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Problem setup

We are given:
d observed (leaf) variables with n states each,
hidden variables of k (unknown) states each (k can be different for different
hidden variables: notational convenience)

an assumed binary tree: each hidden variable has exactly two children.
Goal: recover the tree.

Unfolding Latent Tree Structures using 4th Order Tensors

Figure 1. Latent tree structure estimated from stock data. The price of each stock is considered as a variable and these
variables are connected via other latent variables in a graphical model with tree structure.

probability tables of quartets. The key insight is that
rank properties of the tensor reveal the latent struc-
ture behind a quartet. Similar observations have been
reported in the phylogenetic community (Eriksson,
2005; Allman & Rhodes, 2006), but they are con-
cerned about the cases where the number of hid-
den states is larger or equal to the number of ob-
served states. We focus instead on the cases where
the number of hidden states is smaller, representing
simpler factors. Furthermore, if the joint probability
tensor is only approximately given (due to sampling
noise) the main rank condition has to be modified.
In Allman & Rhodes (2006) such condition is missing
and in Eriksson (2005) the condition is heuristically
translated to the distance of a matrix to its best rank-
k approximation. In contrast, we propose a novel nu-
clear norm relaxation of the rank condition, discuss
its advantages, and provide recovery conditions and
finite sample guarantees. Our quartet test is easy to
compute since it only involves singular value decom-
position of unfolded 4th order tensors.

Using the proposed quartet test as a subroutine, the
latent tree structure can be recovered in a divide-and-
conquer fashion (Pearl & Tarsi, 1986). For d observed
variables, the computational complexity of the algo-
rithm is O(d log d), making it scalable to large prob-
lems. Under mild conditions, the tree construction
algorithm using our quartet test is consistent and sta-
ble to estimate given a finite number of samples. In
simulations, we compared to alternatives in terms of
resolving quartet relations and building the entire la-
tent trees. The proposed approach is among the best
performing ones while being agnostic to the number of
hidden states k. The latter is an important improve-
ment, since cross validation for finding k is expensive
while leading to similar final results. We also applied
the new approach to a stock dataset, where it discov-
ered meaningful grouping of stocks according to indus-
trial sectors, and led a latent variable model that fits
the data better than the competitors.

2. Latent Tree Graphical Models

We focus on discrete latent variable models whose con-
ditional independence structures are trees. We assume
all d observed variables, {X1, . . . , Xd}, are leaves of the
tree, having the same number of states, n. We also as-

sume all dh hidden variables, {Xd+1, . . . , Xd+dh
}, have

the same, but unknown, number of states, k, (k ≤ n).1

We use uppercase letters for random variables (e.g.,
Xi) and lowercase letters their instantiations (e.g., xi).

Factorization of distribution. The joint distribu-
tion of all d + dh variables in a latent tree model is a
multi-way table (tensor) P of order d + dh. Although
the tensor has O(ndkdh) entries, they can be computed
from just a polynomial number of parameters due to
the latent tree structure. That is, P(x1, . . . , xd+dh

) =∏d+dh

i=1 P (xi|xπi), where each P (Xi|Xπi) is a condi-
tional probability table (CPT) of a variable Xi and
its parent Xπi in the tree.2 This factorization leads
to a significant saving in terms of representation pa-
rameters: we can represent exponential number of en-
tries by just O(dhk2+dnk) parameters from the CPTs.
Throughout the paper, we assume that (A1) all CPTs
have full column rank, k, and the marginal distribu-
tions of all variables have full support. This assump-
tion is needed for the identifiability of the latent vari-
able models, and is common in latent tree recovery
literature (Anandkumar et al. (2011)). Furthermore,
it is needed only for the later rank conditions but not
for the nuclear norm relaxation.

Structure learning. Determining the tree topol-
ogy is an important and challenging learning problem.
The goal is to discover the latent structure based just
on samples of observed variables. For simplicity and
uniqueness of the topology (Pearl, 1988), we assume
that (A2) every latent variable has exactly 3 neigh-
bors. This assumption can potentially be relaxed (§5).

Quartet. A quadruple of observed variables from a
latent tree T is called a quartet (Fig. 2(a)). Given
condition (A2), there are 3 ways to connect a quar-
tet, X1, X2, X3, X4, using 2 latent variables H and G
(Fig. 2(b)). However, only one of the 3 quartet re-
lations is consistent with T . The mapping between
quartets and the tree topology T is captured in the
following theorem (Buneman, 1971):

1Our results can be generalized to the case where hidden
variables have different states (see discussion in §A13). For
simplicity of presentation, we assume their states are equal.

