
Super-Samples from Kernel Herding

Chen, Welling, Smola, ICML 2010

(Arthur Gretton’s notes)

September 5, 2012

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 1 / 16

What is herding?

Super-Samples from Kernel Herding

Yutian Chen
Department of Computer Science
University of California, Irvine

Irvine, CA 92697

Max Welling
Department of Computer Science
University of California, Irvine

Irvine, CA 92697

Alex Smola
Yahoo! Research
Santa Clara, CA

Abstract

We extend the herding algorithm to continuous
spaces by using the kernel trick. The resulting
“kernel herding” algorithm is an infinite mem-
ory deterministic process that learns to approx-
imate a PDF with a collection of samples. We
show that kernel herding decreases the error of
expectations of functions in the Hilbert space at
a rateO(1/T)which is much faster than the usual
O(1/

√
T) for iid random samples. We illustrate

kernel herding by approximating Bayesian pre-
dictive distributions.

1 INTRODUCTION

Herding has been understood as a weakly chaotic, non-
linear dynamical system in parameter space, i.e. one can
think of it as a mappingwt+1 = F (wt) [Welling, 2009a,b,
Welling and Chen, 2010, Chen and Welling, 2010]. The
discrete states x play the role of auxiliary variables in this
view. However, under this interpretation it has proven diffi-
cult to extend herding to continuous spaces. The basic rea-
son is that a finite number of features can not sufficiently
control the infinite number of degrees of freedom in con-
tinuous spaces leading to strange artifacts in the pseudo-
samples1. To overcome this we wish to perform herding on
an infinite number of features implying the need to switch
to a kernel representation.

To achieve that, we will first reinterpret herding as an in-
finite memory process in the state space x where we now
“marginalize out” the parameters w. Thus, we can con-
sider herding as a mapping xt+1 = G(x1, ...,xt,w0).
With two additional very natural assumptions, herding is
seen to minimize the squared error between expected fea-
ture values evaluated at the true distribution and the em-
pirical distribution obtained from herding. In this new

1For instance, herding in a continuous space with features
given by the mean and variance will produce two delta-peaks in-
stead of a Gaussian.

−6 −4 −2 0 2 4 6
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 1: First 20 samples form herding (red squares) ver-
sus i.i.d. random sampling (purple circles).

formulation the kernel trick is then straightforward. The
main result of this paper is that the error in approximating
any function in the RK-Hilbert space defined by the ker-
nel through a Monte Carlo sum decreases as O(1/T). This
is significantly faster than the standard O(1/

√
T) conver-

gence obtained for iid random samples from p. In fact, un-
der the assumption that we perform an unweighed Monte
Carlo sum, O(1/T) convergence is known to be optimal
[Kuo and Sloan, 2005]. The reason for the fast conver-
gence is due to negative autocorrelations: the process re-
members all previous samples and steers away from re-
gions which have already been (over) sampled. This is
illustrated in Figure 1 for a mixture of Gaussians. Simi-
lar ideas are the basis for methods such as Quasi Monte
Carlo sampling, Quadrature integration and more recently
Bayesian integration [Rasmussen and Ghahramani, 2002].

For kernel herding one needs to be able to convolve the
density p with the kernel of choice. While this is possi-

Figure: Herding example: 20 points from Herding vs 20 i.i.d. samples. Contour is
density, red squares are from Herding, purple circles are i.i.d. samples.

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 2 / 16

What is herding?

Herding in an RKHS F is the following iteration:
1 xT+1 = argmax

x∈X
〈wT , φ(x)〉

2 wT+1 = wT + Ex∼P(φ(x))− φ(xT+1)

Recall: mean embedding:

µP := Ex∼Pφ(X)

which has the property

Ex f (x) = 〈f , µp〉 ∀f ∈ F .

Hence 2nd step is: wT+1 = wT + µp − φ(xT+1)

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 3 / 16

What does it do?

Define w0 := µP .
Then Herding becomes:

xT+1 = argmax
x∈X

〈wT , φ(x)〉

= argmax
x∈X

〈
w0 + TµP −

T∑
t=1

φ(xt), φ(x)

〉

= argmax
x∈X

〈
(T + 1)µP −

T∑
t=1

φ(xt), φ(x)

〉

= argmax
x∈X

(
(T + 1)Ex ′k(x , x ′)−

T∑
t=1

k(xt , x)

)

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 4 / 16

What does it do? (2)

Let’s say we want to choose xT+1 greedily to minimize:

ET+1 :=

∥∥∥∥∥µP −
1

T + 1

T+1∑
t=1

φ(xt)

∥∥∥∥∥
= Ex ,x ′k(x , x ′)− 2

T + 1

T+1∑
t=1

Exk(x , xt) +
1

(T + 1)2

T∑
t,t′

k(xt , xt′).

Keep terms that are a function of xT+1:

−2
T + 1

Exk(x , xT+1) +
2

(T + 1)2

T∑
t=1

k(xt , xT+1) +
1

(T + 1)2
k(xt+1, xt+1)︸ ︷︷ ︸

constant

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 5 / 16

Why might it be useful?

