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ABSTRACT. A U-statistic is not easy to apply or cannot be applied in hypothesis testing when it
is degenerate or has an indeterminate degeneracy under the null hypothesis. A class of two-stage
U-statistics (TU-statistics) is proposed to remedy these drawbacks. Both the asymptotic distribu-
tions under the null and the alternative of TU-statistics are shown to have simple forms. When the
degeneracy is indeterminate, the Pitman asymptotic relative efficiency of a TU-statistic dominates
that of the incomplete U-statistics. If the kernel is degenerate under the null hypothesis but non-
degenerate under the alternative, a TU-statistic is proved to be more powerful than its corresponding
U-statistic. Applications to testing independence of paired angles in ecology and marine biology are
given. Finally, a simulation study shows that a TU-statistic is more powerful than its corresponding
incomplete U-statistic in almost all cases under two settings.
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1. Introduction

Most estimators and test statistics can either be written as U -statistics or can be approxi-
mated by U -statistics (Halmos, 1946; Hoeffding, 1948). The theory of U -statistics has been
applied in many tests of hypothesis, for instance, testing for independence, model mis-
specification, goodness-of-fit and others. When one applies U -statistics for testing hypo-
thesis in the areas of geophysics (Stephens, 1979; Fisher & Lee, 1986), ecology (Fisher &
Lee, 1982; example 1 in section 3), econometrics (Bierens & Ploberger, 1997; Fan & Li, 1999)
and marine biology (example 2 in section 3), often one encounters some difficulties which are
described in detail following the definition of degeneracy of U -statistics.

A U -statistic is an extension of the well-known sample mean. Let X1, . . ., Xn be indepen-
dent and identically distributed (i.i.d.) random variables (r.v.) with distribution function F .
Given a parameter of interest �(F ), to construct a U -statistic for �, we first find a symmetric
and real-valued function h such that

E{h(X1, . . ., Xk)}=�,

where the function h is called a kernel of order k, k is a positive constant and k ≤ n.
Let C(n, k) denote the combinations of k distinct elements {i1, . . ., ik} from {1, . . ., n}. A
U -statistic is the average of all evaluations of h over the C(n, k) distinct Xij s. Namely,

Un =C(n, k)−1
∑

C(n, k)

h(Xi1 , . . ., Xik),

where
∑

C(n, k) denotes summation over the combinations C(n, k). An order-k kernel is degen-
erate of order d (d ≤k) if �2

c =0 for c =1, . . ., d and �2
d+1 > 0, where �2

c =var{hc(X1, . . ., Xc)}
and hc(x1, . . ., xc)=E{h(x1, . . ., xc, Xc+1, . . ., Xk)}. If �2

1 > 0, h is called non-degenerate.
When using a degenerate U -statistic for hypothesis testing, we encounter two difficulties:

(i) under the null hypothesis H0, the limiting distribution of a degenerate order-d (d ≥ 1)
U -statistic often does not have a closed form; or (ii) the null limiting distribution of a
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degenerate order-1 U -statistic suffers from an extensive calculation of weights (eigenvalues of
the kernel). In some cases, identifying the eigenvalues of a kernel is prohibitive. One example
is the multivariate case of the Cramér–von Mises statistic mentioned in Ahmad (1993).

Degenerate U -statistics were utilized in areas such as directional data, goodness-of-fit tests,
econometrics and among others. In directional data, the test statistic for independence
between two p-dimensional random vectors (p ≥ 3) on the surfaces of spheres is a degen-
erate U -statistic of order p−2 (Fisher & Lee, 1986). Some degenerate of order-1 U -statistics
arise in the context of testing for independence in paired circular data, e.g. the tests studied in
Fisher & Lee (1982) and Shieh et al. (1994). Other degenerate U -statistics were proposed for
testing goodness-of-fit, for instance, Watson’s U 2 for two-sample goodness-of-fit on a circle
(Watson, 1962; Persson, 1979), the Cramér–von Mises type statistics for one-sample good-
ness-of-fit in Anderson & Darling (1952), Gregory (1977), Shorack & Wellner (1986, ch. 5)
and D’Agostino & Stephens (1986, ch. 4). Recently in econometrics, degenerate U -statistics
were utilized in several tests for model mis-specification (Linton & Gozalo, 1995; Bierens &
Ploberger, 1997; Fan & Li, 1999).

A U -statistic used in testing hypothesis may have an indeterminate degeneracy. Standard
U -statistic theory cannot be applied as the order of degeneracy of the kernel is indeterminate.
An incomplete U -statistic (UI ), which is an average of N randomly chosen evaluations of a
kernel h with N/n→0 can be used. However, UI is inefficient, since the rate of convergence
of UI is

√
N (theorem 1 in p. 204 of Lee, 1990 & Janson, 1984). A typical example of an

indeterminate U -statistic is the test proposed for independence of paired circular data (Fisher
& Lee, 1983). This statistic can also test independence of a particular fish’s spawning time
and the low tide time in marine biology (Lund, 1999) or the paired dihedral angles of protein
peptides (Singh et al., 2002). Under the null hypothesis, the kernel is degenerate if at least one
marginal assumes circular uniform distribution and the kernel is non-degenerate otherwise.
See section 4 for details of this kernel. More generally, we encounter U -statistics with an in-
determinate degeneracy when estimating a product type parameter �=E{g1(X )g2(Y )}, where
g1 and g2 are real valued functions, and X and Y are i.i.d. r.v. with a positive variance. The
kernel of the U -statistic for � is

h(x, y)= {g1(x)g2(y)+g1(y)g2(x)}
2

.