2In a latent tree, we can select a latent node as root, and
reorient all edges away from it, inducing consistent parent-
child relations. For the root Xr, P (Xr|Xπr ) = P (Xr).
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First step: four leaves, two latent variables

How do we connect four leaves, x1, x2, x3, x4, with two latent variables,
g , h?
Assume the true structure is:

P(x1, x2, x3, x4) =
∑

g ,h

P(x1|h)P(x2|h)P(g , h)P(x3|g)P(x4|g).

The joint probability can be concisely written

P(x1, x2, x3, x4) = 〈T1, T2〉3

where

T1 = I ×1 P1|H ×2 P2|H

T2 = I ×1 P3|G ×2 P4|G ×3 PHG

and I is the unit 3-tensor (size k × k × k).
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Joint probability table is 4th order tensor

There are three possibilities:
Unfolding Latent Tree Structures using 4th Order Tensors
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Figure 2. (a) A quartet from a tree. (b) Three fixed ways to connect X1, X2, X3 and X4 with two latent variables. (c)
Schematic diagram of the factorization of tensor P(X1, X2, X3, X4)).

Theorem 1 The set of all quartet relations QT is
unique to a latent tree T , and furthermore, T can be
recovered from QT in polynomial time.

Quartet-based tree reconstruction. Motivated by
Theorem 1, a family of latent tree recovery algorithms
has been designed based on resolving quartet relations.
These algorithms first determine one of the 3 ways how
4 variables are connected, and then join together all
quartet relations to form a consistent latent tree. For a
model with d observed variables, there are O(d4) quar-
tet relations in total (taking all possible combinations
of 4 variables). However, we do not necessarily need
to resolve all these quartet relations in order to recon-
struct the latent tree. A small set of size O(d log d)
will suffice for the tree recovery, which makes quartet
based methods efficient even for problems with large
d (Pearl & Tarsi, 1986; Pearl, 1988). In this paper, we
design a new quartet based method. Our main con-
tribution compared to previous approaches is that our
method is agnostic to the number of hidden states, k,
which is usually unknown in practice.

3. Resolving Quartet Relations without
Having the Number of Hidden States

In this section, we develop a test for resolving the la-
tent relation of a quartet when the number of hidden
states is unknown. Our approach uses information
from the joint probability table of a quartet, which
is a 4th order tensor. Suppose the quartet relation of
X1, X2, X3 and X4 is {{1, 2}, {3, 4}}, then the tensor’s
entries are specified by P(x1, x2, x3, x4) =

∑
h,g

P (x1|h)P (x2|h)P (h, g)P (x3|g)P (x4|g). (1)

This factorization suggests that there exist some low
rank structures in the 4th order tensor. To study
the rank properties of P(X1, X2, X3, X4), we first re-
late it to the conditional probability tables, P (X1|H),
P (X2|H), P (X3|G), P (X4|G), and the joint probabil-
ity table, P (H, G) (we abbreviate them as P1|H , P2|H ,
P3|G, P4|G and PHG, respectively). Using tensor alge-
bra, we have P(X1, X2, X3, X4) = 〈T1, T2〉3,

with
T1 = IH ×1 P1|H ×2 P2|H ,
T2 = IG ×1 P3|G ×2 P4|G ×3 PHG,

where IH and IG are 3rd order diagonal tensors of size
k × k × k with diagonal elements equal to 1. The mul-

tiplication ×i denotes a tensor-matrix multiplication
with respect to the i-th dimension of the tensor and
the rows of the matrix, and 〈·, ·〉3 denotes tensor-tensor
multiplication along the third dimension of both ten-
sors3 (see illustration in Fig. 2(c)). Next we will char-
acterize the rank properties of P and then exploit them
to design a quartet test for latent structure discovery.

3.1. Unfolding the 4th Order Tensor

Now we consider 3 different reshapings A, B and C
of the tensor into matrices (“unfoldings”). These un-
foldings contain exactly the same entires as P but
in different order. A corresponds to the grouping
{{1, 2}, {3, 4}} of the variables, i.e., the rows of A cor-
respond to dimensions 1 and 2 of P , and its columns
to dimensions 3 and 4. B corresponds to the grouping
{{1, 3}, {2, 4}} and C - to the grouping {{1, 4}, {2, 3}}.
Using Matlab’s notation (see §A8 for further expla-
nation),

A = reshape(P , n2, n2); (2)

B = reshape(permute(P , [1, 3, 2, 4]), n2, n2); (3)

C = reshape(permute(P , [1, 4, 2, 3]), n2, n2). (4)

Next we present useful characterizations of A, B and
C, essential for understanding their connection with
the latent structure of a quartet. The Kronecker prod-
uct of two matrices M and M ′ is denoted as M ⊗ M ′,
and if they have the same number of columns, their
Khatri-Rao product (column-wise Kronecker product),
is denoted as M % M ′. Then (see §A9 for proof),

Lemma 2 Assume that {{1, 2}, {3, 4}} is the correct
latent structure. The matrices A, B and C can be
factorized respectively as (see Fig. 3 for illustration)

A =
(
P2|H ! P1|H

)
PHG

(
P4|G ! P3|G

)!
, (5)

B =
(
P3|G ⊗ P1|H

)
diag(PHG(:))

(
P4|G ⊗ P2|H

)!
, (6)

C =
(
P4|G ⊗ P1|H

)
diag(PHG(:))

(
P3|G ⊗ P2|H

)!
. (7)

(

( (

(P2|HP1|H PHG P4|GP3|G
! (

( (

(P3|GP1|H diag(PHG(:))P4|GP2|H
!

