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> Predictive uncertainty is essential in decision making

» Probability of cancer is 99%, Stock will increase by 10 4= 1%
» Active learning: select next training example, experimental
design
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Motivation

Predictive uncertainty is essential in decision making
» Probability of cancer is 99%, Stock will increase by 10 4= 1%
» Active learning: select next training example, experimental
design
Loss function may be unknown
» Provide predictive uncertainty over quantity of interest
Approaches: Bayesian model averaging, bagging, other hacks
or principles :)
How do we evaluate predictive uncertainty?
» How do Bayesian methods fare on the empirical battleground?



Motivation (contd.)

“It is clear that the merits of Bayesian and competing approaches
will not be settled by philosophical disputation, but only by
demonstrations of effectiveness in practical contexts. "



Motivation (contd.)

“It is clear that the merits of Bayesian and competing approaches
will not be settled by philosophical disputation, but only by
demonstrations of effectiveness in practical contexts. "

- Radford Neal (PhD thesis)



Probabilistic predictions

» Binary Classification: p(y. = 1|x.)
> Regression:

» Unimodal: Gaussian with mean m, and variance v,
» Multimodal: N quantiles [gq4,; - - -, Ga,] Such that
p(Y+ < Go;|x:) = aj where 0 < a; < 1.



Multimodal posterior for regression
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Fig. 4. Specifying the predictive density with quantiles. Example where the quantiles

Qo2 = —2, go.s = —1, qos = 1 and gog = 3 are specified. The exponential tails
guarantee that distribution integrates to 1.



Loss functions for classification

» Average classification error (threshold=0.5)

» Negative log probability (NLP) loss
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Fig. 5. NLP loss when predicting the class of a single test point that actually belongs

to class “+1”. Observe how the loss goes to infinity as the model becomes increasingly
certain that the point belongs to the wrong class.

» LIFT loss, calibration curve, Brier score, ...



Loss functions for regression

» normalized Mean squared error (nMSE)

» Negative log probability density (NLPD)
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Fig.7. NLPD loss (up to a constant) incurred when predicting at a single point with
a Gaussian predictive distribution. In the figure we have fixed ||t; —m;||> = 1 and show

how the loss evolves as we vary the predictive variance v;. The optimal value of the
predictive variance is equal to the actual squared error given the predictive mean.



Discussion about losses

» Log loss for classification: Infinite penalty too strong?
Strongly discourages overconfident wrong predictions

» NLPD can be "gamed” when same value is repeated multiple
times (eg. data is ordinal rather than real-valued)

» Other metrics: Mutual information, AUC

» Aggregate vs point wise metrics?
» Account only for relative degrees of belief, sometimes we care
about absolute values and not just the ordering



Results



Regression

Stereopsis (regression)

Gaze (regression)
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Classification

Catalysis (classification)

Gatineau (classification)
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Classification

Catalysis dataset (classification)
0.2461 Gatineau dataset (classification)
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Classification: Catalysis

Catalysis (Classification)

Method NLP O01L Author
Bayesian NN 0.2273 0.249 Neal, R

< Bayesian NN 0.2289 0.257 Neal, R
SVM + Platt 0.2305 0.259 Chapelle, O
> Bagged R-MLP 0.2391 0.276 Cawley, G

> Bayesian Logistic Regression 0.2401
Feat Sel + Rnd Subsp + Dec Trees 0.2410
Probing SVM 0.2454

0.274 Neal, R
0.271 Chawla, N
0.270 Zadrozny, B & Langford, J

baseline: class frequencies 0.2940 0.409

(NLP: average negative log probability, 01L: average zero-one loss)



Classification: Gatineau

Gatineau (Classification)

Method NLP 01L Author

Feat Sel + Rnd subsp + Dec Trees 0.1192 0.087 Chawla, N
Feat Sel + Bagging + Dec Trees  0.1193 0.089 Chawla, N

