0.0.1 Natural exponential family

Likelihood:

$$
\ell(\theta)=\pi(x)+\theta^{\top} x-G(\theta)
$$

$G(\theta)$ is \log partition function. Also generates moments:

$$
\begin{aligned}
G(\theta) & =\log \int d x e^{\pi(x)+\theta^{\top} x} \\
G^{\prime}(\theta) & =e^{-G(\theta)} \int d x e^{\pi(x)+\theta^{\top} x} x=E_{\theta}[x] \\
G^{\prime \prime}(\theta) & =e^{-G(\theta)} \int d x e^{\pi(x)+\theta^{\top} x} x^{2}-G^{\prime}(\theta) e^{-G(\theta)} \int d x e^{\pi(x)+\theta^{\top} x} x=E_{\theta}\left[x^{2}\right]-E_{\theta}[x]^{2}=\operatorname{Var}_{\theta}(x)
\end{aligned}
$$

Since variances are positive semi-definite, G is a convex function.

0.0.2 Mean parameters and dual

The conjugate or convex dual to G is:

$$
F(x)=\sup _{\theta}\left[\theta^{\top} x-G(\theta)\right]
$$

That is, the greatest distance that a line of slope x starting from the origin rises above G. At that point, the derivative of the difference must be 0 , so $G^{\prime}\left(\theta^{*}\right)=x$. So equally, F gives intercept of the tangent to G with slope x.

Recall from above that $G^{\prime}(\theta)=\mu$. So $F(\mu)=\theta^{\top} \mu-G(\theta)$.
$F(x)$ gives the maximum value of the likelihood (upto $\pi(x))$ for data with sufficient stat x.
Now G is generally strictly convex (otherwise variance of sufficient stat would be zero for some parameters). Thus, G^{\prime} is strictly monotonic and there is a one-to-one map between θ and feasible values of μ. Thus, the exponential family can also be parametrised by μ.

Then $F(\mu)$ is the negative entropy of the distribution (upto $\pi(x)$):

$$
-\mathbf{H}[x]=\langle\log p(x)\rangle=\left\langle\pi(x)+\theta^{\top} x-G(\theta)\right\rangle=\langle\pi(x)\rangle+\theta^{\top} \mu-G(\theta)=\langle\pi(x)\rangle_{\mu}+F(\mu)
$$

We often write $g(\theta)=G^{\prime}(\theta)=\mu$; also $f(\mu)=F^{\prime}(\mu)=\theta$. So $f=g^{-1}$ and $f^{\prime}(\mu)=1 / g^{\prime}(\theta)$.

0.0.3 Bregman Divergences

The Bregman divergence under a differentiable, strictly convex function F is:

$$
B_{F}(p \mid q)=F(p)-F(q)-f(q)(p-q)
$$

that is, the difference between $F(p)$ and a first order approximation to $F(p)$ anchored at q. Strict convexity means that $B_{F} \geq 0$ with equality iff $p=q$.

ExpFam likelihood can be written:

$$
\ell(\mu)=\pi(x)+F(x)-B_{F}(x \mid \mu)
$$

Also:

$$
B_{G}\left(\theta \mid \theta^{\prime}\right)=B_{F}(\mu \prime \mid \mu)=K L\left[p\left(x \mid \theta^{\prime}\right) \mid p(x \mid \theta)\right]
$$

where last step follows from:

$$
\begin{aligned}
K L\left[p\left(x \mid \theta^{\prime}\right) \mid p(x \mid \theta)\right] & =\left\langle\log p\left(x \mid \theta^{\prime}\right)-\log p(x \mid \theta)\right\rangle_{\theta^{\prime}} \\
& =\left\langle\pi(x)+\left(\theta^{\prime}\right)^{\top} x-G\left(\theta^{\prime}\right)-\pi(x)-\theta^{\top} x+G(\theta)\right\rangle_{\theta^{\prime}} \\
& =G(\theta)-G\left(\theta^{\prime}\right)-\left(\theta-\theta^{\prime}\right)^{\top}\langle x\rangle_{\theta^{\prime}} \\
& =G(\theta)-G\left(\theta^{\prime}\right)-\left(\theta-\theta^{\prime}\right)^{\top} \mu^{\prime} \\
& =G(\theta)-G\left(\theta^{\prime}\right)-\left(\theta-\theta^{\prime}\right)^{\top} g\left(\theta^{\prime}\right)
\end{aligned}
$$