(a) A (b) B

Figure 3. Schematic diagrams of the unfoldings A and B.

The factorization of A is very different from those of
B and C. First, in A, P2|H % P1|H is a matrix of size

3For formal definitions of tensor notations see §A8.

The following reshapings group the variables such that variables sharing a
latent factor are either in the rows, or in the columns:
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Theorem 1 The set of all quartet relations QT is
unique to a latent tree T , and furthermore, T can be
recovered from QT in polynomial time.

Quartet-based tree reconstruction. Motivated by
Theorem 1, a family of latent tree recovery algorithms
has been designed based on resolving quartet relations.
These algorithms first determine one of the 3 ways how
4 variables are connected, and then join together all
quartet relations to form a consistent latent tree. For a
model with d observed variables, there are O(d4) quar-
tet relations in total (taking all possible combinations
of 4 variables). However, we do not necessarily need
to resolve all these quartet relations in order to recon-
struct the latent tree. A small set of size O(d log d)
will suffice for the tree recovery, which makes quartet
based methods efficient even for problems with large
d (Pearl & Tarsi, 1986; Pearl, 1988). In this paper, we
design a new quartet based method. Our main con-
tribution compared to previous approaches is that our
method is agnostic to the number of hidden states, k,
which is usually unknown in practice.

3. Resolving Quartet Relations without
Having the Number of Hidden States

In this section, we develop a test for resolving the la-
tent relation of a quartet when the number of hidden
states is unknown. Our approach uses information
from the joint probability table of a quartet, which
is a 4th order tensor. Suppose the quartet relation of
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entries are specified by P(x1, x2, x3, x4) =
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This factorization suggests that there exist some low
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k × k × k with diagonal elements equal to 1. The mul-

tiplication ×i denotes a tensor-matrix multiplication
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the rows of the matrix, and 〈·, ·〉3 denotes tensor-tensor
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acterize the rank properties of P and then exploit them
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Now we consider 3 different reshapings A, B and C
of the tensor into matrices (“unfoldings”). These un-
foldings contain exactly the same entires as P but
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B and C. First, in A, P2|H % P1|H is a matrix of size

3For formal definitions of tensor notations see §A8.
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Unfoldings of the fourth order tensor

The following equations give the linear algebraic expressions for these
unfoldings:
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Theorem 1 The set of all quartet relations QT is
unique to a latent tree T , and furthermore, T can be
recovered from QT in polynomial time.

Quartet-based tree reconstruction. Motivated by
Theorem 1, a family of latent tree recovery algorithms
has been designed based on resolving quartet relations.
These algorithms first determine one of the 3 ways how
4 variables are connected, and then join together all
quartet relations to form a consistent latent tree. For a
model with d observed variables, there are O(d4) quar-
tet relations in total (taking all possible combinations
of 4 variables). However, we do not necessarily need
to resolve all these quartet relations in order to recon-
struct the latent tree. A small set of size O(d log d)
will suffice for the tree recovery, which makes quartet
based methods efficient even for problems with large
d (Pearl & Tarsi, 1986; Pearl, 1988). In this paper, we
design a new quartet based method. Our main con-
tribution compared to previous approaches is that our
method is agnostic to the number of hidden states, k,
which is usually unknown in practice.

3. Resolving Quartet Relations without
Having the Number of Hidden States

In this section, we develop a test for resolving the la-
tent relation of a quartet when the number of hidden
states is unknown. Our approach uses information
from the joint probability table of a quartet, which
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uct of two matrices M and M ′ is denoted as M ⊗ M ′,
and if they have the same number of columns, their
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The factorization of A is very different from those of
B and C. First, in A, P2|H % P1|H is a matrix of size

3For formal definitions of tensor notations see §A8.

Note that:
rank(A) = rank(PGH) = k
rank(B) = rank(C ) = nnz(PGH) (number of non-zero entries).

