Super-Samples from Kernel Herding

Chen, Welling, Smola, ICML 2010

(Arthur Gretton's notes)

September 5, 2012

Chen, Welling, Smola, ICML 2010 ((Arth Super-Samples from Kernel Herding

September 5, 2012

What is herding?

Figure: Herding example: 20 points from Herding vs 20 i.i.d. samples. Contour is density, red squares are from Herding, purple circles are i.i.d. samples.

What is herding?

Herding in an RKHS ${\mathcal F}$ is the following iteration:

$$\mu_{\boldsymbol{P}} := \mathbb{E}_{\boldsymbol{X} \sim \boldsymbol{P}} \phi(\boldsymbol{X})$$

which has the property

$$\mathbb{E}_{x}f(x) = \langle f, \mu_{p} \rangle \quad \forall f \in \mathcal{F}.$$

Hence 2nd step is: $w_{T+1} = w_T + \mu_p - \phi(x_{T+1})$

What does it do?

Define $w_0 := \mu_P$. Then Herding becomes:

$$\begin{aligned} x_{T+1} &= \operatorname*{argmax}_{x \in \mathcal{X}} \langle w_T, \phi(x) \rangle \\ &= \operatorname*{argmax}_{x \in \mathcal{X}} \left\langle w_0 + T\mu_P - \sum_{t=1}^T \phi(x_t), \phi(x) \right\rangle \\ &= \operatorname*{argmax}_{x \in \mathcal{X}} \left\langle (T+1)\mu_P - \sum_{t=1}^T \phi(x_t), \phi(x) \right\rangle \\ &= \operatorname*{argmax}_{x \in \mathcal{X}} \left((T+1)\mathbb{E}_{x'}k(x, x') - \sum_{t=1}^T k(x_t, x) \right) \end{aligned}$$

Chen, Welling, Smola, ICML 2010 ((Arth Super-Samples from Kernel Herding

(日) (同) (三) (三)

- 2

What does it do? (2)

Let's say we want to choose x_{T+1} greedily to minimize:

$$\begin{aligned} \mathcal{E}_{T+1} &:= \left\| \mu_P - \frac{1}{T+1} \sum_{t=1}^{T+1} \phi(x_t) \right\| \\ &= \mathbb{E}_{x,x'} k(x,x') - \frac{2}{T+1} \sum_{t=1}^{T+1} \mathbb{E}_x k(x,x_t) + \frac{1}{(T+1)^2} \sum_{t,t'}^T k(x_t,x_{t'}). \end{aligned}$$

Keep terms that are a function of x_{T+1} :

$$\frac{-2}{T+1}\mathbb{E}_{x}k(x,x_{T+1}) + \frac{2}{(T+1)^{2}}\sum_{t=1}^{T}k(x_{t},x_{T+1}) + \frac{1}{(T+1)^{2}}\underbrace{k(x_{t+1},x_{t+1})}_{\text{constant}}$$

5 / 16

(日) (四) (三) (三) (三)

Why might it be useful?

Given a finite sample estimate \hat{p}_T of p, then for all $f \in \mathcal{F}$, by Cauchy-Schwarz:

$$|\mathbb{E}_{x\sim
ho}f(x) - \mathbb{E}_{x\sim \hat{
ho}_T}f(x)| \leq ||f|| \, ||\mu_{
ho} - \mu_{\hat{
ho}_T}||.$$

If $x_T \sim p$ i.i.d., then

$$\|\mu_p - \mu_{\hat{p}_T}\| = O_P(T^{-1/2}).$$

The claim for Herding:

$$\|\mu_{p} - \mu_{\hat{p}_{T}}\| = O(T^{-1})$$

Chen, Welling, Smola, ICML 2010 ((Arth Super-Samples from Kernel Herding

September 5, 2012

- 4 ⊒ →

3

Proof of fast convergence

Assume:

- $\|\phi(x)\| \leq R.$
- Output Description 3 There exists an ε-ball around μ_p contained in M = conv {φ(x)} (this will cause problems).

If we can show $||w_t||$ is bounded, then we can show the result.

