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Motivation

I Predictive uncertainty is essential in decision making
I Probability of cancer is 99%, Stock will increase by 10± 1%
I Active learning: select next training example, experimental

design

I Loss function may be unknown
I Provide predictive uncertainty over quantity of interest

I Approaches: Bayesian model averaging, bagging, other hacks
or principles :)

I How do we evaluate predictive uncertainty?
I How do Bayesian methods fare on the empirical battleground?
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Motivation (contd.)

“It is clear that the merits of Bayesian and competing approaches
will not be settled by philosophical disputation, but only by
demonstrations of effectiveness in practical contexts.“

- Radford Neal (PhD thesis)
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Probabilistic predictions

I Binary Classification: p(y∗ = 1|x∗)
I Regression:

I Unimodal: Gaussian with mean m∗ and variance v∗
I Multimodal: N quantiles [qα1 , . . . , qαN

] such that
p(y∗ < qαj |x∗) = αj where 0 < αj < 1.



Multimodal posterior for regression



Loss functions for classification

I Average classification error (threshold=0.5)

I Negative log probability (NLP) loss

I LIFT loss, calibration curve, Brier score, ...



Loss functions for regression

I normalized Mean squared error (nMSE)

I Negative log probability density (NLPD)



Discussion about losses

I Log loss for classification: Infinite penalty too strong?
Strongly discourages overconfident wrong predictions

I NLPD can be ”gamed” when same value is repeated multiple
times (eg. data is ordinal rather than real-valued)

I Other metrics: Mutual information, AUC
I Aggregate vs point wise metrics?
I Account only for relative degrees of belief, sometimes we care

about absolute values and not just the ordering



Results
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Classification: Catalysis



Classification: Gatineau



Regression: Stereopsis



Regression: Gaze



Regression: Outaousis



Summary

I Defining good losses for probabilistic predictions is hard
I How to encourage “honest” (loss-indepenent) predictive

distributions?
I Apply several losses that have contradictory properties

I Datasets and losses should not be chosen separately, since
some losses are inappropriate for evaluating performance on
certain problems.

I log loss for regression is not appropriate when the same target
occurs more than once

I Bayesian methods aren’t the only competitive methods;
non-Bayesian approaches, (like regression on the variance
[CTC06]), did also perform very well.
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