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What the paper is about

When you have big data (tm) and not much time, what is the best way to
learn?

Gradient descent (first or second order)?
Online (stochastic gradient descent, first or second order)?

“It is known” that for large-scale problems, stochastic methods are better.
This paper proves why this should occur (for linear functions f = w>x).

Outline:
How well can we learn with n samples?
How do we trade off time spent optimizing and generalization
performance?
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What is a learning problem?

Expected risk:

E (f ) =
ˆ
`(f (x), y)dP(x , y)

for loss `(f (x), y). Best possible function:

f ∗(x) := argmin
ŷ

E [`(ŷ , y)|x ] .

If we’re constrained to smaller function class F , best answer:
f ∗F := arg min

f ∈F
E (f )

Empirical risk:

En(f ) =
1
n

n∑
i=1

`(f (xi ), yi ).

Empirical risk minimizer:

fn := arg min
f ∈F

En(f ).
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How well have we learned?

The excess error tells us how well we learned:

E := E [E (fn)− E (f ∗)]
= E [E (f ∗F )− E (f ∗)]︸ ︷︷ ︸

Eapp

+ E [E (fn)− E (f ∗F )]︸ ︷︷ ︸
Eest

.

Eapp : approximation error (small for rich F)
Eest : estimation error (small for simple F)
E: expectation over n-sample (relevant in Eest)

What if we learn only to some precision?

En(f̃n) ≤ En(fn) + ρ

Additional term
Eopt = E

[
E (f̃n)− E (fn)

]
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How well can we learn?

Our setting: f := w>x for w ∈ Rd , and x , y , ` bounded.
Best bounds

Eapp + Eest ≤ c
(
Eapp +

(
d
n
log

n
d

)α) 1
2
≤ α ≤ 1,

if we are allowed to assume variance condition

∀f ∈ F , E (`(f (x), y)− `(f ∗F (x), y))
2 ≤ c (E (f )− E (f ∗F ))

2−α−1

(large α is easier).1

Then

Eapp + Eest + Eopt ≤ c
(
Eapp +

(
d
n
log

n
d

)α

+ ρ

)

1Not very intuitive: for classification, clearer condition is Tsybakov noise
condition, ∃µ > 0, β ∈ (0,∞) s.t. ∀ε > 0, P (|η(x)− 1/2| ≤ ε) ≤ µεβ .
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Now to optimize: first some definitions

Recall fw = w>x . Empirical cost function

C = En(fw ).

Empirical optimum occurs at wn.

Hessian at optimum is

H =
d2C
dw2 (wn) eigenvalues ∈ [λmin, λmax] , condition#κ = λmax/λmin.

Gradient covariance at optimum

G = En

((
∂`(fwn(x), y)

∂w

)(
∂`(fwn(x), y)

∂w

)>)
tr(G−1H) ≤ ν.

(statements on eigenvalue range and bound on tr(G−1H) are w.h.p. since
quantities are empirical).
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How fast to optimize to precision ρ?

Block strategies:
Gradient descent: precision ρ with steps2 O(κ log(1/ρ)),

w(t + 1) = w(t)− η ∂C
∂w

(w(t)).

Time to reach ρ: O(ndκ log(1/ρ))
“Magical” second order gradient descent (we are given H): ρ in steps
O(log log(1/ρ)),

w(t + 1) = w(t)− H−1 ∂C
∂w

(w(t)).

Time to reach ρ: O((d2 + nd) log log(1/ρ))
(no κ, better dependence on ρ)

2Given stepsize η = λ−1
max
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How fast to optimize to precision ρ?

Stochastic gradient descent strategies:
Stochastic gradient descent: precision ρ with steps3

νκ2ρ−1 + o(1/ρ),

w(t + 1) = w(t)− η

t
∂

∂w
[
`(fw(t)(xt), yt)

]
.

Time to reach ρ: O(dνκ2/ρ), (note: no n.
“Magical” second order stochastic gradient descent: ρ in steps
νρ−1 + o(1/ρ),

w(t + 1) = w(t)− 1
t
H−1 ∂

∂w
[
`(fw(t)(xt), yt)

]
.

Time to reach ρ: O(d2ν/ρ)
(no κ, same dependence on ρ)

3Given stepsize η = λ−1
min
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Putting all the results together
What is time to get error ε above Eapp? (use n ∼ dε−1/α log(α−1) for batch)

Stochastic methods have the best generalization performance, despite
having the worst optimization performance on the empirical cost.
Fast convergence in SGD bounds doesn’t depend on α (but watch out
for constants!).
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Experiment 1: logistic loss

Figure: Superlinear batch method (TRON) vs SGD
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Experiment 2:

Table 1.3: Results with linear Support Vector Machines on the RCV1 dataset.

Model Algorithm Training Time Objective Test Error

Hinge loss
λ = 10−4

SVMLight 23,642 secs 0.2275 6.02%

SVMPerf 66 secs 0.2278 6.03%

SGD 1.4 secs 0.2275 6.02%

Logistic loss
λ = 10−5

TRON (ρ = 10−2) 30 secs 0.18907 5.68%

TRON (ρ = 10−3) 44 secs 0.18890 5.70%

SGD 2.3 secs 0.18893 5.66%
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Figure 1.1: Training time and testing loss as a function of the optimization
accuracy ρ for SGD and TRON (Lin et al., 2007).
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Figure 1.2: Testing loss versus training time for SGD, and for Conjugate
Gradients running on subsets of the training set.

Figure: Conjugate gradients vs. SGD
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