Thus, generally speaking, rank(A)� rank(B) = rank(C ).
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Nuclear norm proxy for rank

Instead of rank, use nuclear norm

‖M‖∗ =
n∑

i=1

σi (M)

where σi (M) is ith singular value. From Fazel et al. (2001): best convex
lower bound of the rank over the unit ball of matrices
M : ‖M‖F = σ1(M) ≤ 1.

Unfolding Latent Tree Structures using 4th Order Tensors

n2 × k, and the columns of P2|H interact only with
their corresponding columns in P1|H . However, in B,
P3|G ⊗ P1|H is a matrix of size n2 × k2, and every
column of P1|H interacts with every column of P3|G
respectively (similarly for C). Second, in A, the middle
factor PHG has size k × k, whereas in B, the entires of
PHG appear as the diagonal of a matrix of size k2 ×k2

(similarly for C). These differences result in different
rank properties of A, B and C which we will exploit
to discover the latent structure of a quartet.

3.2. Rank Properties of the Unfoldings

Given condition (A1) that all CPTs have full column
rank, the factorization of A, B and C in (5), (6) and (7)
respectively suggest that (see §A9 for more details)

rank(A) = rank(PHG) = k

≤ rank(B) = rank(C) = nnz(PHG), (8)

where nnz(·) denotes the number of nonzero elements.
We note that the equality is attained if and only if the
relationship between the hidden variables G and H is
deterministic, i.e., there is a single nonzero element
in each row and in each column of PHG. In this case,
the grouping of variables in a quartet can be arbitrary,
and we will not consider this case in the paper. More
specifically, we have

Theorem 3 Assume PHG has a few zero entries, then
k $ k2 ≈ nnz(PHG) and thus

rank(A) $ rank(B) = rank(C). (9)

The above theorem reveals a useful difference between
the correct grouping of variables and the two incor-
rect ones. Furthermore, this condition can be easily
verified: Given P we can check the rank of its ma-
trix representations A, B and C and thus discover the
latent structure of the quartet.

3.3. Nuclear Norm Relaxation

In practice, due to sampling noise, all three matri-
ces A, B and C would be full rank, so the rank
condition cannot be applied directly. To deal with
this, we relax the rank condition using nuclear norm
‖M‖∗ =

∑n
i=1 σi(M), which is the sum of all singular

values of an (n × n) matrix M . Instead of compar-
ing the ranks of A, B and C, we look for the matrix
with the smallest nuclear norm and declare the latent
structure corresponding to it. This simple quartet al-
gorithm is summarized in Algorithm 1.

Note that Algorithm 1 works even if the number of hid-
den states, k, is a priori unknown. This is an important
advantage over the idea of learning the structure based
on additive distance (Lake, 1994), where k is assumed
to be the same as the number of states, n, of the ob-
served variables, or over a recent approach based on

Algorithm 1 i∗ = Quartet(X1, X2, X3, X4)

1: Estimate P̂(X1, X2, X3, X4) from a set of
m i.i.d. samples {(xl

1, x
l
2, x

l
3, x

l
4)}m

l=1.

2: Unfold P̂ in three different ways into matrices Â,
B̂ and Ĉ, and compute their nuclear norms

a1 = ‖Â‖∗, a2 = ‖B̂‖∗ and a3 = ‖Ĉ‖∗.
3: Return i∗ = argmini∈{1,2,3} ai.

quartet test (Anandkumar et al., 2011), where k needs
to be specified in advance.

In our current context, nuclear norm has a few use-
ful properties. First, it is the tightest convex lower
bound of the rank of a matrix (Fazel et al., 2001).
This is why4 it is meaningful to compare nuclear
norms instead of ranks. Second, it is easy to com-
pute: a standard singular value decomposition will do
the job. Third, it is robust to estimate. The nu-
clear norm of a probability matrix Â based on sam-
ples is nicely concentrated around its population quan-
tity (Rosasco et al., 2010). Given a confidence level
1 − 2e−τ , an estimate based on m samples satisfies

|‖A‖∗ − ‖Â‖∗| =∣∣∣
∑

i
σi(A) −

∑
i
σi(Â)

∣∣∣ ≤ 2
√

2τ/
√

m. (10)

Fourth, the nuclear norm can be viewed as a measure
of dependence between two pairs of variables. For
instance, A corresponds to grouping {{1, 2}, {3, 4}},
and ‖A‖∗ measures the dependence between the com-
pound variables {X1, X2} and {X3, X4}. In the com-
munity of kernel methods, A is treated as a cross-
covariance operator between {X1, X2} and {X3, X4},
and its spectrum has been used to design various de-
pendence measures, such as Hilbert-Schmidt Indepen-
dence Criterion, which is the sum of squares of all sin-
gular values (Gretton et al., 2005a), and kernel con-
strained covariance, which only takes the largest singu-
lar value (Gretton et al., 2005b). Intuitively, our quar-
tet test says that: if we group the variables correctly,
then cross group dependence should be low, since the
groups are separated by two latent variables; however
if we group the variables incorrectly, then cross group
dependence should be high, since similar variables ex-
ist in the two groups.