Given a finite sample estimate p̂T of p, then for all f ∈ F , by
Cauchy-Schwarz:

|Ex∼pf (x)− Ex∼p̂T f (x)| ≤ ‖f ‖ ‖µp − µp̂T ‖ .

If xT ∼ p i.i.d., then

‖µp − µp̂T ‖ = OP(T−1/2).

The claim for Herding:

‖µp − µp̂T ‖ = O(T−1)

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 6 / 16

Proof of fast convergence

Assume:
1 ‖φ(x)‖ ≤ R .
2 There exists an ε-ball around µp contained inM = conv {φ(x)} (this

will cause problems).
If we can show ‖wt‖ is bounded, then we can show the result.

Proof as follows:
1 Show why bounded ‖wt‖ gives the result we need
2 Show that ‖wt‖ is bounded under the ε-ball assumption

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 7 / 16

Proof of fast convergence

Assume:
1 ‖φ(x)‖ ≤ R .
2 There exists an ε-ball around µp contained inM = conv {φ(x)} (this

will cause problems).
If we can show ‖wt‖ is bounded, then we can show the result.

Proof as follows:
1 Show why bounded ‖wt‖ gives the result we need
2 Show that ‖wt‖ is bounded under the ε-ball assumption

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 7 / 16

Proof that bounded ‖wt‖ gives fast convergence

Let’s say that ‖wT‖ is bounded. Then

‖wT‖ =
∥∥∥∥∥w0 + Tµp −

T∑
t=1

φ(xt)

∥∥∥∥∥ ≤ C

So, dividing by T :∥∥∥∥∥µp −
1
T

T∑
t=1

φ(xt)

∥∥∥∥∥ ≤ T−1(‖w0‖+ C).

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 8 / 16

Proof that ‖wt‖ bounded:

We will prove there exists a constant C : which satisfies two properties:
1 If ‖wt‖ > C , then ‖wt+1‖ < ‖wt‖.
2 If ‖wt‖ < C , then ‖wt+1‖2 < C 2 + (2R)2

Interpretation:
1 The first result guarantees that if ‖wt‖ exceeds the limit C , it will

shrink until it falls under the limit.
2 The second result guarantees that ‖wt‖ cannot grow too much in one

time step (straightforward since the update has bounded norm).

The net effect is that ‖wt‖ ≤ C + 2R for all t.
Note that ‖wt‖ never coverges!

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 9 / 16

Proof that if ‖wt‖ > C , then ‖wt+1‖ < ‖wt‖

First: express the update in terms of a diference wrt µp:

C :=M− µp = conv
{
φ(x)− µp

∣∣x ∈ X}
Then update equations are:

wt+1 = wt + Ex∼P(φ(x))− φ(xt+1)

= wt − ct

where ct = argmax
c∈C

〈wt , ct〉.

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 10 / 16

Proof if ‖wt‖ > C , then ‖wt+1‖ < ‖wt‖ (2)

‖wt‖2 − ‖wt+1‖2 = ‖wt‖2 − ‖wt − ct‖2

= 2 〈wt , ct〉 − ‖ct‖2

= ‖ct‖
[
2 ‖wt‖

〈
wt

‖wt‖
,

ct

‖ct‖

〉
− ‖ct‖

]

Next: since ‖φ(x)‖ ≤ R , then ‖µp‖ ≤ R and hence ‖ct‖ ≤ 2R . So

‖wt‖2 − ‖wt+1‖2 ≥ 2 ‖ct‖
[
‖wt‖

〈
wt

‖wt‖
,

ct

‖ct‖

〉
− R

]
.

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 11 / 16

Proof if ‖wt‖ > C , then ‖wt+1‖ < ‖wt‖ (2)

‖wt‖2 − ‖wt+1‖2 = ‖wt‖2 − ‖wt − ct‖2

= 2 〈wt , ct〉 − ‖ct‖2

= ‖ct‖
[
2 ‖wt‖

〈
wt

‖wt‖
,

ct

‖ct‖

〉
− ‖ct‖

]
Next: since ‖φ(x)‖ ≤ R , then ‖µp‖ ≤ R and hence ‖ct‖ ≤ 2R . So

‖wt‖2 − ‖wt+1‖2 ≥ 2 ‖ct‖
[
‖wt‖

〈
wt

‖wt‖
,

ct

‖ct‖

〉
− R

]
.

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 11 / 16

Proof if ‖wt‖ > C , then ‖wt+1‖ < ‖wt‖ (3)

Is it the case that
〈

wt
‖wt‖ ,

ct
‖ct‖

〉
≥ γ∗ > 0?

Reminder:

ct = argmax
c∈C

〈wt , ct〉

C := conv
{
φ(x)− µp

∣∣x ∈ X} .
I.e. can ct be chosen in the direction wt?

Yes, as long as µp is in the relative interior ofM (the problematic
assumption)

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 12 / 16

Proof if ‖wt‖ > C , then ‖wt+1‖ < ‖wt‖ (3)

Is it the case that
〈

wt
‖wt‖ ,

ct
‖ct‖

〉
≥ γ∗ > 0?