Given �=0, h is degenerate if E{g1(X )}=E{g2(Y )}, and h is non-degenerate if
E{g1(X )} �=E{g2(Y )}.

To remedy the aforementioned drawbacks of U -statistics utilized in testing hypothesis, we
propose a class of two-stage U -statistics (TU-statistics henceforth). The limiting null distri-
bution of a TU-statistic has a simple closed form even when its kernel has a high-order
degeneracy, and a TU-statistic is asymptotically normal when its kernel has indeterminate
degeneracy. The proposed procedure for constructing a TU-statistic can be extended to
multivariate U -statistics. Furthermore, when a kernel is degenerate under the null hypothesis
but is non-degenerate under the alternative, the TU-statistic is shown to be more powerful
than its associated U -statistic. For details, see section 2.2 and the examples in section 3 on
testing independence for bivariate circular data.

In section 2, we first show how to construct TU-statistics in two cases where a U -statis-
tic is either degenerate of order d(d ≥1) or indeterminate. Both the limiting distributions of
TU-statistics under the null and the alternative have been derived. Under H0, the limiting
distribution is a Hermite polynomial function of the standard normal r.v. Criteria for choos-
ing the tuning parameters of TU-statistics are also given. In section 3, two applications in
testing independence of paired angles in ecology and marine biology are presented. The
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constructed TU-statistic has a limiting χ2
1-type distribution. In section 4, we conduct a power

study of the TU-statistic for testing bivariate circular independence with respect to its asso-
ciated incomplete U -statistic under two settings. In section 5, the Pitman ARE of the
TU-statistic is shown to dominate that of its associated incomplete U -statistic for the
indeterminate degeneracy case. We close with some discussion in section 6.

2. Two-stage U-statistic

2.1. The formulation

Assume that �2
k ≡var{h(X1, . . ., Xk)} is finite, where k ≥2. We consider a general hypothesis

testing problem, namely testing H0 : �= c1 against the alternative H1 : �> c1, where c1 is a
constant. Without loss of generality, we may assume that c1 =0. A test for H0 can be based
on a U -statistic of the form

�̂=
∑

C(n, k)

h(Xi1 , . . ., Xik )
C(n, k)

.

Let 0 <�< 1. We first divide a sample of n observations into m subsamples of nearly equal
size l = [n�] or l+1 such that m= [n/l]. As lm ≤ n ≤ (l+1)m so some subsamples have size l
and the rest l+1, and we denote the jth subsample size by lj . We note that m should not be
< 2. For instance, if n can be evenly divided by m then we have the following subsamples:

Li ={(i −1)l+1, (i −1)l+2, . . ., il}, i =1, . . ., m.

A TU-statistic (Tm,t) can be constructed by the following two stages.

Stage 1. We construct m independent normalized statistics as follows. Let lj be the number
of elements in the jth subsample from which a normalized statistic Ij is constructed under
two different cases. (a) When the kernel is degenerate of known order d ≥ 1, Ij is just the
normalized complete U -statistic derived from the jth subsample,

Ij = l (d+1)/2
j C(lj , k)−1

∑
C(lj , k)

h(Xi1 , . . ., Xik ). (1)

(b) When the degeneracy of the kernel is indeterminate,

Ij = l−1/2
j

∑
lj

h(Xi1 , . . ., Xik ),

where
∑

lj
denotes the summation over lj sets that are randomly chosen with replacement

from C(lj , k) combinations of k distinct indices from the jth subsample. The chosen scheme
with replacement implies a neat and closed form of variance (theorem 4 (i) of section 4.3.1,
Lee, 1990).

Stage 2. We partition an information Ij into a signal EIj = l (d+1)/2
j � and a noise part

Ij − l (d+1)/2
j �; then we estimate them by l (d+1)/2

j �̂ and Ij − l (d+1)/2
j �̂ respectively. Under the null

hypothesis �=0, the noise part dominates the limiting distribution. On the other hand,
under the alternative hypothesis �> 0, the signal part dominates the limiting distribution. Thus
the first and last term in the expansion of

∏t
j =1[(Ij − l (d+1)/2

j �̂)+ l (d+1)/2
j �̂] dominate the limit-

ing distribution under the null and alternative hypothesis, respectively, and we discard those
in-between terms. A TU-statistic of order t is the sum of two multilinear U -type statistics
with the kernel g(x1, . . ., xt)=x1x2. . .xt but using two sets of r.v., {Ij − l (d+1)/2

j �̂, 1≤ j ≤m} and

{l (d+1)/2
j �̂, 1≤ j ≤m} respectively. Let Ĩj denote Ij − l (d+1)/2

j �̂, the centred version of Ij , and put
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St =C(m, t)−1
∑

C(m, t)

t∏
i =1

l (d+1)/2
ji

.

