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Deciding on the best course of action amongst a range of competing 
alternatives has been a fundamental problem that has been addressed 
in the fields of economics1, psychology2, behavioral ecology3, 
machine learning4 and, more recently, cognitive neuroscience5–8. 
For neural circuits to select the choice yielding the greatest long-
term reward, it has been proposed that these circuits should take 
inputs reflecting the subjective value of alternatives and compare 
these inputs to form a categorical decision8. Representations of value 
have been found in many cortical and subcortical brain regions9–18, 
but whether and how activity changes in these representations might 
constitute the decision process itself are unknown. This uncertainty is 
partly a consequence of not knowing how the signature of a decision 
would manifest itself at the level of the activity that can be recorded 
in a population of neurons.

One potential neuronal mechanism for value comparison is com-
petition by mutual inhibition19,20. In this class of models, separate 
pools of neurons representing different options are excited by the 
value of their respective options, but inhibit each other such that 
activity only survives in the eventual winning pool. This mechanism 
is particularly attractive, as it can be implemented in networks of 
neurons that respect known neurobiology20. Indeed, such models 
accurately predict single-cell activity in the parietal cortex during 
perceptual decisions21.

It has been proposed that similar mechanisms might also underlie 
value-guided choice, but this proposal has rarely been tested empiri-
cally10,22. An important problem is that the model predictions are 
of single-unit activity, but it is impossible to simultaneously mea
sure this across the many brain regions that exhibit value-related 
activity. However, if such inhibitory mechanisms were to exhibit 

a characteristic signature that could be measured in the summed 
activity of the local network rather than in single-cell activity, then 
we could use imaging techniques to search for this signature across 
the entire brain and isolate those regions that are fundamental to 
value comparison.

We adopted such an approach. We analyzed a biophysically realistic  
network model of decision-making to generate predictions of the 
temporal dynamics of value correlates in local field potentials. We 
then applied the exact same analysis to source-reconstructed magneto
encephalography (MEG) data, a whole-brain human imaging tech-
nique that affords the requisite temporal resolution to test model 
predictions. Notably, MEG allows coverage of signal from the entirety 
of neocortex, allowing for predictions to be tested in multiple brain 
regions simultaneously with high temporal resolution. Regions of 
ventromedial prefrontal and superior parietal cortex matched well 
with the biophysical model, implicating them in value comparison. 
Value correlates in other cortical regions matched poorly, suggest-
ing that they are involved in separate computational processes that  
covary with value.

RESULTS
Biophysical model predictions
We used a mean-field version23 of a biophysical cortical attractor 
network model20 to derive predictions of the temporal dynamics of 
activity in a cortical region that selects between inputs reflecting the 
value of two options. The model comprises two populations of excita-
tory pyramidal cells selective for each option, with strong recurrent 
excitation between cells of similar selectivity and effective inhibi-
tion between the two pools mediated by inhibitory interneurons20  
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When choosing between two options, correlates of their value are represented in neural activity throughout the brain.  
Whether these representations reflect activity that is fundamental to the computational process of value comparison, as opposed 
to other computations covarying with value, is unknown. We investigated activity in a biophysically plausible network model that 
transforms inputs relating to value into categorical choices. A set of characteristic time-varying signals emerged that reflect  
value comparison. We tested these model predictions using magnetoencephalography data recorded from human subjects 
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a mechanistic explanation of neural signals recorded during value-guided choice and a means of distinguishing computational 
roles of different cortical regions whose activity covaries with value.
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(see Online Methods). This effective inhibition mediates a competi-
tion between the two excitatory pools, with one pool ending up in a 
high-firing attractor state (chosen option) and the other pool staying 
in a low-firing attractor state (unchosen option). Neurons selective 
for option o receive inputs ro at firing rates proportional to the subjec-
tive value of that option, sEVo. The neurons also receive background 
noise inputs and currents from other cells in the network. Notably, 
the network has very few free parameters that are not otherwise con-
strained by their biophysical plausibility. The behavior of single units 
in the network has been described elsewhere20,24; here we focus on 
predictions suited to investigation with MEG, namely behavior of the 
summed input currents to all pyramidal cells25.

We simulated network behavior using a set of trials with varying 
sEVo (as used in the human experiment, below). We sorted trials by 
overall value (sEV1 + sEV2; Fig. 1a) and value difference (sEVchosen –  
sEVunchosen; Fig. 1a). In both cases, the network attracted faster to a 
decision when overall value or value difference were higher, yielding 
the prediction of decreased reaction times under these conditions. 
We tested this prediction more formally using a multiple regression 
in which model reaction times were predicted as a function of both 
overall value and value difference; both variables were found to have 
a negative effect on reaction time (Fig. 1b). The model reaches an 
asymmetric attractor state more quickly when the basin of attraction 
for this option is larger as a result of larger value difference (which 
determines the difference between the two inputs). An increase in 
overall value causes the network activity to rise faster and diverge 
faster, which also results in faster reaction time.

