
0.0.1 Natural exponential family

Likelihood:
`(θ) = π(x) + θTx−G(θ)

G(θ) is log partition function. Also generates moments:

G(θ) = log

∫
dx eπ(x)+θTx

G′(θ) = e−G(θ)

∫
dx eπ(x)+θTxx = Eθ[x]

G′′(θ) = e−G(θ)

∫
dx eπ(x)+θTxx2 −G′(θ) e−G(θ)

∫
dx eπ(x)+θTxx = Eθ[x

2]− Eθ[x]2 = V arθ(x)

Since variances are positive semi-definite, G is a convex function.

0.0.2 Mean parameters and dual

The conjugate or convex dual to G is:

F (x) = sup
θ

[
θTx−G(θ)

]
That is, the greatest distance that a line of slope x starting from the origin rises above G. At that point, the
derivative of the difference must be 0, so G′(θ∗) = x. So equally, F gives intercept of the tangent to G with slope x.

Recall from above that G′(θ) = µ. So F (µ) = θTµ−G(θ).

F (x) gives the maximum value of the likelihood (upto π(x)) for data with sufficient stat x.

Now G is generally strictly convex (otherwise variance of sufficient stat would be zero for some parameters). Thus,
G′ is strictly monotonic and there is a one-to-one map between θ and feasible values of µ. Thus, the exponential
family can also be parametrised by µ.

Then F (µ) is the negative entropy of the distribution (upto π(x)):

−H[x] = 〈log p(x)〉 =
〈
π(x) + θTx−G(θ)

〉
= 〈π(x)〉+ θTµ−G(θ) = 〈π(x)〉µ + F (µ)

We often write g(θ) = G′(θ) = µ; also f(µ) = F ′(µ) = θ. So f = g−1 and f ′(µ) = 1/g′(θ).

0.0.3 Bregman Divergences

The Bregman divergence under a differentiable, strictly convex function F is:

BF (p|q) = F (p)− F (q)− f(q)(p− q)

that is, the difference between F (p) and a first order approximation to F (p) anchored at q. Strict convexity means
that BF ≥ 0 with equality iff p = q.

ExpFam likelihood can be written:
`(µ) = π(x) + F (x)−BF (x|µ)

Also:
BG(θ|θ′) = BF (µ′|µ) = KL[p(x|θ′)|p(x|θ)]
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where last step follows from:

KL[p(x|θ′)|p(x|θ)] = 〈log p(x|θ′)− log p(x|θ)〉θ′
=
〈
π(x) + (θ′)Tx−G(θ′)− π(x)− θTx+G(θ)

〉
θ′

= G(θ)−G(θ′)− (θ − θ′)T〈x〉θ′
= G(θ)−G(θ′)− (θ − θ′)Tµ′

= G(θ)−G(θ′)− (θ − θ′)Tg(θ′)

0.0.4 ML fitting

`(θ) =
∑
i

π(xi) + θTxi −G(θ)

`′(θ) =
∑
i

xi −G′(θ)

⇒ NG′(θML) =
∑
i

xi

⇒ θML = f(
1

N

∑
i

xi)

0.0.5 GLMs

Consider scalar xi and vector inputs yi.

`(w) =
∑
i

π(xi) + xiw
Tyi −G(wTyi)

so,

`′(w) =
∑
i

xiyi − g(wTyi)yi =
∑
i

(xi − µi)yi

and

`′′(w) = −
∑
i

g′(wTyi)yiy
T
i

So a Newton update would be:

∆w = −(`′′(w))−1`′(w)

=

[∑
i

g′(wTyi)yiy
T
i

]−1∑
i

(xi − µi)yi

=

[∑
i

g′(wTyi)yiy
T
i

]−1∑
i

(xi − µi)f ′(µi)︸ ︷︷ ︸
∆zi

g′(wTyi)yi

=

[∑
i

g′(wTyi)yiy
T
i

]−1∑
i

g′(wTyi)∆ziyi

which looks like weighted linear regression with “inputs” yi, “outputs” zi = wTyi + (xi−µi)f ′(µi) and “variances”
1/g′(wTyi) = f ′(µi)

2g′(wTyi) (i.e. variance in zi estimated by linearisation around µi). This is IRLS.

TODO: Non-natural link functions and variance parameters.
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0.0.6 Latent variables

Exponential Family PCA: θi = wTyi. Optimise jointly over w and yi.

NMF: µij = wT
i yj . Optimise jointly over wi and yj , both constrained to be non-negative.
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