0.0.4 ML fitting

$$
\begin{aligned}
\ell(\theta) & =\sum_{i} \pi\left(x_{i}\right)+\theta^{\top} x_{i}-G(\theta) \\
\ell^{\prime}(\theta) & =\sum_{i} x_{i}-G^{\prime}(\theta) \\
\Rightarrow N G^{\prime}\left(\theta^{M L}\right) & =\sum_{i} x_{i} \\
\Rightarrow \theta^{M L} & =f\left(\frac{1}{N} \sum_{i} x_{i}\right)
\end{aligned}
$$

0.0.5 GLMs

Consider scalar x_{i} and vector inputs \mathbf{y}_{i}.

$$
\ell(\mathbf{w})=\sum_{i} \pi\left(x_{i}\right)+x_{i} \mathbf{w}^{\top} \mathbf{y}_{i}-G\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right)
$$

so,

$$
\ell^{\prime}(\mathbf{w})=\sum_{i} x_{i} \mathbf{y}_{i}-g\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right) \mathbf{y}_{i}=\sum_{i}\left(x_{i}-\mu_{i}\right) \mathbf{y}_{i}
$$

and

$$
\ell^{\prime \prime}(\mathbf{w})=-\sum_{i} g^{\prime}\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right) \mathbf{y}_{i} \mathbf{y}_{i}^{\top}
$$

So a Newton update would be:

$$
\begin{aligned}
\Delta \mathbf{w} & =-\left(\ell^{\prime \prime}(\mathbf{w})\right)^{-1} \ell^{\prime}(\mathbf{w}) \\
& =\left[\sum_{i} g^{\prime}\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right) \mathbf{y}_{i} \mathbf{y}_{i}^{\top}\right]^{-1} \sum_{i}\left(x_{i}-\mu_{i}\right) \mathbf{y}_{i} \\
& =\left[\sum_{i} g^{\prime}\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right) \mathbf{y}_{i} \mathbf{y}_{i}^{\top}\right]^{-1} \sum_{i} \underbrace{\left(x_{i}-\mu_{i}\right) f^{\prime}\left(\mu_{i}\right)}_{\Delta z_{i}} g^{\prime}\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right) \mathbf{y}_{i} \\
& =\left[\sum_{i} g^{\prime}\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right) \mathbf{y}_{i} \mathbf{y}_{i}^{\top}\right]^{-1} \sum_{i} g^{\prime}\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right) \Delta z_{i} \mathbf{y}_{i}
\end{aligned}
$$

which looks like weighted linear regression with "inputs" \mathbf{y}_{i}, "outputs" $z_{i}=\mathbf{w}^{\top} \mathbf{y}_{i}+\left(x_{i}-\mu_{i}\right) f^{\prime}\left(\mu_{i}\right)$ and "variances" $1 / g^{\prime}\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right)=f^{\prime}\left(\mu_{i}\right)^{2} g^{\prime}\left(\mathbf{w}^{\top} \mathbf{y}_{i}\right)$ (i.e. variance in z_{i} estimated by linearisation around $\left.\mu_{i}\right)$. This is IRLS.

TODO: Non-natural link functions and variance parameters.

0.0.6 Latent variables

Exponential Family PCA: $\theta_{i}=\mathbf{w}^{\top} \mathbf{y}_{i}$. Optimise jointly over \mathbf{w} and \mathbf{y}_{i}.
NMF: $\mu_{i j}=\mathbf{w}_{i}^{\top} \mathbf{y}_{j}$. Optimise jointly over \mathbf{w}_{i} and \mathbf{y}_{j}, both constrained to be non-negative.