We then performed a time-frequency analysis of network responses, 
which aided our subsequent comparison of model predictions with 
MEG data. We used Morlet wavelets to decompose network activ-
ity on each trial26 and regressed the decomposed data onto overall 
value and value difference. Network transitions typically took several 
hundred milliseconds to occur, and most of the important model pre-
dictions were therefore limited to frequencies ranging from approxi-
mately 2–10 Hz (Fig. 1c). Overall value had a broadband effect on 
model activity in the 3–9-Hz frequency range soon after selective 
inputs were delivered to the network (Fig. 1c), whereas value differ-
ence had a later and slightly lower frequency effect, predominantly 
in the 2–4.5-Hz range (Fig. 1c). The different frequencies reflect the 
fact that overall value affects the population synaptic input earlier 
and over a shorter time period than value difference. The effect of 
the two regressors on network responses is a reflection of the fact 

that network transitions occur at different speeds depending on the 
input presented; thus, the network does not explicitly ‘represent’ 
such quantities, but these effects are a manifestation of trial-to-trial 
variability in the speed of the different network transitions. If we 
collapsed across the relevant frequencies, the temporal progres-
sion from an overall value signal to a value difference signal could 
be clearly seen (Fig. 1d). It was also found that, on trials in which 
the network model made an error (that is, sEVchosen < sEVunchosen), 
there was an effect of overall value on the model’s activity, but no 
clear effect of value difference (Fig. 1d). However, it should be noted 
that error trials inherently covered a smaller range of value differ-
ences than correct trials, which may have caused the absence of any 
effect. Thus, the key predictions that we derived from the model were  
the temporal evolution from an overall value signal to a difference 
value signal, the difference in the frequency of the response, with 
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Figure 1  Predictions of neural activity from cortical attractor network model. (a) Top, summed network postsynaptic currents as a function of time through 
trial, sorted and binned into trials with high overall value (lighter shades of gray) through trials with low overall value (dark gray and black). Bottom, as top 
panel, resorted and binned by value difference between chosen and unchosen options. (b) Effect of value difference (VD), overall value (OV) and no brainer 
(NB) trials on reaction time, estimated using multiple regression (mean ± s.e. of effect size; y axis is flipped, so positive values equate to a negative effect 
on reaction times). a.u., arbitrary units. (c) Time-frequency spectra of effects of overall value (top) and value difference (bottom) on network model activity, 
estimated with multiple regression. Color indicates z statistic. (d) z-scored effect of overall value (on frequency range 3–9 Hz, black lines) and value 
difference (on frequency range 2–4.5 Hz, gray lines); solid lines indicate correct trials and dashed lines indicate incorrect trials.
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Figure 2  Value-based decision task. Task schematic. Subjects repeatedly 
chose between two risky prospects to obtain monetary reward. Stimuli 
consisted of a rectangular bar, whose width determined the amount of 
reward available, and a number presented underneath the bar, whose 
value determined the probability of receiving reward on that option. 
Stimuli were drawn such that reward magnitude and probability were 
never identical across the two options; subjects needed to integrate across 
stimulus dimensions to make optimal choices. On some trials, however, 
both probability and magnitude were larger on one side than the other 
(no brainer trial). Subjects had unlimited time to respond and received 
feedback on both chosen and unchosen options, green for the rewarded 
option(s) and red for the non-rewarded option(s).
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value difference dominating responses at lower frequencies than 
overall value, and the presence of an overall, but little or no dif-
ference, signal on error trials. These predictions were found to be 
robust to variation in model parameters determining the degree 
of recurrent excitation in the model (Supplementary Discussion, 
Supplementary Table 1 and Supplementary Figs. 1–3).

A distributed network of task-sensitive areas
We designed a simple value-guided choice task to test these predic-
tions. Subjects (n = 30) repeatedly selected between two options of 
differing value (Fig. 2) while undergoing MEG. Each option had 
a certain number of points available, represented by the width of 
an onscreen bar, and a probability of obtaining those points, rep-
resented by a percentage underneath the bar. The aim was to accu-
mulate points (displayed on a progress bar) to reach a gold target, at 
which point monetary reward was delivered and the progress bar was 
reset to its initial position. To accumulate maximal returns, subjects 
need to compute the objective Pascalian value (bar width multiplied 
by probability of winning, denoted EVo for option o) and select the 

option with the higher value on each trial. In fact, most subjects 
tended to overweight low probabilities of winning and underweight 
high probabilities, and exhibited a concave utility function, consist-
ent with predictions from prospect theory (Supplementary Fig. 1 
and Supplementary Table 2)27. Subject reaction times correlated 
negatively with both the difference in subjective option values  
(sEVchosen – sEVunchosen) and with the overall value of the deci-
sion (sEV1 + sEV2), consistent with model predictions (Fig. 1b)  
(Fig. 3a,b). We carried out a multiple linear regression of 
value difference (t29 = –7.98, P < 0.0005) and overall value  
(t29 = –2.36, P < 0.05) on reaction times across all subjects (Fig. 3b 
and Supplementary Fig. 5). We also included some trials in which 
both reward magnitude and probability were higher on one option 
than the other. There was an additional bonus in speed beyond 
that related to value for these ‘no brainer’ trials (t29 = –8.32,  
P < 0.0005; Fig. 3b). Subjects were therefore faster on average on 
these trials than on those in which probability and magnitude 
advocated opposing choices, and therefore needed to be translated 
into a ‘common currency’ in which the two stimulus features could 
be equated. There was a steady decrease in reaction time as sub-
jects progressed through the task (Fig. 3c), without any coincident 
change in parameters describing choice behavior (Supplementary 
Table 3), suggesting that subjects became less deliberative and more 
automated in their choices as they became familiar with the task.