4. Recovery Conditions and Finite
Sample Guarantee for Quartets

Since nuclear norm is just a convex lower bound of
the rank, there might be situations where the nuclear

4Note that A, B and C contain the same elements so
their Frobenius norms are the same, i.e., the 3 matrices are
equally “normalized”.
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Nuclear norm proxy for rank

Instead of rank, use nuclear norm

‖M‖∗ =
n∑

i=1

σi (M)

where σi (M) is ith singular value. From Fazel et al. (2001): best convex
lower bound of the rank over the unit ball of matrices
M : ‖M‖F = σ1(M) ≤ 1.
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n2 × k, and the columns of P2|H interact only with
their corresponding columns in P1|H . However, in B,
P3|G ⊗ P1|H is a matrix of size n2 × k2, and every
column of P1|H interacts with every column of P3|G
respectively (similarly for C). Second, in A, the middle
factor PHG has size k × k, whereas in B, the entires of
PHG appear as the diagonal of a matrix of size k2 ×k2

(similarly for C). These differences result in different
rank properties of A, B and C which we will exploit
to discover the latent structure of a quartet.

3.2. Rank Properties of the Unfoldings

Given condition (A1) that all CPTs have full column
rank, the factorization of A, B and C in (5), (6) and (7)
respectively suggest that (see §A9 for more details)

rank(A) = rank(PHG) = k

≤ rank(B) = rank(C) = nnz(PHG), (8)

where nnz(·) denotes the number of nonzero elements.
We note that the equality is attained if and only if the
relationship between the hidden variables G and H is
deterministic, i.e., there is a single nonzero element
in each row and in each column of PHG. In this case,
the grouping of variables in a quartet can be arbitrary,
and we will not consider this case in the paper. More
specifically, we have

Theorem 3 Assume PHG has a few zero entries, then
k $ k2 ≈ nnz(PHG) and thus

rank(A) $ rank(B) = rank(C). (9)

The above theorem reveals a useful difference between
the correct grouping of variables and the two incor-
rect ones. Furthermore, this condition can be easily
verified: Given P we can check the rank of its ma-
trix representations A, B and C and thus discover the
latent structure of the quartet.

3.3. Nuclear Norm Relaxation

In practice, due to sampling noise, all three matri-
ces A, B and C would be full rank, so the rank
condition cannot be applied directly. To deal with
this, we relax the rank condition using nuclear norm
‖M‖∗ =

∑n
i=1 σi(M), which is the sum of all singular

values of an (n × n) matrix M . Instead of compar-
ing the ranks of A, B and C, we look for the matrix
with the smallest nuclear norm and declare the latent
structure corresponding to it. This simple quartet al-
gorithm is summarized in Algorithm 1.

Note that Algorithm 1 works even if the number of hid-
den states, k, is a priori unknown. This is an important
advantage over the idea of learning the structure based
on additive distance (Lake, 1994), where k is assumed
to be the same as the number of states, n, of the ob-
served variables, or over a recent approach based on

Algorithm 1 i∗ = Quartet(X1, X2, X3, X4)

1: Estimate P̂(X1, X2, X3, X4) from a set of
m i.i.d. samples {(xl

1, x
l
2, x

l
3, x

l
4)}m

l=1.

2: Unfold P̂ in three different ways into matrices Â,
B̂ and Ĉ, and compute their nuclear norms

a1 = ‖Â‖∗, a2 = ‖B̂‖∗ and a3 = ‖Ĉ‖∗.
3: Return i∗ = argmini∈{1,2,3} ai.

quartet test (Anandkumar et al., 2011), where k needs
to be specified in advance.

In our current context, nuclear norm has a few use-
ful properties. First, it is the tightest convex lower
bound of the rank of a matrix (Fazel et al., 2001).
This is why4 it is meaningful to compare nuclear
norms instead of ranks. Second, it is easy to com-
pute: a standard singular value decomposition will do
the job. Third, it is robust to estimate. The nu-
clear norm of a probability matrix Â based on sam-
ples is nicely concentrated around its population quan-
tity (Rosasco et al., 2010). Given a confidence level
1 − 2e−τ , an estimate based on m samples satisfies

|‖A‖∗ − ‖Â‖∗| =∣∣∣
∑

i
σi(A) −

∑
i
σi(Â)

∣∣∣ ≤ 2
√

2τ/
√

m. (10)