When the kernel is degenerate of order d ≥1, a TU-statistic of order t has the form

Tm,t =C(m, t)−1
∑

C(m, t)

Ĩj1 ×· · ·× Ĩjt +St�̂
t
. (2)

When the degeneracy of the kernel is indeterminate, we should use Tm,1 with d =0 and t =1,
namely

Tm,1 =m−1
∑

C(m,1)

Ij .

Note that, both Ij and Tm,t depend on n which is suppressed for simplicity. From stage 1(b),
it is clear that a TU-statistic is more efficient than its associated UI since a TU is based on
an average of l evaluations of the kernel while UI is based on

√
N evaluations and N =o(l).

There are two parameters � and t involved when constructing a TU-statistic; some guidelines
for choosing them are given in section 2.3.

2.2. The asymptotic properties of TU-statistics

In this section, the limiting distribution of Tm,t under H0 is derived. In the sequel, we shall
need the recursive relation for the Hermite polynomials (Major, 1981)

Hk(x)=xHk−1(x)− (k −1)Hk−2(x), (3)

where

Hk(x)= (−1)kex2 /2

(
dke−x2 /2

dxk

)

is the kth Hermite polynomial.
Recall that �2

c =var{hc(X1, . . ., Xc)}, where 1 ≤ c ≤ k. The limiting results in theorem 1
below are formulated for general t ≥ 1, not limited to t =1 or t =2 that are suggested by
some criteria in section 2.3.

Theorem 1
Assume �=E{h(X1, . . ., Xk)} and �2

k =var{h(X1, . . ., Xk)}<∞. Then

(a) if h is degenerate of order d ≥ 1, under H0 : �=0, mt/2Tm,t converges in distribution to
vt

d+1Ht(Z) as m → ∞, where Z is the standard normal random variable and vd+1 =�d+1√
(d+1)!C(k, d+1),

(b) if degeneracy of h is indeterminate, taking d =0 and t =1, result (a) for m1/2Tm,t still holds
and v2

1 =�2
k+ limn→∞ n var(Un),

(c) under the alternative H1 : �> 0, the limiting distribution of mt/2(Tm,t − St�̃) is vt
d+1Ht(Z),

where �̃= �̂
t

if h is degenerate of order d ≥1 and �̃=� if h is indeterminate, thus d =0 and
t =1. It follows that the test statistic mt/2Tm,t is consistent against the alternative �> 0.

The variance of Un in (b) can be computed by Monte Carlo, the jackknife or the bootstrap
method. The proof of theorem 1 is an adaptation of the procedure in Rubin & Vitale (1980),
and the details are in the appendix. Theorem 1(b) and the indeterminate case of part (c) are
direct applications of the central limit theorem. For theorem 1 (a) and the degenerate case
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of part (c), a quick check to see why they hold is as follows. Suppose that lj = l for 1≤ j ≤m,
then Tm,t can be expressed as

Tm,t =C(m, t)−1
t∑

s =0

C(m− s, t − s)[l (d+1)/2(�− �̂)]t−s

×
∑

C(m, s)

(Ij1 − l (d+1)/2�) · · · (Ijs − l (d+1)/2�)+ lt(d+1)/2�̂
t
,

where
∑

C(m, s) is defined in section 1 and
∑

C(m, 0) ≡1. The above equation is equivalent to

mt/2(Tm,t − lt(d+1)/2�̂
t
)

=mt/2[C(m, t)−1
∑

C(m, t)

(Ij1 − l (d+1)/2�) · · · (Ijt − l (d+1)/2�)]+op(1)

provided d ≥ 1 [see also equation (A5) in the appendix]. Then the results follow since
(m1/2l (d+1)/2�̂)t =op(1) under H0 and mt/2[C(m, t)−1

∑
C(m, t)(Ij1 − l (d+1)/2�) . . .(Ijt − l (d+1)/2�)] has

the same limiting distribution as vt
d+1Ht(Z). We note that: (i) if d =0 and t ≥ 2 then the

limiting distribution of mt/2Tm,t is different from that of theorem 1(a) and is quite compli-
cated, and (ii) for the indeterminate case of theorem 1(b), the limiting distribution cannot be
determined if t > 1. Also note that the extension of theorem 1 to the case of several samples
is straightforward.

A TU-statistic has some advantages. First, under H0, its limiting distribution is simple
and its quantiles can be computed with required accuracy by a numerical or Monte Carlo
method. On the other hand, the corresponding U -statistic’s rejection region is approximate
as its limiting distribution does not have a closed form. Secondly, under H1, we can com-
pute powers of TU-statistics according to a rejection region. Thirdly, a TU-statistic can be
asymptotically more powerful than its corresponding U -statistic when a kernel is degener-
ate under the null hypothesis but is non-degenerate under the alternative. Some examples are
the circular Kendall’s tau (illustrated later in section 3) and other tests of independence for
directional data using kernels of order k ≥3 (section 6.2.1 of Lee, 1990). To demonstrate this
advantage, we choose t =2 (discussions on how t is chosen are given in the next subsection)
for the TU-statistic. Let CU (�), CTU(�), �(·) and G(·) denote the size-� critical values of the
null limiting distribution of the U - and TU-statistic, the distribution functions of the stan-
dard normal and χ2

1 −1 respectively. The power of the TU-statistic with t =2 is asymptotically
1 − G({CTU(�) − n�2ld}/v2

d+1) (by theorem 1(a,c)). While the power of the corresponding
U -statistic is, by normal approximation, 1 − �({CU (�)n−d/2 − √

n�}/�) for large n. Because
the latter converges to 1 slower than the former as n→∞, the TU-statistic is more powerful
than its corresponding U -statistic.