We used linearly constrained minimum variance beamforming28 
to spatially filter MEG data to locations in source space. We epoched 
data with respect to both stimulus onset and subject response and 
focused our analyses on responses in the 2–10-Hz frequency range, 
in accordance with model predictions. We first used a whole-brain 
statistical parametric mapping analysis to look for areas showing a 
main effect of performing the task relative to a pre-stimulus (−300 ms 
to −100 ms) or post-response (+100 ms to +300 ms) baseline. We 
hypothesized that, in addition to areas that are important to stimulus 
valuation such as ventromedial prefrontal cortex, the stimulus-locked 
analysis would reveal early visual areas that are involved in basic stim-
ulus processing and the response-locked analysis would reveal areas 
that are involved in visually guided manual movements in parietal and 
premotor cortices29, in addition to primary motor areas.
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Figure 3  Subject behavior. (a) Reaction time (mean ± s.e.) for an example 
subject, as a function of subjective value difference (black) and subjective 
overall value (red). (b) Effects of value difference (VD), overall value (OV) 
and no brainer trials (NB) on subject reaction times (mean ± s.e. across 
subjects), estimated using linear regression. y axis is flipped; positive 
values equate to a negative effect on reaction times. (c) Running group 
mean ± s.e. of reaction time (smoothed across 40 trials) as a function of 
trial number (also see Supplementary Figs. 4 and 5).
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Figure 4  Main effect of task performance on  
activity in the 2–10-Hz frequency range.  
(a,b) Stimulus-locked activity. Group t maps of  
effect of task performance relative to a –300  
to −100 ms (pre-stimulus) baseline are shown  
at 100 ms post-stimulus with early visual  
activation (peak t29 = 10.00, 100 ms, MNI  
(40,−74,6)), 1,000 ms post-stimulus with  
activation at frontal pole (t29 = 7.23, 1,125 ms,  
MNI (22,58,26); b) and ventromedial prefrontal  
cortex (t29 = 5.20, 1,000 ms, MNI (43,60,35); b).  
(c–f) Response-locked activity. The effects  
of task performance relative to a +100 ms to  
+300 ms (post-response) baseline are shown at  
1,400 ms pre-response with activation at pSPL  
and posterior cingulate (t29 = 7.05, –1,625 ms  
(pre-response), MNI (18,−44,62); c) and mid–intraparietal sulcus (t29 = 8.20, –525 ms,  
MNI (30,−46,56), right; t29 = 7.55,−700 ms, MNI (−24,−42,74), left; c), 850 ms pre-response with  
activation at angular and supramarginal gyri (t29 = 8.46, –725 ms, MNI (56,−50,40), right; t29 = 8.69,  
–725 ms, MNI (−50,−60,42), left; d), 500 ms pre-response with premotor activation (t29 = 7.35,−450 ms,  
MNI (38,−2,64); e), the time of response with activation at inferior frontal sulci (t29 = 8.02, 0 ms,  
MNI (−54, 12, 28), left; t29 = 7.55, –75 ms, MNI (48,10,30), right; f) and sensorimotor cortices (t29 = 7.57, 
–75 ms, MNI (−50,−28,58), left; t29 = 8.02, 0 ms, MNI (−54,12,28), right; f). All images are thresholded  
at t > 4.75 (P < 5 × 10−5 uncorrected) for display purposes. See also Supplementary Movies 1 and 2.
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A distributed network of areas was found to be task sensitive at 
these frequencies (Fig. 4a–f, Supplementary Movies 1 and 2). 
Stimulus-locked, early visual cortex activation (Fig. 4a) was followed 
by slowly ramping bilateral activation at the frontal pole and ventro
medial prefrontal cortex (Fig. 4b). Although 2–10-Hz activity in 
these frontal regions peaked relatively late in the trial (1,000 ms after 
stimulus onset), it ramped from a much earlier point in the trial. 
Response-locked, prolonged activation spread from a mid-posterior 
portion of the superior parietal lobule, which extended medially into 
the marginal ramus of the posterior cingulate sulcus (Fig. 4c), to a 
bilateral medial portion of the mid-intraparietal sulcus (Fig. 4d). This 
was followed by bilateral activation of the angular/supramarginal gyri 
(Fig. 4d) and right premotor cortex (Fig. 4e), and, finally, bilateral 
inferior frontal sulci and primary sensorimotor cortices (Fig. 4f) were 
activated at the time of the response.

Predicted model activity in parietal and prefrontal cortex 
Having isolated areas that showed changes in activity relative to base-
line, we then examined whether activity in these regions covaried 
with decision values and where this activity matched with predictions 
derived from the biophysical decision model. Notably, by selecting 
regions on the basis of the main effect of task versus baseline, we 
ensured that we would not be subject to a selection bias when examin-
ing these regions for value-related activity. We also investigated activ-
ity in several a priori defined areas that are commonly found to be 
important in functional magnetic resonance imaging (fMRI) studies 
of decision making, bearing in mind that value correlates might not 
be restricted to regions showing a main effect 
of task versus baseline. We applied the exact 
same analysis to the time series from the 
source-reconstructed MEG data as we had 
applied to the biophysical model (Fig. 1).

We found that activity in the right posterior 
superior parietal lobule (pSPL) bore several 
hallmarks of the biophysical model (Fig. 5a). 
On trials in which subjects chose the option 

with higher subjective value (correct trials), activity in pSPL showed a 
broad correlate of overall value between 3 and 10 Hz (P < 0.0005, per-
mutation test, cluster corrected for multiple comparisons across time), 
followed by a lower frequency (2–4 Hz) correlate of value difference  
(P < 0.01, corrected; Fig. 5a), as predicted by the model (Fig. 1c). 
When we collapsed across the relevant frequencies (Fig. 5a), activity in 
these correct trials differed from that in error trials; error trials showed 
a positive correlate of overall value (P < 0.05, corrected; Fig. 5a),  
but no such positive correlate of value difference (P > 0.5; Figs. 1d  
and 5a). Finally, we tested the model prediction that across subjects 
there would be a behavioral speed-accuracy tradeoff, elicited by vary-
ing the degree of recurrent excitation in the network model, and that 
this would predict cross-subject variance in neural data. This predic-
tion was also found to hold in pSPL (see Supplementary Discussion, 
Supplementary Figs. 6 and 7).

