (with resets!) is guaranteed to converge (Theorem 15): for
any f ∈ L(wα),

n−1
n∑

k=1

(
F (Xk)−

ˆ
X

f (x)π(x)dx
)

a.s.→P̄∗ 0.

The analsys can also be done for a mixture model proposal fit by an online
EM algorithm (Section 7).
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