When the degeneracy of a U -statistic is indeterminate, Tm,t still works. Without loss of
generality, this is shown by a Tm,t with a kernel of degree 2 as below. We first take the
number of subsamples equal to m= [

√
n]. In stage 1, the indeterminate degeneracy of h

leads to d =0 (to avoid false power due to a larger d) and compute

Ij = l−1/2
j

∑
lj

h(Xi1 , Xi2 ),

where
∑

lj
is defined in stage 1(b) of section 2.1. In stage 2, we take t =1 because the limit

of mt/2Tm,t under H0 is indeterminate for t ≥2. Thus

Tm,1 =m−1
m∑

i =1

Ii .
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By theorem 1(c), the limiting distribution of
√

m(Tm,1 − √
l�) is N(0, v2

1), namely
Tm,1/

√
l→P�. On the other hand,

√
N(UI −�)→DN(0, �2

k) and N =o(l). Thus in an indeter-
minate case, a TU-statistic can be used for estimation and is more efficient than its corres-
ponding UI -statistic. Treating Iis as r.v., we can estimate v2

1 by the jackknife or the bootstrap
method. Furthermore, Tm,1 is more powerful than the associated incomplete U -statistic
as

√
N/n=o(1). We suggest that a TU-statistic be used when the degeneracy of a kernel is

indeterminate.

2.3. Criteria for choosing t and �

We shall take both power and size of Tm,t into consideration when choosing parameters �
and t. For ease of illustration, we let each lj , j =1, . . ., m, equal l̄, where l̄ = [n�] and 0 <�< 1.

The second term of a TU-statistic as defined in the right-hand side of (2), ((ml̄
d+1

)1/2�̂)t,
becomes large under the alternative hypothesis, and this leads to rejection of H0 and large
power. Suppose that � is positive under H1. To have a TU-statistic as powerful as its associ-

ated U -statistic, it is required that ((ml̄
d+1

)1/2�̂)t dominate n(d+1)/2�̂ or equivalently

m(d+1)/2 =o(mt/2 l̄
(d+1)(t−1)/2

). A simple sufficient condition for this to hold is t ≥2 and �> 1/2.
Thus for a degenerate case, we should take t ≥ 2 and �> 1/2 in order to have large power.
However, for a fixed sample size, as � tends to zero, a large t will reduce power of a
TU-statistic. For any given �> 1/2, the optimal choice of t under H1 will depend on the
parameter � and how fast the centred and normalized TU-statistic converges to its limit-
ing distribution, and is in general a very difficult problem to solve. For simplicity, we suggest
using t =2 for a degenerate kernel case. Clearly, with this chosen t and �, a TU-statistic
will also outperform the associated incomplete U -statistic. However, letting � tend to 1 may
induce serious size distortion due to the finite sample distribution of a TU-statistic deviating
greatly from its limiting distribution. As in the extreme case where �=1(m=1), Tm,t reduces
to a U -statistic which we avoid using in high-order degenerate cases. Similar size biases also
occur in the indeterminate case where asymptotic normality holds. This is evident in Tables
1–3 in section 4. Thus among those �> 1/2, we suggest choosing one that is close to 1/2.

We now demonstrate how one applies these criteria by an example. In case I of section 4,
as the degeneracy of the kernel is indeterminate, we take d =0 and t =1. When n=200, for
instance, taking �=0.7 results in five subsamples makes the size bias greater than those of
other designs. The large � value results in a poor approximation of Tm,t to its null limiting
distribution. Having both power and type I error considered, we suggest using m=14 and
thus �=0.5 in this case.

3. Applications

In this section, TU-statistics are applied to test independence of paired angles that are of
interest in ecology and in marine biology. In the former, the dependence of bird nest direc-
tion on creek bed direction is of interest, whereas in the latter the association of the spawning
time of a particular fish on the low tide time.