We also investigated whether the main effects of task performance 
in this region were affected by factors that have been shown behav-
iorally to modulate reaction time independently of value. We looked 
for changes in activity in early trials relative to late trials (in which 
reaction time was speeded; Fig. 3c) and compared activity in trials in 
which reward magnitude and probability advocated opposing choices 
with activity on no brainer trials (in which an additional bonus to reac-
tion time was present beyond that explained by overall value or value 
difference; Fig. 3b). There was some difference between the patterns of 
activity in pSPL on these trials; an increase in 2–5-Hz power relative to 
baseline that was present on the first half of trials was largely absent on 
the second half of trials (Fig. 5a). A similar distinction could be seen 
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Figure 5  pSPL (MNI 18, –44, 62 mm) and 
VMPFC (MNI 6, 28, –8 mm) show several value-
related hallmarks of the biophysical network 
model. (a) pSPL results. Top panels, main  
effect of task performance in pSPL relative to  
pre-stimulus baseline on first half of trials  
(top left) and second half of trials (bottom left); 
main effect of task performance on trials where 
reward magnitude and probability advocate 
opposing choices (top right), and no brainer  
trials (bottom right). Color indicates group  
z statistic. Middle panels, time-frequency  
spectra of effects of overall value (top) and  
value difference (bottom) on activity in pSPL, 
estimated using multiple regression. Analysis 
is equivalent to that performed in Figure 1c on 
biophysical model. Color indicates group  
z statistic. Bottom, effect of overall value  
(3–9 Hz, black) and value difference (2–4.5 Hz, 
gray) on correct and error trials (solid and  
dashed lines, respectively). (b) VMPFC results. 
Data are presented as in a. Top panels, main 
effect of task in VMPFC. Middle panels, VMPFC 
effects of overall value and value difference, as 
for pSPL, but restricted to first half of experiment. 
Bottom, VMPFC collapsed value effects, as for 
pSPL, but restricted to first half of experiment.
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between activity on trials in which reward magnitude and probability 
advocated opposing choices and a common currency representation 
might need to be formed, and no brainer trials (Fig. 5a).

We also investigated value-related activity in ventromedial pre-
frontal cortex (VMPFC), focusing our analyses on a subregion that 
has often been shown to signal value-related metrics during decision 
tasks11–16,30,31. Notably, there has been debate over the precise role 
of this region in value-guided choice6,32, perhaps triggered by the 
heterogeneity of responses that have been observed; in some fMRI 
studies, VMPFC has been found to signal a difference between chosen 
and unchosen values14,31, whereas in others it has appeared to signal 
the overall value of available reward15 or the value of just the chosen 
option16. In VMPFC, there was an even more notable distinction 
between those situations in which subjects would be more delibera-
tive and exhibit slower reaction times versus later or no brainer trials 
(Fig. 5b). VMPFC recruitment steadily decreased through the task, 
as could be seen more clearly when trials were further subdivided 
into separate quartiles of the experiment (Supplementary Fig. 8). 
We found that this region transitioned from signaling overall value  
(P < 0.05, corrected) to value difference (P < 0.05, corrected) specifi-
cally if we restricted our analysis to the first half of trials in which it 
was task active (Fig. 5b). When we directly contrasted the effect of 
overall value and value difference on early and late trials, we found 
that only the value difference signal was significantly stronger on 
earlier trials in this region (P < 0.05, corrected; Supplementary 
Fig. 9). There was not a significant effect of either overall value or 
value difference on error trials (P > 0.5; Fig. 5b), although the some-
what weaker signals in this region relative to pSPL may result from the 
relative insensitivity of MEG to deep, anterior sources, as opposed to 
posterior, superficial ones33,34, and from the analysis including only 
half the number of trials.

One possible concern with the differences between the first and 
second halves of the experiment is that it might reflect more trivial 
cognitive differences, such as subject fatigue, rather than a change in 
the cortical networks underlying choice behavior. To address these 
concerns, we performed an additional whole-brain analysis in which 
we searched for regions coding more strongly for value difference in 
the second than in the first half of the experiment, that is, the opposite 
pattern of activity as that witnessed in VMPFC. A bilateral portion of 
the anterolateral intraparietal sulcus, more lateral than the main effect 
pSPL activation described above, selectively reflected value difference 
in the second half of trials (Supplementary Fig. 10). In this region, 
there were also no clear differences between the main effect of task 
performance on early versus late trials or on harder trials versus no 
brainer trials (Supplementary Fig. 11).

Lastly, we also searched for effects of value in other regions identified 
in the main effect contrast of task versus baseline (Fig. 4) and in sev-
eral regions defined a priori from previous fMRI studies of value-based 
choice. In these analyses, we found that several areas exhibited value-
dependent activity, but none of these regions matched well with predic-
tions from the biophysical decision model (Supplementary Fig. 12). 
We hypothesize that the value correlates in these regions might be bet-
ter described by appealing to their role in other computational proc-
esses that are likely to covary with value, such as attention or response 
preparation. Alternatively, it may be the case that these other regions are 
involved in value comparison, but in a manner that is different from that 
proposed using the biophysical modeling approach.

DISCUSSION
The cortical correlates of value during decision under risk are typi-
cally spread over a distributed network of areas, but the unique 

contribution of each of these areas to choice is unclear. A region 
involved in value comparison should receive inputs relating to the 
value of available options and then transform these inputs into a cat-
egorical choice. We used a biophysically plausible model that exhibits 
this property to derive predictions of the temporal dynamics of corti-
cal activity. We applied linear regression to investigate the time points 
at which, and in which frequency bands, value correlates could be 
found in network activity. These responses typically occurred at low 
frequencies (<10 Hz), consistent with a slow integrative process. We 
then applied the same analysis to source-reconstructed MEG data, to 
identify regions involved in value comparison. A distributed network 
of areas were task sensitive at the relevant frequencies, but only pSPL 
and VMPFC closely matched predictions of the biophysical model, 
with the latter doing so selectively in trials early in the experiment. 
Other regions were found to show value correlates, but did not match 
closely with predictions from the biophysical model; this suggests 
that extensions to the model are necessary to fully capture the role of 
different brain regions in the task. Furthermore, MEG is limited in 
its ability to resolve sources from deep brain structures that do not 
possess an open field layout, such as in striatum17; thus, we could not 
address the role of alternative mechanisms for selection (dependent 
on cortico-basal ganglia loops).