Bayesian NN 0.1202 0.087 Neal, R

< Bayesian NN 0.1203 0.087 Neal, R
Simple ANN Ensemble 0.1213 0.088 Ohlsson, M
EDWIN 0.1213 0.087 Eisele, A

> Bayesian Logistic Regression 0.1216 0.088 Neal, R

> ANN with L1 penalty 0.1217 0.087 Delalleau, O
> CCR-MLP 0.1228 0.086 Cawley, G
Rnd Subsp + Dec Trees 0.1228 0.087 Chawla, N
Bagging + Dec Trees 0.1229 0.087 Chawla, N
> R-MLP 0.1236 0.087 Cawley, G
Probing J48 0.1243 0.087 Zadrozny, B & Langford, J
> Bagged R-MLP (small) 0.1244 0.087 Cawley, G
SVM + Platt 0.1249 0.087 Chapelle, O
baseline: class frequencies 0.1314 0.087

(NLP: average negative log probability, 01L: average zero-one loss)



Regression: Stereopsis

Stereopsis (Regression)

Method NLPD nMSE Author

Mixture of Bayesian Neural Nets  -2.077 2.38e-3 Snelson & Murray
Compet Assoc Nets + Cross Val ~ -0.669 1.3%9e-6 Kurogi, S et al

> Mixt of LOOHKRR Machines  -0.402 3.86e-4 Cawley, G

> Gaussian Process Regression -0.351 8.25e-5 Chapelle, O

> Inflated Var MLP Committee 0.309 9.59e-5 Cawley, G

KRR + Regression on the variance 0.342 9.60e-5 Chapelle, O

< Hybrid: Neural Net 0.940 1.52e-4 Lewandowski, A
Mixture Density Network Ensemble 1.171 2.62e-4 Carney, M
baseline: empirical Gaussian 4.94 1.002

Modelling the experimental setting 209.4 2.49e-4 Kohonen & Suomela

(NPLD: negative log predictive density, nMSE: normalized mean squared error)



Regression: Gaze

Gaze (Regression)
Method

NLPD nMSE Author

Compet Assoc Nets + Cross Val

> LOOHKRR

> Heteroscedastic MLP Committee
Gaussian Process regression

KRR + Regression on the variance
< Neural Net

Rand Forest with OB enhancement
NeuralBAG and EANN

Mixture Density Network Ensemble
baseline: empirical Gaussian

-3.907 0.032 Kurogi, S et al
LLR Regr + Resid Regr + Int Spikes 2.750

5.180
5.248
5.250
5.395
5.444
5.445
5.558
5.761
6.91

0.374 Kohonen & Suomela
0.033 Cawley, G

0.034 Cawley, G

0.675 Csatd, L

0.050 Chapelle, O

0.029 Lewandowski, A

0.060 Van Matre, B

0.074 Carney, M

0.089 Carney, M

1.002



Regression: Outaousis

Outaouais (Regression)

Method NLPD nMSE Author

> Sparse GP method -1.037
> Gaussian Process regression -0.921
Classification + Nearest Neighbour -0.880
Compet Assoc Nets + Cross Val  -0.648

> Small Heteroscedastic MLP -0.230
Gaussian Process regression 0.090
Mixture Density Network Ensemble 0.199
NeuralBAG and EANN 0.505

0.014 Keerthi & Chu
0.017 Chu, Wei

0.056 Kohonen, J
0.038 Kurogi S et al
0.201 Cawley, G
0.158 Csato, L

0.278 Carney, M
0.270 Carney, M

baseline: empirical Gaussian 1.115 1.000



Summary

» Defining good losses for probabilistic predictions is hard
» How to encourage “honest” (loss-indepenent) predictive
distributions?
» Apply several losses that have contradictory properties
» Datasets and losses should not be chosen separately, since
some losses are inappropriate for evaluating performance on
certain problems.
> log loss for regression is not appropriate when the same target
occurs more than once

» Bayesian methods aren't the only competitive methods;
non-Bayesian approaches, (like regression on the variance
[CTCO06]), did also perform very well.
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