Example 1. The orientations (�i) of the nests of 51 noisy scrub birds along the creek bed,
together with the corresponding directions (�i) of creek flow at the nearest point to the nest
were from Fisher (1993, pp. 252), as supplied by Dr Graham Smith. Here both �is and �is
are assumed uniformly distributed on [0, 1]. We applied a TU-statistic to test the association
(�) of nest direction on creek bed direction, H0 :�=0 versus H1 :�> 0. Among the 51 pairs
of orientations, the first 50 were utilized. Let pT

i = (�i , �i), 1 ≤ i ≤ n and sgn(x)=1, 0 or −1
for x > , = or < 0. The kernel, studied in Fisher & Lee (1982),
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h(p1, p2, p3)= sgn(�1 −�2)sgn(�2 −�3)sgn(�3 −�1)sgn(�1 −�2)sgn(�2 −�3)sgn(�3 −�1)

was utilized. The U -statistic generated by this kernel, called circular Kendall’s tau, was used
to test independence for bivariate circular data. In this case, the kernel h(p1, p2, p3) is degen-
erate of order 1 under H0, and is non-degenerate under H1 (section 6.2.1 in Lee, 1990).
Therefore, as previously discussed in section 2.2, the TU-statistic based on this kernel is more
powerful than its corresponding U -statistic in testing the hypothesis. Three designs were
studied: (m, l̄)= (5, 10), (6, 8) and (7, 7). In stage 1, taking d =1 (since h is degenerate
order-1), we computed m normalized U -statistics Ij , j =1, . . ., m, and m=5, 6 and 7; then in
stage 2, Tm,t with t =2. For all three designs, values of mTm,t (−0.15, 0.30 and 0.40) are smaller
than the 99% critical value (v2

2(χ2
1 − 1)=10.68), where v2 =�2

√
2C(3, 2) and �2 =1/3. Thus we

do not reject H0. This agrees with the results from the approaches of a U -statistic and an
incomplete U -statistic in Fisher & Lee (1982) and in Fisher (1993) respectively.

Example 2. The spawning times of a particular fish and the time of the low tide were from a
marine biology study by Robert R. Warner at University of California, Santa Barbara (Lund,
1999). The data were gathered in St Croix, the US Virgin Islands. Before one provides a
model for the spawning time of the fish (TS) on the corresponding low tide time (TLT), one
should test the dependence of TS on TLT. Let pT

i = (�i , �i), for i =1, 2.
To this end, we used a TU-statistic based on the kernel

h(p1, p2)= sin(�1 −�2) sin(�1 −�2)

{E sin2(�1 −�2)E sin2(�1 −�2)}1/2
. (4)

This kernel is equal to that of the test for circular association used in Fisher & Lee (1983)
as n → ∞. To see the pattern of the paired data, we coverted the period 0–20 h of TLT to
[0, 2�) (called �) and the period 11.76–14.98 h of TS to [0, 2�) (called �). One hundred pair
angles that have no missing values were utilized to compute the TU-statistic.

The p.d.f. of a von-Mises distribution with mean � and concentration parameter
	 (VMS(�, 	) henceforth) is:

f (�)= 1
2�I0(	)

exp{	 cos(�−�)}, 0 <�< 2�, 0 <	<∞, (5)

where I0(	)= (2�)−1
∫ 2�

0 exp{	 cos(� − �)}d�, is the modified Bessel function of order zero.
We note that the concentration of the data around the mean is greater with larger 	 values.
Under the null hypothesis, we applied the algorithm in Shieh & Johnson (2005) to obtain
that the marginal distribution of �is and �s follow VMS(�, 0.5) and VMS(�, 1.1) respec-
tively. As VMS(�, 0.5) is close to circular uniform [0, 2�), the degeneracy of this kernel is
indeterminate.

Under three designs: (m, l̄)= (3, 33), (5, 20), (9, 16), we computed the TU-statistic as fol-
lows. In stage 1, taking d =0, we computed m normalized U -statistics Ij , where j =1, . . ., m,
m=3, 5 and 9; in stage 2, Tm,t with t =1. For all three designs, values of

√
mTm,t (0.205, 0.082

and −0.180) are smaller than the 95% critical value as �2
k =1.011 and n var(Un)=0.250.

Thus, we do not reject H0 and conclude that there is no evidence to claim dependence of the
spawning time of the fish on the corresponding low tide time.

4. Simulations

In this section, we compare the power of TU-statistic to its associated incomplete U -statistic
under two cases with some finite samples. The test statistic for association between angular
r.v. (� and �) in Fisher & Lee (1983) assumes the form
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∑
1≤i < j≤n

sin(�i −�j) sin(�i −�j)

{∑ sin2(�i −�j)
∑

sin2(�i −�j)}1/2
= U (1)

n

(U (2)
n U (3)

n )1/2
,

where pT
i = (�i , �i), for i =1, 2, . . ., n; U (j)

n , j =1, 2 and 3 are U -statistics based on kernels
g1(p1, p2)= sin(�1 − �2) sin(�1 − �2), g2(p1, p2)= sin2(�1 − �2) and g3(p1, p2)= sin2(�1 − �2)
respectively. As n→∞, the kernel of this test is equal to that in (4). For simplicity, we study
the power of Tm,t and its associated incomplete U -statistic UI with the kernel in (4). As men-
tioned in section 1, UI , an average of N randomly chosen evaluations of h with N/n→0, may
be used in the indeterminate degeneracy case. Thus it is of interest to compare Tm,t with the
associated UI with N = [n0.9] randomly chosen number of evaluations.