An important feature of the biophysical model is the ability to slowly 
integrate value-related inputs that is afforded by its recurrent excita-
tory structure and long synaptic time constants mediated by NMDA 
receptors. It is not immediately obvious that value comparison should 
be subject to a process of integration in the same manner as a noisy 
sensory stimulus. However, the observed distribution of reaction times 
fits well with a process of integration, as has been investigated more 
closely in previous studies that used a drift diffusion model to predict 
reaction times35,36. The drift diffusion model was originally designed 
to make predictions of behavioral data and has often been used to make 
predictions of single-unit activity during perceptual choice. However, 
because it essentially describes differences in activity between different 
populations of selective cells and ignores any nonselective activity, it 
is unclear how the model’s output should be translated into a predic-
tion of imaging measures such as MEG or fMRI. We elected to use 
a biophysical implementation of a competition model, which makes 
clear and explicit predictions of the measurable data. When we used 
the pseudo-variable in the drift diffusion model as a marker for inte-
grated brain activity, we found differences between the predictions 
(Supplementary Discussion and Supplementary Fig. 13).

The predictions from the model also form a marked example of the 
distinction between two types of representation, content and func-
tional representations, in cortical circuits37. To the external observer, 
recording with an imaging technique (or an electrode), the content of 
the network appears to represent first the overall value and then the 
value difference between the two options. In contrast, the functional 
representations in the network, those used by the brain, are quite dif-
ferent. There is a representation of option values on the input to the 
network and a representation of choice on the outputs of the network, 
as should be decoded by a suitable downstream observer. The reason 
that the network shows value-related activity is simply that the same 
network transitions occur faster on high value and high value differ-
ence trials. Thus, although neural activity in the network may covary 
with the overall value and value difference, this content need never 
be decoded by another brain region. Thus, the extent to which the 
network can be said to functionally represent these two quantities in 
a meaningful way is questionable37.

The region in pSPL that we isolated as matching with model predic-
tions is close to the cytoarchitectonic region hIP3 (ref. 38), which may 
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be the human homolog of the medial intraparietal area (MIP). It is also 
referred to as IPS4 and DIPSA, which resembles macaque MIP39. In 
the macaque, this region has often been implicated in visually guided 
movements of the forelimbs29. Thus, it may have a role in integrating 
information to guide limb movements that is analogous to the role 
of LIP in generating saccades. This process of saccade generation is 
closely linked to the tracking of value associated with generating a 
saccade in a particular direction9,10.

The region in VMPFC that we examined has often been found, 
using fMRI, to be responsive to the value of stimuli during decision 
tasks11–16,30,31, but its precise role has been debated6,32, perhaps as 
a result of the relative absence of published single-unit recording 
data in comparison with the nearby lateral orbitofrontal cortex5,7. 
In early trials, this region was found to transition from signaling 
overall value to signaling value difference. Notably, this same transi-
tion was also recently found in single-unit recordings from the most 
ventral portion of the striatum17, which receives a particularly dense 
projection from VMPFC40, and in prefrontal cortex41. In that study, 
similar to ours, monkeys combined two stimulus properties to form 
their decision, namely the reward magnitude and the delay to reward 
delivery. In our task, VMPFC was selectively activated in trials in 
which subjects had to combine probability and magnitude informa-
tion to choose accurately. This is also consistent with the finding 
that lesions to this area, but not nearby lateral orbitofrontal cortex, 
produce impairments in value comparison32 and, more specifically, 
produce changes in tasks in which multiple dimensions have to be 
considered in forming a choice42.

Previous studies have attempted to apply a modeling approach 
to capture signals from distributed cortical regions during choice, 
measured using fMRI. These studies have made predictions on the 
basis of either drift diffusion models43 or biophysically plausible 
networks44, but the predictions of these models are heavily depend-
ent on whether fMRI signal is assumed to reflect activity from all 
time points, including the point after a decision has been formed44, 
or whether it only reflects activity until the decision threshold is 
reached43. Moreover, several key predictions of these models also 
relate to how their activity evolves over time as a decision is made, 
and the slow hemodynamic response indicates that fMRI is limited 
in how well it can tease apart these predictions of temporal dynamics. 
We argue that it is important to use a time-resolved technique, such 
as MEG, to test these predictions.

Biophysically inspired models have also been used to infer the 
structure of connections between or within different cortical areas 
from MEG and electroencephalography data45. However, these studies  
have not inferred the specific neuronal mechanism underlying a  
particular cognitive process, as we have proposed here. Our model 
performs the critical computation of transforming value-related 
inputs into a choice and does so in a way that captures single-unit 
activity during perceptual decision tasks. The application of this 
computational biophysical modeling approach may not be limited 
to decision-making protocols. Predictions might, for instance, be 
derived from biophysical models that have already been designed 
to capture single-unit data in inhibitory control or working memory 
processes46. In models of working memory, for instance, gamma-band 
(30–70 Hz) responses can be elicited46, and parametric modulation 
of input to these models may explain variation in gamma-band fre-
quencies that have been observed during working memory tasks in 
frontal cortex47. Alternatively, by varying internal parameters of a 
biophysical model, new predictions might be derived of the effects of 
cross-subject variation on cortical responses measurable with MEG 
and electroencephalography (see also Supplementary Discussion). 

