
Peter Latham, April 29, 2014 1

Kernels for dummies

1 Determining whether two distributions are different

Suppose we have samples from two distributions, p(x) and q(x). The simplest estimate for
p(x) are q(x) is one of the form

p̂(x) =
1

np

np
∑

i=1

δ(x− xp
i ) (1a) {pq}

q̂(x) =
1

nq

nq
∑

i=1

δ(x− xq
i ) (1b)

where xp
i andxq

i are samples from p(x) and q(x), respectively.
Based on the samples, we want to know if the true distributions, p(x) and q(x), are

different. To determine that we define a difference via a witness function, f(x), as

∆f ≡

∫

dxf(x)δp̂(x) . (2) {deltaf}

where

δp̂(x) ≡ p̂(x)− q̂(x) . (3)

We want to find the f(x) that maximizes ∆f . We can’t, of course, let f(x) be arbitrary,
because then we could make ∆f infinite. So we put a kernel regularizer on it: we maximize
∆2

f with respect to f(x) subject to the constraint that

∫

dxdy f(x)K−1(x, y)f(y) = 1 . (4) {deltap}

Here K−1(x, y) is defined via
∫

dyK−1(x, y)K(y, z) = δ(x− z) (5) {kinv_def}

where δ(·) is the Dirac delta function. For why this is a regularizer, see the last section,
Sec. 4.

This gives us a standard Lagrange multiplier problem. Before writing it down, though,
to emphasize the connection to linear algebra, we define a giant dot product, {giant_dot}

f • g ≡

∫

dxf(x)g(x) (6a)

f •D(y) ≡

∫

dxf(x)D(x, y) . (6b)

Here bold indicates generalized (meaning uncountably infinite dimensional) vectors or ma-
trices: the yth component of f is f(y) and the xyth component of D is D(x, y). Note that



Peter Latham, April 29, 2014 2

when taking the giant dot product between a vector and a matrix, we will rarely need to
specify the dependence, as we did in Eq. (6b). Typically we’ll just write f • D, a quantity
whose yth component is

∫

dxf(x)D(x, y).
With this notation, our problem can be written

f∗ = arg maxf
{

[f • (p̂− q̂)]2 + λ[f •K−1 • f − 1]
}

(7)

where λ is a Lagrange multiplier. Minimizing with respect to f , and enforcing the constraint
f •K−1 • f = 1, leads to

f∗ =
K • δp̂

[δp̂ •K • δp̂]1/2
. (8)

Inserting this into Eq. (2), we find that

∆2
f∗ = δp̂ •K • δp̂ =

∫

dx δp̂(x)K(x, y)δp̂(y) . (9)

Or, using Eq. (4) for δp̂(x) and Eq. (1a) for p(x) and q(x), we arrive at our final expression,

∆2
f∗ =

1

n2
p

np
∑

i,j=1

K(xp
i , x

p
j )−

2

npnq

np
∑

i=1

np
∑

j=1

K(xp
i , x

q
j) +

1

n2
q

nq
∑

i,j=1

K(xq
i , x

q
j) . (10)

Computing ∆2
f∗ from data is the easy part; the hard part is determining whether or not

it’s statistically significantly different from zero. But we won’t do that here.

2 Kernel ridge regression

Suppose we want to minimize the following least square distance,

∆2 =
∑

i

(f • p̂i − yi)
2 (11)

with respect to f(x). Here p̂i(x) is a sample distribution,

p̂i(x) =
1

ni

∑

k

δ(x− xi
k) (12) {pihat}

where xi
k is the k

th sample from the true distribution, pi(x), and ni is the number of samples.
We use ridge regression, which means

f∗ = arg minf

[

∆2 + λf •K−1 • f
]

. (13) {fstar_regression

Note that this is equivalent to computing a map estimate with a log likelihood of −∆2/2
and a Gaussian process prior.



