Flavor network and the principles of food pairing

Yong-Yeol Ahn, Sebastian E. Ahnert, James P. Bagrow and Albert-Laszlo Barabasi

Nature (Scientific Reports), 2011

- **Question**: Are there any quantifiable and reproducible principles behind our choice of certain ingredient combinations and avoidance of others?
 - **palatability**, nutritional value, culture, ease of production, climate, ...

- **Question**: Are there any quantifiable and reproducible principles behind our choice of certain ingredient combinations and avoidance of others?
 - **palatability**, nutritional value, culture, ease of production, climate, ...
- Factors affecting food sensation: **flavor compounds of ingredients** (taste, odor, freshness), color, texture, temperature, mode of preparation, sound, ...

- **Question**: Are there any quantifiable and reproducible principles behind our choice of certain ingredient combinations and avoidance of others?
 - **palatability**, nutritional value, culture, ease of production, climate, ...
- Factors affecting food sensation: **flavor compounds of ingredients** (taste, odor, freshness), color, texture, temperature, mode of preparation, sound, ...
- Network-based approach to explore the impact of flavor compounds on ingredient combinations
 - Analyze 1021 flavor compounds of 381 ingredients from 57K recipes across 5 cuisines (North & Latin American, West & South European, East Asian)
 - Note: proportions of flavor compounds in ingredients ignored

Bipartite graph: Ingredients vs flavor compounds

3/18

э

Flavor network

weight = number of shared components

Number of ingredients per recipe

Frequency of ingredients in recipes

6/18

Backbone of flavor network

- several flavor compounds are shared by a large number of ingredients
- Flavor network is too dense for direct visualization (average degree \approx 214)
- Backbone extraction method: statistically significant links for each ingredient

Backbone of flavor network

8/18

Shared compounds

Food pairing hypothesis

• Ingredients sharing flavor compounds are more likely to taste well together than ingredients that do not

$$N_{s}(R) = \frac{2}{n_{R}(n_{R}-1)} \sum_{i,j \in R, i \neq j} |C_{i} \cap C_{j}|$$
$$\Delta N_{s} = N_{s}^{\text{real}} - N_{s}^{\text{rand}}$$

• Note: Random model (null model) different for cuisines (to control for the frequency of a particular ingredient in a cuisine)

Food pairing hypothesis

Distribution of N_s for random recipes

Measuring ingredient contributions to shared compounds

- χ_i measures how much does an ingredient affect ΔN_s .
- Are there frequently used ingredients that affect food pairing?

Measuring ingredient contributions to shared compounds

- χ_i measures how much does an ingredient affect ΔN_s .
- Are there frequently used ingredients that affect food pairing?

Flavor principle

- Flavor principle: the differences between regional cuisines can be reduced to a few key ingredients with specific flavors
- e.g. soy sauce leads to oriental taste
- Measuring authenticity:

$$P_i^c = n_i^c / N_c$$

$$p_i^c = P_i^c - \left\langle P_i^{c'} \right\rangle_{c' \neq c}$$

• Create flavor pyramids with 6 most authentic ingredients, ingredient pairs and ingredient triplets

Note: co-occurring compounds share more compounds

Note: co-occurring compounds share less compounds

Measuring similarity between cuisines

C Co-occurrence in recipes

Select the six most authentic ingredients in each regional cuisine

Thank you!

WE'VE DECIDED TO DROP THE CS DEPARTMENT FROM OUR WEEKLY DINNER PARTY HOSTING ROTATION.

Image source: http://xkcd.com/720/