Because these parameters relate to specific biophysical properties, 
such as the density of network connectivity or the concentration of a 
specific neurotransmitter, it may be possible to directly relate these 
parameters to cross-subject variation in these properties, for instance, 
via local measurements of neurotransmitter concentrations48 or  
perhaps genetic polymorphism or pharmacological challenge.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Experimental task. Subjects repeatedly chose between two risky prospects to 
obtain monetary reward. Stimuli consisted of a rectangular bar, whose width 
determined the amount of reward available, and a number presented under-
neath the bar, whose value determined the probability of receiving reward on 
that option. The probabilities of winning on each option were independent; 
thus, on any given trial, both, neither or either option(s) might yield reward. 
Stimuli were drawn such that reward magnitude and probability were never 
identical across the two options; thus, subjects needed to integrate across  
stimulus dimensions to make optimal choices (see below). On some trials,  
however, both probability and magnitude were larger on one side than the other, 
a decision we classify as a no brainer. By design, the mean correlation between 
overall value and value difference (chosen-unchosen value) was kept at 0.31 ± 
0.08 (mean ± s.d.), allowing them to explain largely separate portions of variance 
in behavioral and neural data.

Decisions were presented onscreen until a response was made. After selection, 
the chosen option was highlighted for 800–1,200 ms jittered and outcomes were 
presented for 800–1,200 ms jittered. Feedback was presented on both chosen 
and unchosen options by turning a rewarded option green and an unrewarded 
option red. Stimuli were then removed and an intertrial interval of 500–800 ms 
was presented.

On choosing a rewarded option, a ‘winnings bar’ displayed at the bottom 
of the screen increased in magnitude in proportion to the width of the chosen 
option. When this winnings bar reached a gold target on the far right of the 
screen, £2 was added to subjects’ earnings and the winnings bar reset itself to 
its original size. Total typical earnings for the task ranged from £26 to £34. We 
collected a secondary dataset with high-resolution eyetracking to exclude ocular 
artifacts as a possible confound to signals recorded during the task. No major 
differences in task-related activity were seen, so data was collapsed across the 
two experiments.

Stimuli were presented on a screen situated 1.5 m away from the subject, inside 
the magnetically shielded room; stimuli were displayed via projector (refresh rate 
of 60 Hz) situated outside the room. Stimulus presentation and timing was con-
trolled using Presentation software (Neurobehavioral Systems). All subjects pro-
vided informed written consent in accordance with local ethical guidelines, and 
the experiment was reviewed by Oxfordshire Research Ethics Committee C.

Behavioral analysis. Subjective utility functions were derived from prospect 
theory and were of the form

v r ro o( ) = a

w p
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p p
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o

o o
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( ( ) )
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+ −
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where ro and po are the reward magnitude and probability of gaining reward, 
respectively, on outcome o. The subjective expected value of outcome o was  
calculated as:

sEV v r w po o o= ×( ) ( )

The probability of choosing each option was then calculated using a softmax 
choice rule
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where n is the number of options (two for this study) and τ is a temperature 
parameter that determines the stochasticity of action selection. Values of  
α, γ and τ were fit by maximizing the likelihood of each subject’s choices in the 
experiment, using nonlinear fitting routines in Matlab (Mathworks); param-
eter values and comparison to a reduced (objective value) model are given in 

Supplementary Table 2. The fitted values were used to calculate subjective 
expected values, which have been found to provide a better fit to neural data in 
value-guided decision tasks16,49, which were then used as trial-wise regressors 
in analysis of MEG data.

We examined the effects of value, trial number and no brainer trials on each 
subject’s reaction time data using multiple regression. We entered log(reaction 
time) as the dependent variable, as it has a distribution that is closer to normal 
than that of reaction time. In one analysis (Fig. 2c), we entered the following 
regressors as independent variables: a constant (to model mean reaction time), 
a term to capture speeding of reaction times for left versus right choices (data 
not shown and non-significant; t29 = −0.99, P = 0.33), the difference in subjec-
tive values between chosen and unchosen options (sEVchosen − sEVunchosen), the 
summed overall subjective value of both options (sEV1 + sEV2), a term to capture 
any linear change in reaction times as a function of performing the task (Fig. 2d), 
a term to capture autocorrelation (containing the reaction time from the previ-
ous trial), and a term to capture any additional bonus for the trial being a no 
brainer (containing a 1 wherever a no brainer trial occurred and a 0 otherwise). 
We normalized third and fourth regressors before entry into the design matrix 
to account for any differences in the relative scales of subjective value functions 
across subjects. We plotted the mean ± s.e. across subjects of parameter estimates 
for the third, fourth and seventh regressors from this regression, and tested for 
statistical significance using a two-tailed one-sample t test across subjects.

In a subsidiary analysis we included two additional regressors: the objective 
value difference and the objective overall value of each trial, which were both 
normalized. In this analysis, we orthogonalized the third regressor with respect 
to the objective value difference, and the fourth regressor with respect to the 
objective overall value. These orthogonalized regressors provide a further test 
of the nonlinearity of the subjective value functions used in the experiment 
(Supplementary Fig. 5).

MEG and MRI data acquisition. MEG data were sampled at 1,000 Hz on a 
306-channel VectorView system (Elekta Neuromag), with one magnetometer 
and two orthogonal planar gradiometers at each of 102 locations distributed 
in a hemispherical helmet across the scalp, in a magnetically shielded room.  
A band-pass filter of 0.03–330 Hz was applied during acquisition. Head posi-
tion was monitored at the beginning of each run and at 20-min intervals during 
each run using four head position indicator (HPI) coils attached to the scalp. 
HPI coil locations, head points from across the scalp and three anatomical 
fiducial locations (nasion, left and right pre-auricular points) were digitized 
using a Polhemus Isotrak II before data acquisition. Vertical electo-oculogram 
and electro-cardiogram were also measured to detect eye blinks and heartbeat, 
respectively. MRI data for forward model generation were acquired using an 
MP-RAGE sequence on a Siemens 3T TRIO scanner, with voxel resolution of  
1 × 1 × 1 mm3 on a 176 × 192 × 192 grid (echo time = 4.53 ms, inversion  
time = 900 ms, repetition time = 2,200 ms).