The alternative model is constructed by taking

�=� · I [U1 ≤p]+� · I [U1 > p], (6)

where � and � assume VMS(�, 	) with 	=0.5 and 0 in cases I and II studied respectively.
U1 is uniform (0, 1) and p is some fixed constant in the interval [0, 1]. We control the asso-
ciation of � and � by p, p=√


T , where 
T =E[h(p1, p2)] with h(p1, p2) defined in (4) and
0≤
T ≤1.0. From (5), it is clear that a VMS with 	=0 reduces to a circular uniform [0, 2�).
Under the null hypothesis, the kernel in (4) is degenerate of order 1 when either �i or �i

assumes VMS(�, 	) 	=0 (section 4 in Fisher & Lee, 1983). The kernel is non-degenerate
when 	 deviates from 0 enough that the data concentrate on their non-zero mean (i.e. the
mean resultant length of the data is non-zero).

We study two interesting cases. Case I, both � and �, in (6) follow VMS(�, 0.5) and � is
generated by the alternative. In this case, 	 is close to but not equal to 0. Hence from data,
it is hard to tell which distributions � and � follow. We further study case II, in which both
� and �, in (6) follow VMS(�, 0). After some computation, we obtained that the kernel is
degenerate of order 1 under H0 and non-degenerate under H1.

Under the alternative model, we compute both Tm,t and UI with sample sizes 50, 100 and
200. Their powers are obtained from comparing against the 0.05 level critical values from
their limiting distributions. For a given sample size, five designs for Tm,t are studied in both
cases. The number of subsamples (m) and the average subsample size (l̄) are listed in Tables
1–6. When computing Tm,t, we take t =1 and d =0 in case I and t =d+1=2 in case II accord-
ing to theorem 1. The results of cases I and II are summarized in Tables 1–3 and Tables 4–6
respectively.

Tables 1–6 show that the power of Tm,t increases as n and 
T increase. For all sample sizes
studied, as � tends to 1/2, the empirical size of Tm,t tends to 0.05. There is a positive size

Table 1. Empirical powers of Tm,t and UI observed in 5000 simulations of sample 50


T (m, l̄)= (13,3) (10,5) (7,7) (5,10) (3,16) UI

0.0 0.073 0.059 0.049 0.045 0.040 0.047
0.1 0.217 0.224 0.219 0.209 0.205 0.200
0.2 0.375 0.433 0.411 0.429 0.414 0.381
0.3 0.569 0.640 0.641 0.640 0.630 0.584
0.4 0.734 0.805 0.805 0.813 0.799 0.762
0.5 0.859 0.916 0.916 0.918 0.923 0.873
0.6 0.932 0.969 0.967 0.973 0.968 0.948
0.7 0.975 0.993 0.992 0.991 0.993 0.985
0.8 0.994 0.999 0.998 0.999 0.999 0.997
0.9 0.999 1.000 1.000 1.000 1.000 1.000
1.0 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2. Empirical powers of Tm,t and UI observed in 5000 simulations of sample 100


T (m, l̄)= (13,7) (9,11) (6,16) (5,20) (3,33) UI

0.0 0.074 0.040 0.041 0.038 0.034 0.056
0.1 0.354 0.301 0.289 0.302 0.299 0.275
0.2 0.659 0.632 0.617 0.632 0.633 0.546
0.3 0.860 0.859 0.860 0.867 0.857 0.786
0.4 0.962 0.961 0.961 0.965 0.965 0.922
0.5 0.995 0.994 0.995 0.994 0.999 0.977
0.6 1.000 0.999 1.000 1.000 1.000 0.998
0.7 1.000 1.000 1.000 1.000 1.000 1.000

Table 3. Empirical powers of Tm,t and UI observed in 5000 simulations of sample 200


T (m, l̄)= (25,8) (14,14) (8,25) (6,33) (5,40) UI

0.0 0.050 0.043 0.042 0.035 0.038 0.050
0.1 0.469 0.458 0.464 0.462 0.473 0.395
0.2 0.852 0.850 0.874 0.861 0.862 0.757
0.3 0.985 0.979 0.985 0.986 0.980 0.941
0.4 0.999 1.000 0.999 0.999 0.999 0.994
0.5 1.000 1.000 1.000 1.000 1.000 0.999
0.6 1.000 1.000 1.000 1.000 1.000 1.000

Table 4. Empirical powers of Tm,t and UI observed in 5000 simulations of sample 50


T (m, l̄)= (13,3) (10,5) (7,7) (5,10) (3,16) UI

0.0 0.083 0.062 0.046 0.039 0.034 0.056
0.1 0.130 0.201 0.253 0.329 0.410 0.165
0.2 0.336 0.553 0.638 0.719 0.778 0.325
0.3 0.650 0.856 0.900 0.930 0.949 0.536
0.4 0.879 0.966 0.979 0.987 0.988 0.705
0.5 0.977 0.995 0.997 0.997 0.997 0.849
0.6 0.997 0.999 1.000 1.000 0.999 0.934
0.7 1.000 1.000 1.000 1.000 1.000 0.977

Table 5. Empirical powers of Tm,t and UI observed in 5000 simulations of sample 100