Peter Latham, April 29, 2014 3

Differentiating the right hand side of Eq. (13) gives us

f∗ =
1

λ

∑

i

(yi − f∗ • p̂i)K • p̂i (14)

Consequently,

f∗ =
∑

i

αiK • p̂i (15) {fstar_kernel_soln

where

αi =
yi − f∗ • p̂i

λ
. (16) {alpha}

Inserting Eq. (15) into (16), and assuming a symmetric kernel, we have

λαi = yi −
∑

j

p̂i •K • p̂j + yi . (17) {eig}

It is convenient to define the matrix

Bij ≡ p̂i •K • p̂j =

∫

dxdy p̂i(x)K(x, y)p̂j(y) . (18) {adef}

Note that Bij is easy to compute: inserting Eq. (12) into (18) gives us

Bij =
1

ninj

∑

kl

K(xi
k, x

j
l ) . (19)

In any case, inserting Eq. (18) into (17) and using vector notation, we have

α = (B+ λI)−1 · y (20)

where B and I are plain old matrices, and I is the identity matrix. This is standard ridge
regression.

3 Kernel PCA

Suppose we have a set of points, xi, i = 1, ..., n (the xi could be vectors, but that won’t affect
anything we do), and we want to project them into a higher dimensional space and do PCA
in that space. Since we’re going to a higher dimensional space, might as well go all the way
to an uncountably infinite dimensional space, and map the xi to functions. We thus define

fi(y) = K(xi, y) . (21) {fdef}

We now want to do PCA in function space. If this were standard old PCA, we would
minimize the cost function

∆ =

n
∑

i=1

∫

dy
(

fi(y)−
∑

k

Aikvk(y)
)2

(22) {delta}



Peter Latham, April 29, 2014 4

with respect to the Aik and vk(y). This, however, corresponds to minimizing the L2 norm.
But there are other choices of norm. Here we consider one class of norms, which is to insert
Q−1(x, y) into the square in Eq. (22). This leads to the cost function

∆Q =

n
∑

i=1

∫

dy dz
(

fi(y)−
∑

k

Aikvk(y)
)

Q−1(y, z)
(

fi(z)−
∑

l

Ailvl(z)
)

. (23)

If Q(y, z) were a standard kernel-like object, say Q(y, z) = exp(−(y − z)2), then the effect
of adding Q−1(y, z) would be to emphasize smoothness. Without loss of generality we may
assume that Q(x, y) is symmetric: Q(x, y) = Q(y, x).

To emphasize the relationship to linear algebra, we replace the integrals with giant dot
products,

∆Q =
n

∑

i=1

(

fi −
∑

k

Aikvk

)

•Q−1 •
(

fi −
∑

l

Ailvl

)

. (24) {delta_q}

Finding the Aik and vk(y) that minimize ∆Q is reasonably straightforward (algebra below),
leading to

v =
∑

i

αif (25)

where the αi obey the eigenvalue equation
∑

j

Cijαj = λkαi (26) {eigen_c}

with

Cij = fi •Q
−1 • fj . (27) {cov_c}

Using Eq. (21), Cij becomes (assuming a symmetric kernel, K),

Cij =

∫

dydz K(xi, y)Q
−1(y, z)K(z, xj) . (28)

An especially convenient choice for Q is Q = K, in which case

Cij = K(xi, xj) . (29)

3.1 Algebra for kernel PCA

Probably all this is standard, but just in case, here we derive the above equations. Our
starting point is to make Eq. (24) look more like standard PCA. To do that, we make the
definitions {transform}

gi ≡ fi •Q
−1/2 (30a)

uk ≡ vk •Q
−1/2 , (30b)



Peter Latham, April 29, 2014 5

So that

∆Q =
n

∑

i=1

(

gi −
∑

k

Aikuk

)

•
(

gi −
∑

l

Ailul

)

. (31) {pca_standard

We want to minimize this expression with respect to Aik and uk. Setting d∆q/duk and
d∆Q/dAik to zero yields

∑

i

AT
kigi =

∑

i

AT
ki

∑

l

Ailul (32a) {du}

gi • uk =
∑

l

Ailul • uk (32b) {dA}

where T denotes transpose. Solving Eq. (32b) for AT
ki gives us

AT
ki =

∑

l

(uk • ul)
−1ul • gi (33)

where uk • ul is treated as a matrix with components k and l. Inserting this into Eq. (32a),
and applying a small amount of algebra, we have