MEG data preprocessing. External noise was removed from MEG data using 
the signal-space separation method, and adjustments in head position across 
runs (detected using HPI) were compensated for using MaxMove software, both 
implemented in MaxFilter version 2.1 (Elekta Neuromag). Continuous data were 
down-sampled to 200 Hz and low-pass filtered at 40 Hz, before conversion to 
SPM8 format (http://www.fil.ion.ucl.ac.uk/spm/). Eye blinks were detected 
from the electo-oculogram channel. Detected eye blinks were used to generate 
an average eye blink time course, on which principle components analysis was 
run to obtain spatial topographies describing the average eye blink; these were 
regressed out of the continuous data (as described in ref. 50, without inclusion 
of brain source vectors as co-regressors; see http://www.fmrib.ox.ac.uk/~lhunt/
artifact_session.zip for an SPM-based tutorial). Data were epoched with respect 
to stimulus onset (−1,000 to 2,000 ms around stimulus, with −200 to 0 ms pre-
stimulus baseline) and button press (−2,000 to 1,000 ms around response, again 
with −200 to 0 ms pre-stimulus baseline). Artifactual epochs and bad channels 
were detected and rejected via visual inspection, using FieldTrip visual artifact 
rejection routines.

MEG source reconstruction. All source reconstruction was performed in SPM8. 
Magnetic resonance images were segmented and spatially normalized to an MNI 
template brain in Talairach space; the inverse of this normalization was used to 
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warp a cortical mesh derived from the MNI template to each subject’s MRI space. 
Digitized scalp locations were registered to head model meshes using an itera-
tive closest point algorithm, to affine register sensor locations to model meshes. 
Forward models were generated on the basis of a single shell using superposi-
tion of basis functions that approximately corresponded to the plane tangential 
to the MEG sensor array. The forward models are implemented in FieldTrip’s 
forwinv toolbox.

Linearly constrained minimum variance beamforming was used to reconstruct 
data to a grid across MNI space, sampled with a grid step of 7 mm. Beamforming 
constructs a spatial filter at each grid location to spatially filter the sensor space 
data, y, to the grid location of interest, ri, with the aim of achieving unit bandpass 
response at the location of interest while minimizing the variance passed from 
all other locations. The data at the source location of interest, d(ri), is given by 
multiplying the beamformer weights vector, w(ri) by the original sensor data

d r w r yi i( ) ( )= ×

This can be repeated across all grid locations to give a whole-brain image.
The sensor covariance matrix for beamforming was estimated using data that 

was bandpass-filtered to the frequency band of interest, 2–10 Hz, using 0% regu-
larization. For stimulus-locked analyses, we included all non-artifactual trials 
from stimulus onset to 1 s after stimulus onset. For response-locked analysis, we 
included all non-artifactual trials from 1.5 s before response onset to the time 
of the response.

Frequency domain analysis of MEG data and linear regression. At each trial, 
the source data d(ri) was decomposed into ten time-frequency bins linearly spaced 
between 2 and 10 Hz, by convolving the data with Morlet wavelets (Morlet factor 5).  
This yielded, at each trial, tr, frequency f, and time point, t, an instantaneous  
estimate of the power at that frequency. For contrasts of main effect versus baseline 
(Fig. 4 and Supplementary Movies 1 and 2), we subtracted the power of the data 
from –300 ms to –100 ms pre-stimulus (stimulus locked) or +100 ms to +300 ms  
post-response (response locked). Linear regression was then used to estimate the 
contribution of experimental variables that varied across trials to this value

d r OV VDi
tr f t t t tr t trf f f( ) , , , , ,= + × + ×b b b0 1 2

where OV is the subjective overall value (sEVchosen + sEVunchosen) and VD is the 
subjective value difference (sEVchosen – sEVunchosen). Overall value and value dif-
ference were normalized before regression so that they occupied a similar range 
of values across subjects. β0

f,t, β1
f,t, β2

f,t and their associated variances, var(β0
f,t), 

var(β1
f,t) and var(β2

f,t), were estimated using ordinary least-squares regression.
The parameter estimates for β1

f,t and β2
f,t, normalized by var(β1

f,t) and 
var(β2

f,t), were then averaged across frequencies to gain a single estimate of the 
contribution of overall value and value difference to 2–10-Hz activity at each time 
point through the experiment. These data were then subsampled at 20 Hz and 
submitted to second-level analysis.

For the whole-brain analyses of each time point and each location, a one-sample  
t test of first-level statistics was performed across subjects. A nonparametric 
permutation test was used to correct for multiple comparisons across voxels and 
time. The principle behind this statistical test is identical to that of the cluster-size 
permutation test that is frequently used during inference on functional MRI sta-
tistical images, with the slight complication that clusters are now formed in four 
dimensions (X, Y, Z and time), rather than three. We ran a Matlab-based cluster-
ing algorithm (available at http://www.fmrib.ox.ac.uk/~lhunt/randomise_4D_
clusters.zip) in combination with FMRIB Software Library’s randomize version 
2.6 to identify the size of each four-dimensional cluster. From each permutation, 
we took the maximum cluster size and used this to build a null distribution of 
cluster sizes. We then compared the size of clusters from the true t statistic image 
with that of the null distribution, and reported those clusters with a significance 
of P < 0.01, corrected for multiple comparisons across both space and time.

We performed additional tests on data beamformed to the clusters identified 
in the whole-brain analysis, to show the time course of low-frequency activity in 
this region and crucially to identify regions whose activity evolved through time 
from an initial representation of overall value to a later representation of value 
difference. Notably, we only performed statistical inference on tests orthogonal 

to those originally used to identify the region of interest, namely, the main 
effect of task versus baseline. Frequency-domain analysis was performed as in 
the whole-brain analysis without subsampling the data to 20 Hz; time courses 
show the group z statistic of the averaged (normalized) β values from 2–4.5 Hz  
(for value difference) and 3–9 Hz (for overall value), based on predictions from 
the biophysical model.