Reminder:

ct = argmax
c∈C

〈wt , ct〉

C := conv
{
φ(x)− µp

∣∣x ∈ X} .
I.e. can ct be chosen in the direction wt?
Yes, as long as µp is in the relative interior ofM (the problematic
assumption)

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 12 / 16

Proof if ‖wt‖ > C , then ‖wt+1‖ < ‖wt‖ (4)

‖wt‖2 − ‖wt+1‖2 ≥ 2 ‖ct‖
[
‖wt‖

〈
wt

‖wt‖
,

ct

‖ct‖

〉
− R

]
≥ 2 ‖ct‖ [‖wt‖ γ∗ − R]

What if ‖wt‖ > R/γ∗ =: C? Then

‖wt‖2 − ‖wt+1‖2 > 2 ‖ct‖ [R − R]

= 0

so ‖wt‖2 > ‖wt+1‖2.
QED

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 13 / 16

Proof if ‖wt‖ > C , then ‖wt+1‖ < ‖wt‖ (4)

‖wt‖2 − ‖wt+1‖2 ≥ 2 ‖ct‖
[
‖wt‖

〈
wt

‖wt‖
,

ct

‖ct‖

〉
− R

]
≥ 2 ‖ct‖ [‖wt‖ γ∗ − R]

What if ‖wt‖ > R/γ∗ =: C? Then

‖wt‖2 − ‖wt+1‖2 > 2 ‖ct‖ [R − R]

= 0

so ‖wt‖2 > ‖wt+1‖2.
QED

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 13 / 16

Proof that if ‖wt‖ < C , then ‖wt+1‖2 < C 2 + (2R)2

Now prove the second result.
Recall C = R/γ∗. Then

‖wt+1‖2 = ‖wt − ct‖2

= ‖wt‖2 − 2 〈wt , ct〉+ ‖ct‖2

≤ ‖wt‖2 − 2‖ct‖‖wt‖γ∗ + ‖ct‖2

≤
(

R
γ∗

)2

+ (2R)2

QED

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 14 / 16

...and a warning

∥∥∥∥∥µp −
1
T

T∑
t=1

φ(xt)

∥∥∥∥∥ ≤ T−1(‖w0‖+ R/γ∗).

so we need γ∗ > 0 for fast rates.
From Bach, Lacoste-Julien, Obozinski, ICML2012: this never holds for
Mercer kernels.

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 15 / 16

Does it work?

100 101 102 103 10410−3

10−2

10−1

100

101
f(x)=x, err=T −0.92

Herding, error on D
Herding, error on p
Random sampling

Error on p

Error on D

100 101 102 103 104

10−1

100

101

102
f(x)=x2 err=T −0.90

Error on p

Error on D

100 101 102 103 104

100

101

102

103

f(x)=x3, err=T −0.96

Error on p

Error on D

100 101 102 103 104 105

10−4

10−3

10−2

10−1

100
f(x)=sin(||x||), err=T−0.92

Error on p
Error on D

Figure 4: Error in estimating the expectation of four functions by herding on the true distribution p (red) and the empirical
distribution D (blue) as a function of the number of samples. The convergence rate of the error on D (measured as slope
of the upper bound of the herding error) is shown on top of each figure. The error of random sampling on p (green) is also
plotted for comparison.

integral is simply a summation over all the points inD.

We again compare the estimation of function expectations
between herding and random samples. However, this time
we can compute two errors, one on the empirical distri-
butionD and the other on the true distribution p. Since the
distribution of S will converge to the empirical distribution,
the error between S and D will keep decreasing as in Fig-
ure 3 while the error between S and p will not. Instead,
it will converge to the error incurred by the empirical dis-
tribution relative to p and this is the point where the set S
is large enough to replace D. We can find from Figure 4
that for 105 iid samples, we only need at most 2000 super
samples for the first three functions, and 104 for the last
function to achieve similar precision. This is a significant
reduction whenever evaluating f is expensive, e.g. for user
interaction data.

3.2 Approximating the Bayesian Posterior

Next we consider the task of approximating the predictive
distribution of a Bayesian model. Alternatively, this idea
can be applied to find a small collection of good predic-
tive models to be used in bagging. Assume we have drawn
a large number of parameters, D, using MCMC from the
posterior distribution (or we have learned a large number of
predictors on bootstrap samples). For reasons of computa-
tional efficiency, we may not want to use all the samples at
test time. One choice is to down-sample the MCMC chain
by randomly sub-sampling from D. Another choice is to
run herding on the empirical distribution. With the conver-
gence property on any function in the Reproducing Kernel
Hilbert Space, we know that prediction by S will converge
to that by D. Furthermore, we can get a significant speed
up with a few super samples during the prediction phase
without much loss of accuracy.

Figure: Herding results: empirical mean embeddings computed from 105 samples.
Note that Herding uses fewer samples to get same accuracy.

Chen, Welling, Smola, ICML 2010 ((Arthur Gretton’s notes))Super-Samples from Kernel Herding September 5, 2012 16 / 16

