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About This Talk

Zoltan’s talk 3 weeks ago:
• Wasserstein Propagation for Semi-Supervised Learning

The term "label propagation" is used often in semi-supervised
learning.
What is its origin ? Seems to be . . . (I think)

• Learning with Local and Global Consistency. NIPS 2003
([Zhou et al., 2003]).
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Transduction

Input:

l labeled points︷ ︸︸ ︷
{xi, yi}li=1 and

u unlabeled points︷ ︸︸ ︷
{xi}l+u

i=l+1

• Infer just {yi}l+u
i=l+1, not the mapping f : X 7→ Y .

• Assume l� u.
• n = l + u
• yi ∈ {1, . . . C} (classification task)

An easier problem than induction (i.e., learning f).
Label propagation does just that.
Application: document categorization
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What Is Label Propagation ?

Use {xi, yi}li=1 (small l) and {xi}l+u
i=l+1 (large u) to find {yi}l+u

i=l+1.
⇒ go from left plot to right plot
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Idea: Each point spreads label information to its neighbors
Neighborhood defined by similarity matrix W .



Set Up

For each xi, define

Yi := (δ(yi = 1), . . . , δ(yi = C)) ∈ {0, 1}1×C .

If xi is unlabeled i.e., i ≥ l + 1, then Yi = 01×C .
For each xi, label propagation finds a nonnegative scoring vector
Fi ∈ R1×C

+ .
• Fi = (fi1, . . . , fiC) = class membership scores

Label propagation finds F =

 F1
...

Fl+u

 given Y =

 Y1
...

Yl+u

.

Y is fixed.



Label Propagation Algorithm

1 Form an affinity (similarity) matrix W ∈ Rn×n. Set Wii = 0.
2 Normalize W by

S = D−1/2WD−1/2

where D is diagonal with Dii =
∑

j Wij .
3 Iterate

F (t+ 1)← αSF (t) + (1− α)Y

where α ∈ (0, 1) and F (0) = Y .
4 Label xi with

yi = argmax
k

F ∗i,k

where F ∗ := limt→∞ F (t).



Affinity Matrix Construction
Various choices from ([Belkin and Niyogi, 2003])

ε-neighborhoods:

Wij = 1 if ‖xi − xj‖2 < ε

May lead to several connected components
k nearest neighbors (kNN)

Wij = 1 if xi ∈ kNN(xj) or xj ∈ kNN(xi)

Gaussian kernel: Wij = exp
(
−‖xi − xj‖2/2σ2

)

Image from [Zhu, 2007]



Notes on Label Propagation

W captures the intrinsic structure of the data.
Set Wi,i = 0 to avoid self-reinforcement.
α trade-offs information from neighbors and Y

F (t+ 1)← αSF (t) + (1− α)Y

High α⇒ trust neighbors (α = 0.99 in the paper)
Analytic update

F ∗ = (1− α) (In×n − αS)−1 Y

(independent of F (0))



Label Propagation on 2circs Data

Affinity matrix W is constructed with Gaussian kernel with small
width
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After 1 Iteration

 

 



After 10 Iterations

 

 



After 40 Iterations

 

 



After 80 Iterations (converged)
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Regularization Framework

F ∗ = argminF Q(F ) (loss function) where

Q(F ) =
1

2


n∑

i=1

n∑
j=1

Wi,j

∥∥∥∥∥ Fi√
Di,i

− Fj√
Dj,j

∥∥∥∥∥
2

︸ ︷︷ ︸
smoothness constraint

+µ

n∑
i=1

‖Fi − Yi‖2︸ ︷︷ ︸
fitting constraint


Implication: A good F should

• not change too much between nearby points (smoothness)
• not change too much from the initial label assignment Y

(fitting constraint)

Trade-off captured by µ (regularization parameter).



Solve Q(F )

Rewrite Q(F ),

Q(F ) = tr
(
F> (I − S)F

)
+

µ

2

[
tr
(
FF>

)
− 2 tr

(
FY >

)
+ tr

(
Y Y >

)]

Differentiate w.r.t. F

∂Q

∂F
= 2 (I − S)F + µ (F − Y ) = 0

F ∗ = (µI − 2S)−1 Y

Recall previously F ∗ = (1− α) (I − αS)−1 Y .
Equivalent solution with µ ∝ 1/α.