For inference on the effects of overall value and value difference on region of 
interest data, we performed a cluster-based permutation test at the group level 
after collapsing across the relevant frequencies. We generated 5,000 randomly 
permuted t statistics for each time point (Fig. 5a,b and Supplementary Fig. 10). 
We then thresholded each permutation’s t statistic time series at a threshold of 
t29 > 2.1 (equivalent to P < 0.05 uncorrected) and measured the maximum size of 
any cluster passing this threshold in the time series to build a null distribution of 
cluster sizes. We then compared the size of clusters from the true t statistic time 
series to those from the null distribution. We report clusters at a significance level 
of P < 0.05, corrected for multiple comparisons across time.

Computational model. We implemented a mean-field reduction of a previously 
described spiking neuronal network model20 (full details of the reduction are 
given in refs. 23,24).

The reduced model consists of two units (i = 1,2), each selective for one 
option, with an excitatory recurrent coupling (JA,ii) onto each unit and an effec-
tive inhibitory coupling to the other unit (JA,ij). Each unit receives external input 
currents that are proportional to the value of its favored option, as well as noisy 
background inputs that resemble endogenous noise in the cortex. The firing 
rate in each population of selective neurons is a function of the total synaptic 
input to this pool

r f I
aI b

d aI bi i
i

i
= = −

− − −
( )

exp( ( ))1

where a, b and d determined the input-output relationship for a neuronal popula-
tion and were set to 270 Hz nA−1, 108 Hz and 0.154 s, respectively.

The total synaptic currents to each pool of neurons represented by (in nA) 
I J S J S I J r r Ii A ii i A ij j A i vis i= − + + + +, , , ( )0 ext noise, , where Si is the NMDA  
synaptic gating variable related to neural pool i. I0 represents the synaptic input 
current from external inputs to both pools and was fixed at 0.3297 nA, Inoise,i 
is white noise filtered by a synaptic time constant of 2 ms and an amplitude of 
0.009 nA, JA,ext represents the strength of synaptic coupling constant from exter-
nal sources and was set to 0.0011215 (nA Hz−1) and rvis represents input firing 
rates of neurons that respond to the presentation of the visual stimulus, fixed at  
7.5 Hz. ri represents the input firing rate proportional to the value of each option 
presented, given by the equation r r k sEVi i= +dec dec( )1 , where rdec and kdec are 
constants, and sEVi is the subjective expected value on option i derived above 
from prospect theory. We set rdec to be 10 Hz and kdec to be 0.1125 for the simula-
tions shown in Figure 1. For a typical subject in experiment 1 (prospect theory 
parameters α = 0.63, γ = 0.64), ri would therefore range between 10.63 Hz for the 
lowest value option on offer in the experiment to 14.03 Hz for the highest value 
option. Note that the values of rvis and rdec can be scaled, as their product with 
JA,ext determines the selective inputs to neuronal pools in the network. Finally, 
JA,ii was set to 0.3539 for the simulations shown in Figure 1, and varied between 
0.3166 and 0.3725 for the cross-subject variation simulations (Supplementary 
Fig. 6). JA,ij was set at 0.0966.

Si for populations i = 1,2 are dynamical variables representing the slow synaptic 
currents attributable to NMDA receptor activation, given by the equation 

dS
dt

S
S f Ii i
i i= − + −

t
x

S
( ) ( )1

where τS is the NMDA receptor decay time constant, set at 60 ms, and ξ is a 
parameter that relates the presynaptic input firing rate to the synaptic gating 
variable, set at 0.641. We used a total simulation period of 2,500 ms, with time 
step dt of 0.2 ms. Stimulus onset (Ivis = 7.5 nA) was from 500 ms, with reward-
dependent inputs delivered from 600 ms (Iopt = 10 nA); both inputs were offset at 
2,000 ms. The decision was made when the firing rate of one of the populations 
reached a threshold of 30 Hz.
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When analyzing the model’s behavior, we no longer investigated the firing of 
individual selective neuronal populations (as described in ref. 20), but instead 
the summed synaptic inputs to both populations within the network, I1 + I2. We 
chose this measure as MEG is more sensitive to the dipolar currents produced by 
postsynaptic potentials than the quadrupolar currents produced by action poten-
tials25, and because the lack of separation between the neuronal pools means 
their activity is likely to be mixed when viewed at the macroscopic spatial scale 
resolved by MEG. However, neuronal firing rates and synaptic input currents are 
highly correlated in the model, and similar results could be obtained using firing 
rates as the dependent variable.

For predictions relating to a single subject (Fig. 1), we simulated 6,480 trials 
generated from the same stimulus set as used in experiment 1, with α = 0.63 and 
γ = 0.64. We plotted the activity of the model as a function of the overall value 
(sEV1 + sEV2; Fig. 1a) of the decision and as a function of the value difference 
(sEVchosen – sEVunchosen; Fig. 1b). We then treat the model outputs, m, in the same 

way as the beamformed data at each location of interest (di). First, we performed 
a time-frequency decomposition of the data on each trial from 2–10 Hz using 
Morlet wavelets (Morlet factor 5). The decomposed data was then treated as the 
dependent variable as a function of overall value and value difference 

m OV VDtr f t t t tr t trf f f, , , , ,= + × + ×b b b0 1 2

where β0
f ,t, β1

f,t, β2
f ,t and their associated variances, var(β0

f ,t), var(β1
f ,t) and 

var(β2
f ,t) are estimated using ordinary least-squares regression.
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