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What the paper is about

When you have big data (tm) and not much time, what is the best way to
learn?

o Gradient descent (first or second order)?
@ Online (stochastic gradient descent, first or second order)?

“It is known" that for large-scale problems, stochastic methods are better.
This paper proves why this should occur (for linear functions f = w ' x).
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When you have big data (tm) and not much time, what is the best way to
learn?

o Gradient descent (first or second order)?
@ Online (stochastic gradient descent, first or second order)?

“It is known" that for large-scale problems, stochastic methods are better.
This paper proves why this should occur (for linear functions f = w ' x).

Outline:
@ How well can we learn with n samples?

@ How do we trade off time spent optimizing and generalization
performance?
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-
What is a learning problem?

Expected risk:
E(F) = [ HF().5)dP(x.)
for loss ¢(f(x), y). Best possible function:
£*(x) == argminE [{(, y)|x] .
v
If we're constrained to smaller function class F, best answer:

fr .= arg ?1€i]r1__E(f)
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-
What is a learning problem?

Expected risk:

E(F) = [ HF().5)dP(x.)
for loss ¢(f(x), y). Best possible function:

£*(x) == argminE [{(, y)|x] .

v
If we're constrained to smaller function class F, best answer:
fr .= arg ?1€i]r1__E(f)

Empirical risk:

Ex(F) =+ D HF0x) ),
i=1

Empirical risk minimizer:

f, = in E,(f).
arg min £,(f)
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How well have we learned?

The excess error tells us how well we learned:

& :=E[E(fn) — E(f7)]
= E[E(fz) — E(")] + E[E(f,) — E(f7)].

gapp gcst

@ Eapp : approximation error (small for rich F)
@ Eest © estimation error (small for simple F)
o [E: expectation over n-sample (relevant in Eegt)
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How well have we learned?

The excess error tells us how well we learned:

& :=E[E(fn) — E(f7)]
= E[E(fz) — E(")] + E[E(f,) — E(f7)].

gapp gcst

@ Eapp : approximation error (small for rich F)
@ Eest © estimation error (small for simple F)
o [E: expectation over n-sample (relevant in Eegt)

What if we learn only to some precision?
En(?n) < En(fn) +p
Additional term )
Eopt = E [E(fn) —E(f)
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]
How well have we learned?
The excess error tells us how well we learned:

E =E[E(f,) — E(f7)]
=E[E(ff) — E(f")]| + E[E(f,) — E(f})l

gapp gest

@ E,pp : approximation error (small for rich F)
@ Eest @ estimation error (small for simple F)

o [E: expectation over n-sample (relevant in Eest)

New excess error

E=E[E(fy) — E( N +E[E(h) — E(fF)]+E E(fa) — E(fn)]-

g g . Ve
app est gopt
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How well can we learn?

Our setting: f:= w'x for w € R?, and x, y, ¢ bounded.
Best bounds

d n\* 1
gapp + gest S C <(€app + <n |og d) ) E S (6] S ].7
if we are allowed to assume variance condition

vf € F, E(U(f(x),y) - (fF(x),y)) < c(E(F) — E(f£)>

(large « is easier).

INot very intuitive: for classification, clearer condition is Tsybakov noise
condition, 3 > 0, 8 € (0,00) s.t. Ve > 0, P(|n(x) — 1/2| < €) <oue®.
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How well can we learn?

Our setting: f:= w'x for w € R?, and x, y, ¢ bounded.
Best bounds

@ 1
Eapp T Eest < € <5app + <;l log Z) ) <a<l,

if we are allowed to assume variance condition

vf € F, E(U(f(x),y) - (fF(x),y)) < c(E(F) — E(f£)>

(large « is easier).

Then

d [0
5app + gest + gopt <c <gapp + <n |Og Z) + p)

INot very intuitive: for classification, clearer condition is Tsybakov noise
condition, 3 > 0, 8 € (0,00) s.t. Ve > 0, P(|n(x) — 1/2| < €) <oue®.
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.
Now to optimize: first some definitions

Recall f,, = w'x. Empirical cost function
C = Ex(fw).

Empirical optimum occurs at wp,.
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.
Now to optimize: first some definitions
Recall f,, = w'x. Empirical cost function
C = Ed(fy).

Empirical optimum occurs at wp,.
Hessian at optimum is

2
,_dcC

= W(Wn) eigenvalues € [Amin, Amax], condition#x = Amax/Amin

Gradient covariance at optimum

G =E, ((W(fvggvx),y)> (aafvggvx),y)>T> (G H) < .

(statements on eigenvalue range and bound on tr(G~1H) are w.h.p. since
quantities are empirical).
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How fast to optimize to precision p?

Block strategies:

o Gradient descent: precision p with steps® O(x log(1/p)),

Wt +1) = w(t) o (w(t)).
Time to reach p: O(ndxlog(1/p))
@ “Magical” second order gradient descent (we are given H): p in steps
O(loglog(1/p)).
w(t+1) = w(t) — ng'f/(w(t)).

Time to reach p: O((d? + nd) loglog(1/p))
(no k, better dependence on p)

2Given stepsize 77 = Apax
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|
How fast to optimize to precision p?

Stochastic gradient descent strategies:

e Stochastic gradient descent: precision p with steps3
vi?p~t +o(1/p),

Wt 1) = w(t) = T (a0 (). )]

Time to reach p: O(dvk?/p), (note: no n.

@ “Magical’ second order stochastic gradient descent: p in steps
vp~t+o(1/p),

w(t+1) = w(t)— ;L_H_laﬁw [E(fw(t)(xt),yt)] .

Time to reach p: O(d?v/p)
(no k, same dependence on p)

3Given stepsize 1 = A1,
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-
Putting all the results together

What is time to get error ¢ above E,pp? (use n~ de=1/% log(a™?) for batch)

Time to reach

€ < c(€app +¢)

(L1087 L) o
@(Ef% log £ loglog %) 2GD
O(M) SGD
D(%) 2SGD

@ Stochastic methods have the best generalization performance, despite
having the worst optimization performance on the empirical cost.

@ Fast convergence in SGD bounds doesn’t depend on « (but watch out
for constants!).
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-
Experiment 1: logistic loss
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Optimization accuracy (trainingCost-optimalTrainingCost)

Figure: Superlinear batch method (TRON) vs SGD
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Experiment 2:

Testing loss
0.4

CONJUGATE GRADIENTS

1 1 1
n=10000 \ n=100000 \ n=781265
n=30000

0.35

0.3

0.25

0.2

0.15

0.1
0.001 0.01 0.1 1 10 100 1000

Training time (secs)

Figure: Conjugate gradients vs. SGD
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