- 31

7 / 16

Proof of fast convergence

Assume:

- $\|\phi(x)\| \leq R.$
- On the exists an ε-ball around μ_p contained in M = conv {φ(x)} (this will cause problems).

If we can show $||w_t||$ is bounded, then we can show the result.

Proof as follows:

- **(**) Show why bounded $||w_t||$ gives the result we need
- **2** Show that $||w_t||$ is bounded under the ϵ -ball assumption

- 31

Let's say that $||w_T||$ is bounded. Then

$$\|w_{\mathcal{T}}\| = \left\|w_0 + T\mu_p - \sum_{t=1}^T \phi(x_t)\right\| \le C$$

So, dividing by T:

$$\left\| \mu_{p} - \frac{1}{T} \sum_{t=1}^{T} \phi(x_{t}) \right\| \leq T^{-1}(\|w_{0}\| + C).$$

Chen, Welling, Smola, ICML 2010 ((Arth Super-Samples from Kernel Herding

September 5, 2012

< 67 ▶

(3)

8 / 16

Proof that $||w_t||$ bounded:

We will prove there exists a constant C: which satisfies two properties:

• If
$$||w_t|| > C$$
, then $||w_{t+1}|| < ||w_t||$.
• If $||w_t|| < C$, then $||w_{t+1}||^2 < C^2 + (2R)^2$

Interpretation:

- The first result guarantees that if $||w_t||$ exceeds the limit *C*, it will shrink until it falls under the limit.
- The second result guarantees that ||w_t|| cannot grow too much in one time step (straightforward since the update has bounded norm).

The net effect is that $||w_t|| \le C + 2R$ for all t. Note that $||w_t||$ never coverges!

First: express the update in terms of a difference wrt μ_p :

$$\mathcal{C} := \mathcal{M} - \mu_{p} = \operatorname{conv} \left\{ \phi(\mathbf{x}) - \mu_{p} \middle| \mathbf{x} \in \mathcal{X} \right\}$$

Then update equations are:

$$w_{t+1} = w_t + \mathbb{E}_{x \sim P}(\phi(x)) - \phi(x_{t+1})$$
$$= w_t - c_t$$

where $c_t = \underset{c \in \mathcal{C}}{\operatorname{argmax}} \langle w_t, c_t \rangle$.

Chen, Welling, Smola, ICML 2010 ((Arth Super-Samples from Kernel Herding Sep

Proof if $||w_t|| > C$, then $||w_{t+1}|| < ||w_t||$ (2)

$$\begin{split} \|w_t\|^2 - \|w_{t+1}\|^2 &= \|w_t\|^2 - \|w_t - c_t\|^2 \\ &= 2 \langle w_t, c_t \rangle - \|c_t\|^2 \\ &= \|c_t\| \left[2 \|w_t\| \left\langle \frac{w_t}{\|w_t\|}, \frac{c_t}{\|c_t\|} \right\rangle - \|c_t\| \right] \end{split}$$

Chen, Welling, Smola, ICML 2010 ((Arthe Super-Samples from Kernel Herding September 5, 2012 11 / 16

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Proof if $||w_t|| > C$, then $||w_{t+1}|| < ||w_t||$ (2)

$$\begin{split} \|w_t\|^2 - \|w_{t+1}\|^2 &= \|w_t\|^2 - \|w_t - c_t\|^2 \\ &= 2 \langle w_t, c_t \rangle - \|c_t\|^2 \\ &= \|c_t\| \left[2 \|w_t\| \left\langle \frac{w_t}{\|w_t\|}, \frac{c_t}{\|c_t\|} \right\rangle - \|c_t\| \right] \end{split}$$

Next: since $\|\phi(x)\| \le R$, then $\|\mu_p\| \le R$ and hence $\|c_t\| \le 2R$. So

$$\|w_t\|^2 - \|w_{t+1}\|^2 \ge 2 \|c_t\| \left[\|w_t\| \left\langle \frac{w_t}{\|w_t\|}, \frac{c_t}{\|c_t\|} \right\rangle - R \right].$$

Chen, Welling, Smola, ICML 2010 ((Arth Super-Samples from Kernel Herding

September 5, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - のへで

Proof if $||w_t|| > C$, then $||w_{t+1}|| < ||w_t||$ (3)

Is it the case that
$$\left\langle \frac{w_t}{\|w_t\|}, \frac{c_t}{\|c_t\|} \right\rangle \geq \gamma^* > 0$$
?
Reminder:

$$c_{t} = \operatorname*{argmax}_{c \in \mathcal{C}} \langle w_{t}, c_{t} \rangle$$
$$\mathcal{C} := \operatorname{conv} \left\{ \phi(x) - \mu_{p} \middle| x \in \mathcal{X} \right\}.$$

I.e. can c_t be chosen in the direction w_t ?