T (m, l̄)= (13,7) (9,11) (6,16) (5,20) (3,33) UI

0.0 0.058 0.049 0.041 0.036 0.035 0.051
0.1 0.432 0.585 0.664 0.720 0.779 0.218
0.2 0.911 0.957 0.969 0.976 0.980 0.465
0.3 0.994 0.998 0.999 0.999 0.998 0.728
0.4 1.000 1.000 1.000 1.000 1.000 0.889
0.5 1.000 1.000 1.000 1.000 1.000 0.971

Table 6. Empirical powers of Tm,t and UI observed in 5000 simulations of sample 200


T (m, l̄)= (25,8) (14,14) (8,25) (6,33) (5,40) UI

0.0 0.051 0.048 0.042 0.041 0.036 0.049
0.1 0.816 0.912 0.961 0.973 0.977 0.308
0.2 1.000 1.000 1.000 1.000 1.000 0.671
0.3 1.000 1.000 1.000 1.000 1.000 0.910
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bias when m is large (m=13) for n=50 and 100 in both cases. The pattern that the power
of Tm,t increases as values of m decreases (as � increases) is clearly shown in case II. For all
sample sizes studied, except the design (m, l̄)= (13, 3) under n=50 and 
T =0.1, Tm,t is more
powerful than UI when 
T ≥0.1 (when � and � are correlated). This shows that TU is more
efficient than UI in almost all cases studied.

5. Asymptotic relative efficiency of TU-statistics versus UI

For a fixed size �, the Pitman asymptotic relative efficiency (ARE) (Pitman, 1949) is an index
of the relative sample sizes required for two sequences of tests to achieve the same power
against the same alternative hypothesis. This ARE exists only when both sequences of tests
converges to the same limiting distribution. Thus we compare the ARE of TU versus UI

based on an indeterminate kernel as in this case both sequences of tests have asymptotically a
normal distribution. To be concrete, we can use the kernel for testing independence of paired
bivariate circular data in (4) of section 4 as an example.

For testing H0 : �=0 versus H1 : �> 0, the sequences of tests of TU and UI converge to
normal distributions. Let �2

k =var{h(X1, . . ., Xk)}. By theorem 1(b) in section 2 and theorem 1
of p. 204 in Lee (1990),

√
mTm,1 →D N(0, v2

d+1)

and let N/n→0 as n→∞,
√

NUI →D N(0, �2
k),

respectively. Tm,1 rejects H0 if Tm,1 ≥ anvd+1/
√

m and UI rejects H0 if UI ≥ an�k/
√

N , where
an → Z1−� as n → ∞. Both tests will have asymptotically a size �. Under H1 : �> 0, by
theorem 1(c) the asymptotic power function of TU is

�(1)
n (�)≈�

(√
n�

vd+1
−Z1−�

)

since

S1 =
m∑

j =1

√
lj

m
∼

√
l.

Similarly, the asymptotic power function of UI is

�(2)
n (�)≈�

(√
N�
�k

−Z1−�

)
.

Consider the sequence of power functions {�(1)
n (�n), n≥1} evaluated at �n =�/

√
n with �> 0,

lim
n→∞

�(1)
n

(
�√
n

)
=�

(
�

vd+1
−Z1−�

)
=�∗,

where 0 <�∗ < 1. Similarly, consider the sequence of power functions of UI , {�(2)
n′ (�n), n≥1}.

The sample size n′ required for UI to achieve the same asymptotic power as Tm,t, namely
�(2)

n′ (�n)→�∗ as n→∞, satisfies n=o(n′). Thus the Pitman ARE of TU dominates that of its
associated UI .

6. Discussion

We have shown that for testing hypothesis when the kernel of a U -statistic has an indeter-
minate degeneracy or is high-order degenerate under H0, a TU-statistic can be applied while
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its associate U -statistic fails. In the case of indeterminate degeneracy, an incomplete U -
statistic would work for testing hypothesis, but it has much smaller Pitman ARE than its
associated TU-statistic. For estimation, a UI is also less efficient than its corresponding TU-
statistic as shown in section 2.2. When the kernel is high-order degenerate, the limiting dis-
tribution of a TU-statistic has a chi-square-type closed form, while the associated U -statistic
does not.

For a class of tests based on kernels that are degenerate under the null hypothesis but non-
degenerate under the alternative, TU-statistics are shown to be more powerful than their
corresponding U -statistics. When a U -statistic with a kernel of order k is non-degenerate
under H0, the corresponding TU-statistic may be reduced to an incomplete U -statistic as
follows. In stage 1, taking every subsample size l equal to k and discarding the rest of the
n − mk observations, we have the number of subsamples m= [n/k]. Further, we take Ij =
h(Xi1 , . . ., Xik) for j =1, . . ., m. With t =1, we have that Tm,t =m−1

∑
m h(Xi1 , . . ., Xik), where∑

m denotes a summation over m randomly chosen evaluations from those C(m, t) combi-
nations of k distinct indices. The limiting distribution of Tm,t is normal which agrees with
the incomplete U -statistic theory (Janson, 1984). However, the ARE of Tm,t is lower than that
of the corresponding U -statistic. Hence for a non-degenerate kernel, we suggest that a regular
U -statistic be used.