Fourth, the nuclear norm can be viewed as a measure
of dependence between two pairs of variables. For
instance, A corresponds to grouping {{1, 2}, {3, 4}},
and ‖A‖∗ measures the dependence between the com-
pound variables {X1, X2} and {X3, X4}. In the com-
munity of kernel methods, A is treated as a cross-
covariance operator between {X1, X2} and {X3, X4},
and its spectrum has been used to design various de-
pendence measures, such as Hilbert-Schmidt Indepen-
dence Criterion, which is the sum of squares of all sin-
gular values (Gretton et al., 2005a), and kernel con-
strained covariance, which only takes the largest singu-
lar value (Gretton et al., 2005b). Intuitively, our quar-
tet test says that: if we group the variables correctly,
then cross group dependence should be low, since the
groups are separated by two latent variables; however
if we group the variables incorrectly, then cross group
dependence should be high, since similar variables ex-
ist in the two groups.

4. Recovery Conditions and Finite
Sample Guarantee for Quartets

Since nuclear norm is just a convex lower bound of
the rank, there might be situations where the nuclear

4Note that A, B and C contain the same elements so
their Frobenius norms are the same, i.e., the 3 matrices are
equally “normalized”.
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Dependence interpretation

Dependence interpretation:
A encodes the dependence between pair {1, 2} and pair {3, 4},
‖A‖∗ is the strength of this dependence
Given the graph structure, {1, 2} and {3, 4} are weakly dependent,
but {1, 3} and {2, 4} are strongly dependent.
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When is recovery possible?

Given that we use the proxy ‖M‖∗ for rank(M), when can we recover the
structure?

G ,H independent, and PGH = PGP>H . Then
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norm does not satisfy the same relation as the rank.
That is, it might happen that rank(A) ≤ rank(B) but
‖A‖∗ ≥ ‖B‖∗. Next, we present sufficient conditions
under which nuclear norm returns successful test.

When latent variables H and G are indepen-
dent, rank(PHG) = 1, since PHG = PHP"

G (P (h, g) =
P (h)P (g)). Let {{1, 2}, {3, 4}} be the correct quar-
tet relation. We can obtain simpler characterizations
of the 3 unfoldings of P(X1, X2, X3, X4), denoted as
A⊥, B⊥ and C⊥ respectively. Using Lemma 2 and the
independence of H and G (see appendix, (27)–(28)),

A⊥ = (P2|H $ P1|H) PHP"
G (P4|G $ P3|G)"

= P12(:) P34(:)
",

(11)

B⊥ = (P3|G ⊗ P1|H)(diag(PG) ⊗ diag(PH))(P4|G ⊗ P2|H)"

= P34 ⊗ P12,
(12)

and rank(A⊥) = 1 & rank(B⊥) which is consistent
with Theorem 3. Furthermore, since A⊥ has only one
nonzero singular value, we have ‖A⊥‖∗ = ‖A⊥‖F =
‖B⊥‖F ≤ ‖B⊥‖∗ (using ‖M‖F ≤ ‖M‖∗ for any matrix
M). Similarly, C⊥ = P43 ⊗ P12 and ‖A⊥‖∗ ≤ ‖C⊥‖∗.
Then we know for sure that the nuclear norm quartet
test will return the correct topology.

When latent variables H and G are not inde-
pendent, we treat it as perturbation ∆ away from the
independent case, i.e., P̃HG = PHP"

G + ∆. The size
of ∆ quantifies the strength of dependence between
H and G. Obviously, when ∆ is small, e.g., ∆ = 0,
we are back to the independence case and it is easy
to discover the correct quartet relation; when it is
large, e.g., ∆ = I − PHP"

G , H and G are determin-
istically related and the different groupings are indis-
tinguishable. The question is how large can ∆ be while
still allowing the nuclear norm quartet test to find the
correct latent relation.

First, from the definition of ∆, we have ∆1 = 0,
and ∆"1 = 0, where 1 and 0 are vectors of all ones
and all zeros. Thus, the perturbation ∆ does not
affect the marginal distributions PH and PG, since
P̃H = P̃HG1 = PHP"

G 1 + ∆1 = PH . Assuming
{{1, 2}, {3, 4}} is the correct quartet relation, ∆ does
not affect the pairwise marginal distribution P12 nei-
ther, since P12 = P1|H diag(PH)P"

2|H and the marginal
PH is the same before and after the perturbation. Sim-
ilar reasoning also applies to P34 = P3|G diag(PG)P"

4|G.

We define excessive dependence of the correct and in-
correct groupings as

θ := min{‖B⊥‖∗ − ‖A⊥‖∗, ‖C⊥‖∗ − ‖A⊥‖∗}.

It quantifies the changes in dependence when we
switch from incorrect groupings to the correct one (in

the case when H and G are independent). Note that
θ is measured only from pairwise marginals (11)-(12),
P12 and P34. Using matrix perturbation analysis we
can show that (see appendix §11 for proof)

Lemma 4 If ‖∆‖F ≤ θ
k2+k , the minimum of ‖A‖∗,

‖B‖∗ and ‖C‖∗ will reveal the correct quartet relation.