Chen, Welling, Smola, ICML 2010 ((Arthe Super-Samples from Kernel Herding September 5, 2012 12 / 16

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Proof if $||w_t|| > C$, then $||w_{t+1}|| < ||w_t||$ (3)

Is it the case that
$$\left\langle \frac{w_t}{\|w_t\|}, \frac{c_t}{\|c_t\|} \right\rangle \ge \gamma^* > 0$$
? Reminder:

$$c_t = \operatorname*{argmax}_{c \in \mathcal{C}} \langle w_t, c_t \rangle$$

$$\mathcal{C} := \operatorname{conv} \left\{ \phi(x) - \mu_p \big| x \in \mathcal{X} \right\}.$$

12 / 16

I.e. can c_t be chosen in the direction w_t ? Yes, as long as μ_p is in the relative interior of \mathcal{M} (the problematic assumption)

Proof if $||w_t|| > C$, then $||w_{t+1}|| < ||w_t||$ (4)

$$\|w_t\|^2 - \|w_{t+1}\|^2 \ge 2 \|c_t\| \left[\|w_t\| \left\langle \frac{w_t}{\|w_t\|}, \frac{c_t}{\|c_t\|} \right\rangle - R \right] \\ \ge 2 \|c_t\| \left[\|w_t\| \gamma^* - R \right]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Proof if $||w_t|| > C$, then $||w_{t+1}|| < ||w_t||$ (4)

$$\|w_t\|^2 - \|w_{t+1}\|^2 \ge 2 \|c_t\| \left[\|w_t\| \left\langle \frac{w_t}{\|w_t\|}, \frac{c_t}{\|c_t\|} \right\rangle - R \right] \\ \ge 2 \|c_t\| \left[\|w_t\| \gamma^* - R \right]$$

What if $||w_t|| > R/\gamma^* =: C$? Then

$$\|w_t\|^2 - \|w_{t+1}\|^2 > 2 \|c_t\| [R-R]$$

= 0

so
$$\|w_t\|^2 > \|w_{t+1}\|^2$$
.
QED

September 5, 2012

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Proof that if $||w_t|| < C$, then $||w_{t+1}||^2 < C^2 + (2R)^2$

Now prove the second result. Recall $C = R/\gamma^*$. Then

$$\begin{split} \|w_{t+1}\|^2 &= \|w_t - c_t\|^2 \\ &= \|w_t\|^2 - 2 \langle w_t, c_t \rangle + \|c_t\|^2 \\ &\leq \|w_t\|^2 - 2\|c_t\|\|w_t\|\gamma^* + \|c_t\|^2 \\ &\leq \left(\frac{R}{\gamma^*}\right)^2 + (2R)^2 \end{split}$$

QED

Chen, Welling, Smola, ICML 2010 ((Arth Super-Samples from Kernel Herding

September 5, 2012

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

...and a warning

$$\left\|\mu_{\mathsf{P}}-\frac{1}{T}\sum_{t=1}^{T}\phi(x_t)\right\| \leq T^{-1}(\|w_0\|+R/\gamma^*).$$

so we need $\gamma^* > 0$ for fast rates.

From Bach, Lacoste-Julien, Obozinski, ICML2012: this never holds for Mercer kernels.

Does it work?

 Figure: Herding results: empirical mean embeddings computed from 10⁵ samples.

 Note that Herding uses fewer samples to get same accuracy.

 Chen, Welling, Smola, ICML 2010 ((Art)

 Super-Samples from Kernel Herding

 September 5, 2012

 16 / 16