We are aware of a competitive class of statistics, subsampling U -statistics (Us) (Politis
et al., 1999), which can also resolve the problems we aim at. However, the procedure of a sub-
sampling U -statistic is complicated to implement in the indeterminate degeneracy case. First,
one has to estimate the convergence rate with a few indeterminate parameters in the formula.
The estimated convergence rate may differ significantly if various values are chosen for the
parameters. For a large sample size n, a subsampling U -statistic may be difficult to com-
pute, because C(n, b) can be very large. Randomly choosing N evaluations from C(n, b) can
approximate its associated subsampling U -statistic (section 2.4, Politis et al., 1999). However,
there is no theoretical guidelines on how large N should be, and assessing the performance
of the approximation empirically would not be possible if a complete evaluation of Us is not
available.
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Appendix

Proof of theorem 1
As part (b) and the indeterminate case of part (c) are straightforward, we focus on part (a)
and the degenerate case of part (c). As in the text, the sample size n is suppressed for quan-
tities that depend on it. We may assume without loss of generality that the sizes lj , 1≤ j ≤m,
of the m subsamples are all equal to an integer l ≡ n/m. For each given j, 1 ≤ j ≤ m, the
normalized U -statistic Ij constructed from the jth subsample in stage 1 has variance con-
verging to

lim
l→∞

var(Ij)≡ v2
d+1 =

{
�2

k+ limn→∞ n var(Un) if d =0
C(k, d+1)2(d+1)!�2

d+1 if d ≥1
, (A1)

uniformly for all j =1, . . ., m (theorem 4 of section 4.3.1 and theorem 3 of section 1.3, Lee,
1990). Let {Zm,i , 1 ≤ m, 1 ≤ i ≤ m} be an array of row-wise independent r.v. with E(Zm,i)=0
and E(Z2

m,i)=1 for all m, i. Furthermore, assume that the sequence of r.v. Vm,1 =m−1/2
∑

i Zm,i

converge to a standard normal in distribution as m→∞. Let t be a positive integer. Define
Vm,t =m−t/2

∑
{m,t} Zm,i1 . . .Zm,it , where

∑
{m,t} denotes summation over all t-tuple mutually

distinct indices (i1, . . ., it) with 1≤ i1, . . ., it ≤m. Obviously, Vm,t =Op(1) for all t ≥1. As
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m−t/2
∑
{m,t}

Z2
m,i1

Zm,i2 . . .Zm,it

=m−t/2
∑
{m,t}

(Z2
m,i1

−1)Zm,i2 . . .Zm,it +m−t/2(m− t+1)
∑

{m,t−1}
Zm,i1 . . . Zm,it−1 ,

we have

Vm,1Vm,t =Vm,t+1+ t[m−1/2{m−t/2
∑
{m,t}

(Z2
m,i1

−1)Zm,i2 . . . Zm,it

+m−t/2(m− t+1)
∑

{m,t−1}
Zm,i1 . . . Zm,it−1}]

=Vm,t+1+ tVm,t−1+Op(m−1/2). (A2)

If, for all t ≥2,

Ht(Vm,1)=Vm,t+Op(m−1/2) as m→∞, (A3)

then immediately

Vm,t →Ht(Z) (A4)

in distribution, where Z is the standard normal r.v. In the following, we shall prove (A3) by
an induction argument. It is clear that (A3) holds for t =2. Assume (A3) is true for all t and
2≤ t ≤u. By recursive relations (3) in the main text and (A2)

Hu+1(Vm,1)=Vm,1Hu(Vm,1)−uHu−1(Vm,1)

=Vm,1(Vm,u+Op(m−1/2))−u(Vm,u−1+Op(m−1/2))=Vm,u+1+Op(m−1/2),

which establishes (A3). To apply (A4) to prove (a) and (c), we first see that, for d ≥ 1 and
0≤ s ≤ t,

C(m− s, t − s)[l (d+1)/2(�− �̂)]
∑

C(m, s)

s∏
i =1

(Iji − l (d+1)/2�)=Op(m−(t−s)((d+1)/2−1)+s).

Thus

mt/2(Tm,t − lt(d+1)/2�̂
t
)

=mt/2[C(m, t)−1
∑

C(m, t)

(Ij1 − l (d+1)/2�) . . . (Ijt − l (d+1)/2�)]+op(1) (A5)

and, under H0,

mt/2Tm,t =mt/2(Tm,t − lt(d+1)/2�̂
t
)+op(1).

Note that EIj = l (d+1)/2�. Define

I ∗
j ={var(Ij)}−1/2(Ij − l (d+1)/2�)

to form a collection of arrays {I ∗
j , 1 ≤ m, j =1, . . ., m} of row-wise independent r.v. with

E(I ∗
j )=0 and E(I ∗

j )2 =1. Set

Wm,t =m−t/2
∑
{m,t}

I ∗
j1

. . .I ∗
jt .

Then, by (A1) and (A5),

mt/2(Tm,t − lt(d+1)/2�̂
t
)= vt

d+1Wm,t+op(1).

Analogous to (A4), replacing Vm,1 and Vm,t of (A3) by m−1/2
∑

j I ∗
j and Wm,t, respectively, we

obtain that Wm,t converges in distribution to Ht(Z) as m→∞. This completes the proof.
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