Thus, if the excessive dependence θ is large compared
to the number of hidden states, the size of the al-
lowable perturbation can be correspondingly larger.
In other words, if the dependence between variables
within the same group is strong enough compared to
the dependence across groups, we allow for larger ∆
and stronger dependence between hidden variables H
and G (which is closer to the indistinguishable case).
It is difficult to directly compare our recovery con-
ditions with previous work, since we are addressing
the more difficult case where latent state k is un-
known. Our recovery condition constrains the corre-
lation between hidden variables based on observable
quantity θ and the number of latent states k, while
those of Anandkumar et al. (2011) assume the unob-
served correlation ρ between latent variables is given.

Last, under the recovery condition in Lemma 4, and
given m i.i.d. observations, we can obtain the following
guarantee for the quartet test (see appendix, §14 for
proof). Let α = min {‖B‖∗ − ‖A‖∗, ‖C‖∗ − ‖A‖∗}.

Lemma 5 With probability 1−8e− 1
32 mα2

, Algorithm 1
returns the correct quartet relation.

5. Building Latent Tree from Quartets

We can use the resolved quartet relations (Algo-
rithm 1) to discover the structure of the entire
tree via an incremental divide-and-conquer algo-
rithm (Pearl & Tarsi, 1986; Pearl, 1988), summarized
in Algorithm 2 (further details in appendix §10). Join-
ing variable Xi+1 to the current tree of i leaves can be
done with O(log i) tests. This amounts to performing
O(d log d) quartet tests for building an entire tree of d
leaves, which is efficient even if d is large. Moreover,
this algorithm is consistent (Pearl & Tarsi, 1986).

Tree recovery conditions and guarantees. When
a quartet is taken from a latent tree, each edge of
the quartet corresponds to a path in the tree in-
volving a chain of variables (Fig. 2(a)). We need to
bound the perturbation to each single edge of the
tree such that joint path perturbations satisfy edge
perturbation conditions from Lemma 4. For a quar-
tet q = {{i1, i2}, {i3, i4}} corresponding to a single
edge between H and G, denote the excessive depen-
dence by θq. By adding perturbation ∆q of size

smaller than
θq

k2+k to PHP"
G we can still correctly

hence rank(A⊥) = 1� rank(B⊥).
G = H (deterministic relation), then indeterminate.
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Conditions for quartet recovery

Define

θ := min {‖B⊥‖∗ − ‖A⊥‖∗ , ‖C⊥‖∗ − ‖A⊥‖∗}
∆ := PGH − PGP>H
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norm does not satisfy the same relation as the rank.
That is, it might happen that rank(A) ≤ rank(B) but
‖A‖∗ ≥ ‖B‖∗. Next, we present sufficient conditions
under which nuclear norm returns successful test.

When latent variables H and G are indepen-
dent, rank(PHG) = 1, since PHG = PHP"

G (P (h, g) =
P (h)P (g)). Let {{1, 2}, {3, 4}} be the correct quar-
tet relation. We can obtain simpler characterizations
of the 3 unfoldings of P(X1, X2, X3, X4), denoted as
A⊥, B⊥ and C⊥ respectively. Using Lemma 2 and the
independence of H and G (see appendix, (27)–(28)),

A⊥ = (P2|H $ P1|H) PHP"
G (P4|G $ P3|G)"

= P12(:) P34(:)
",

(11)

B⊥ = (P3|G ⊗ P1|H)(diag(PG) ⊗ diag(PH))(P4|G ⊗ P2|H)"

= P34 ⊗ P12,
(12)

and rank(A⊥) = 1 & rank(B⊥) which is consistent
with Theorem 3. Furthermore, since A⊥ has only one
nonzero singular value, we have ‖A⊥‖∗ = ‖A⊥‖F =
‖B⊥‖F ≤ ‖B⊥‖∗ (using ‖M‖F ≤ ‖M‖∗ for any matrix
M). Similarly, C⊥ = P43 ⊗ P12 and ‖A⊥‖∗ ≤ ‖C⊥‖∗.
Then we know for sure that the nuclear norm quartet
test will return the correct topology.

When latent variables H and G are not inde-
pendent, we treat it as perturbation ∆ away from the
independent case, i.e., P̃HG = PHP"

G + ∆. The size
of ∆ quantifies the strength of dependence between
H and G. Obviously, when ∆ is small, e.g., ∆ = 0,
we are back to the independence case and it is easy
to discover the correct quartet relation; when it is
large, e.g., ∆ = I − PHP"

G , H and G are determin-
istically related and the different groupings are indis-
tinguishable. The question is how large can ∆ be while
still allowing the nuclear norm quartet test to find the
correct latent relation.