∑

l

(uk • ul)
−1ul •

∑

i

gigi =
∑

l

(uk • ul)
−1ul •

∑

i

gigi •
∑

m

um(um • ul)
−1ul . (34)

Getting rid of the inverse on both sides leads to

∑

i

gigi • uk = uk •
∑

i

gigi •
∑

m

um(um • ul)
−1ul . (35)

As is easy to verify, this equation is satisfied if the uk are eigenvectors of
∑

i gigi. That is,
the uk obey

∑

i

gigi • uk = λkuk (36) {eigen_u}

It’s not totally clear that this is the global minimum, but we’ll assume it is. Once the uk

are known, it’s easy to show that the Aik are given by

Aik = gi • uk . (37)

The next step is to find vk in terms of uk. Inserting Eq. (30) into (36), we have

R •Q−1 • vk = λkvk (38a) {eigen_a}

Aik = fi • vk (38b) {eigen_b}

where

R(x, y) ≡

n
∑

i=1

fi(x)fi(y) . (39) {rdef}



Peter Latham, April 29, 2014 6

Because there are a finite number of samples (n) and the gi are infinite dimensional
(they’re functions), the eigenvectors, uk, are linear combinations of the gi,

uk =
∑

i

αigi . (40)

This implies, using Eq. (30b), that vk is given by

vk =
∑

i

αifi . (41)

Inserting this into Eq. (38a), we have

R •Q−1 •
∑

i

αifi = λk

∑

i

αifi . (42)

Using Eq. (39) for R, this becomes
∑

i

fifi •Q
−1 •

∑

j

fjαj = λk

∑

i

fiαi . (43)

Assuming the fi are linearly independent, we can drop the sum over i. This produces Eq. (26),
with the covariance matrix, Cij, given by Eq. (27).

4 Why K−1 is a regularizer
{kinv}

To see why K−1 is a regularizer, we’ll restrict ourselves to translation invariant kernels:
K(x, y) = K(x− y). We start by defining

D(f , g) ≡

∫

dxdy f(x)K−1(x− y)g(y) . (44) {D}

Then we’ll Fourier transform. We’ll use tildes to denote a Fourier transform; for example,

f̃(k) ≡

∫

dx eikxf(x) , (45) {ftinv}

which implies that

f(x) =

∫

dk

2π
e−ikxf̃(k) . (46) {ft}

Using Eq. (46), Eq. (44) becomes, after rearranging terms slightly,

D(f , g) =

∫

dkxdky
(2π)2

f̃(kx)g̃(ky)

∫

dxdy e−ikxxK−1(x− y)e−ikyy . (47)

Letting e−ikxx = e−ikx(x−y)e−ikxy, making the change of variables z = x− y, and performing
the integral over z gives us

D(f , g) =

∫

dkxdky f̃(kx)g̃(ky)

∫

dy K̃−1(kx)e
−i(ky+kx)y . (48)



Peter Latham, April 29, 2014 7

The integral over y is 2πδ(kx+ky). Assuming f and g are real, so that g̃(−k) = g̃∗(k) where
* denotes complex conjugate, we have

D(f , g) =

∫

dk f̃(k)g̃∗(k)K̃−1(k) . (49) {Dfg}

So what’s K̃−1? To answer that, we use Eq. (5) to write

1 =

∫

dx eik(x−z)

∫

dyK(x− y)K−1(y − z) . (50)

Making the change of variable x = u+ y, and then y = u+ w, this becomes

1 =

∫

du eikuK(u)

∫

dw eik(w)K−1(w) . (51)

The first integral is K̃(k); the second is K̃−1(k). Thus,

K̃−1(k) =
1

K̃(k)
. (52)

Inserting this into Eq. (49) gives us

D(f , g) =

∫

dk
f̃(k)g̃∗(k)

K̃(k)
. (53)

For smooth kernels, K̃(k) falls off rapidly with k; for instance, if K(x− y) = e−(x−y)2/2σ2

,
then K̃(k) ∝ e−σ2k2/2. Thus, D(f , g) is large for functions with large Fourier components –
that is, it’s large for non-smooth functions.