Why Normalize W ?

S = D−1/2WD−1/2

Eigenvalues of S in [−1, 1]. Necessary for the convergence.
Eigen-decompose S = V CV >.

C = V >D−1/2W

A︷ ︸︸ ︷
D−1/2V

= V >D1/2D−1D1/2V

Since A−1 = V >D1/2 (V orthogonal),

C = A−1D−1WA

⇒ D−1W = ACA−1

C contains eigenvalues of D−1W .
D−1W is a stochastic matrix. Rows sum to 1.

• Eigenvalues |Cii| ≤ 1.



Convergence

F (t+ 1)← αSF (t) + (1− α)Y

F (t) = (αS)t−1Y + (1− α)
t−1∑
i=0

(αS)iY

Take the limit

F ∗ = lim
t→∞

F (t) =

0︷ ︸︸ ︷
lim
t→∞

(αS)t−1 Y + (1− α)

B︷ ︸︸ ︷
lim
t→∞

t−1∑
i=0

(αS)i Y

B = I + αS + (αS)2 + · · · (convergent series)
αSB = αS + (αS)2 + · · ·

B − αSB = I

⇒ B = (I − αS)−1

Substitute B back: F ∗ = (1− α) (I − αS)−1 Y



Outline

1 Introduction

2 Label Propagation

3 From Viewpoint of Regularization Framework

4 Conclusions



Conclusions

Transduction is a task to predict labels of the observed unlabeled
points.
No mapping function f : X 7→ Y is learned.
Label propagation tries to generate smooth outputs w.r.t. W
Analytic solution.
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Learning Paradigms

Supervised learning
• {(xi, yi)}ni=1 ⇒ Infer the mapping f : X 7→ Y
• Regression when Y ∈ R. Classification when Y ∈ {1, . . . C}.

Unsupervised learning
• {xi}ni=1 ⇒ Find hidden structure in the data
• In clustering, find yi ∈ {1, . . . , C} (labels) such that {xi}i with the

same label are “similar”.

Semi-supervised learning
• l of {xi, yi}li=1 (labeled) and u of {xi}ni=l+1 (unlabeled)
⇒ Infer the mapping f : X 7→ Y (inductive).

• n = l + u. Usually l� u.

Reinforcement learning



Motivations for Semi-Supervised Learning

Example task: web categorization
• xi = a web page
• yi = category
• Goal: learn f : web page 7→ category

Manual page annotation is time-consuming.
Abundance of unlabeled sentences.
Ideally, use both labeled and unlabeled data
to build a better learner.



Motivations for Semi-Supervised Learning

Example task: natural language parsing ([Zhu, 2007]).
• xi = sentence
• yi = parse tree
• Goal: learn f : sentence 7→ parse tree

Manual parse tree annotation is
time-consuming.
Abundance of unlabeled sentences.
Ideally, use both labeled and unlabeled data
to build a better learner.



How can unlabeled data help ?

Example from [Belkin et al., 2005].

2 classes (C = 2). 2 labeled points. {(x1, blue), (x2, red)}



How can unlabeled data help ?

Example from [Belkin et al., 2005].

Best decision boundary



How can unlabeled data help ?

Example from [Belkin et al., 2005].

{(x1, blue), (x2, red)} and {xi}ni=3 (in black). Same decision
boundary ?



How can unlabeled data help ?

Example from [Belkin et al., 2005].

So, unlabeled data can be helpful.



Label Propagation on 2spirals Data

Affinity matrix W is constructed with 5-NN.
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After 1 Iteration

 

 



After 10 Iterations

 

 



After 40 Iterations

 

 



After 80 Iterations

 

 



After 100 Iterations (converged)

 

 


	Introduction 
	Label Propagation
	From Viewpoint of Regularization Framework
	Conclusions
	Appendix