First, from the definition of ∆, we have ∆1 = 0,
and ∆"1 = 0, where 1 and 0 are vectors of all ones
and all zeros. Thus, the perturbation ∆ does not
affect the marginal distributions PH and PG, since
P̃H = P̃HG1 = PHP"

G 1 + ∆1 = PH . Assuming
{{1, 2}, {3, 4}} is the correct quartet relation, ∆ does
not affect the pairwise marginal distribution P12 nei-
ther, since P12 = P1|H diag(PH)P"

2|H and the marginal
PH is the same before and after the perturbation. Sim-
ilar reasoning also applies to P34 = P3|G diag(PG)P"

4|G.

We define excessive dependence of the correct and in-
correct groupings as

θ := min{‖B⊥‖∗ − ‖A⊥‖∗, ‖C⊥‖∗ − ‖A⊥‖∗}.

It quantifies the changes in dependence when we
switch from incorrect groupings to the correct one (in

the case when H and G are independent). Note that
θ is measured only from pairwise marginals (11)-(12),
P12 and P34. Using matrix perturbation analysis we
can show that (see appendix §11 for proof)

Lemma 4 If ‖∆‖F ≤ θ
k2+k , the minimum of ‖A‖∗,

‖B‖∗ and ‖C‖∗ will reveal the correct quartet relation.

Thus, if the excessive dependence θ is large compared
to the number of hidden states, the size of the al-
lowable perturbation can be correspondingly larger.
In other words, if the dependence between variables
within the same group is strong enough compared to
the dependence across groups, we allow for larger ∆
and stronger dependence between hidden variables H
and G (which is closer to the indistinguishable case).
It is difficult to directly compare our recovery con-
ditions with previous work, since we are addressing
the more difficult case where latent state k is un-
known. Our recovery condition constrains the corre-
lation between hidden variables based on observable
quantity θ and the number of latent states k, while
those of Anandkumar et al. (2011) assume the unob-
served correlation ρ between latent variables is given.

Last, under the recovery condition in Lemma 4, and
given m i.i.d. observations, we can obtain the following
guarantee for the quartet test (see appendix, §14 for
proof). Let α = min {‖B‖∗ − ‖A‖∗, ‖C‖∗ − ‖A‖∗}.

Lemma 5 With probability 1−8e− 1
32 mα2

, Algorithm 1
returns the correct quartet relation.

5. Building Latent Tree from Quartets

We can use the resolved quartet relations (Algo-
rithm 1) to discover the structure of the entire
tree via an incremental divide-and-conquer algo-
rithm (Pearl & Tarsi, 1986; Pearl, 1988), summarized
in Algorithm 2 (further details in appendix §10). Join-
ing variable Xi+1 to the current tree of i leaves can be
done with O(log i) tests. This amounts to performing
O(d log d) quartet tests for building an entire tree of d
leaves, which is efficient even if d is large. Moreover,
this algorithm is consistent (Pearl & Tarsi, 1986).

Tree recovery conditions and guarantees. When
a quartet is taken from a latent tree, each edge of
the quartet corresponds to a path in the tree in-
volving a chain of variables (Fig. 2(a)). We need to
bound the perturbation to each single edge of the
tree such that joint path perturbations satisfy edge
perturbation conditions from Lemma 4. For a quar-
tet q = {{i1, i2}, {i3, i4}} corresponding to a single
edge between H and G, denote the excessive depen-
dence by θq. By adding perturbation ∆q of size

smaller than
θq

k2+k to PHP"
G we can still correctly

When we compute probabilty tables from m observations, and defining
α = min {‖B‖∗ − ‖A‖∗ , ‖C‖∗ − ‖A‖∗}
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norm does not satisfy the same relation as the rank.
That is, it might happen that rank(A) ≤ rank(B) but
‖A‖∗ ≥ ‖B‖∗. Next, we present sufficient conditions
under which nuclear norm returns successful test.

When latent variables H and G are indepen-
dent, rank(PHG) = 1, since PHG = PHP"

G (P (h, g) =
P (h)P (g)). Let {{1, 2}, {3, 4}} be the correct quar-
tet relation. We can obtain simpler characterizations
of the 3 unfoldings of P(X1, X2, X3, X4), denoted as
A⊥, B⊥ and C⊥ respectively. Using Lemma 2 and the
independence of H and G (see appendix, (27)–(28)),

A⊥ = (P2|H $ P1|H) PHP"
G (P4|G $ P3|G)"

= P12(:) P34(:)
",

(11)

B⊥ = (P3|G ⊗ P1|H)(diag(PG) ⊗ diag(PH))(P4|G ⊗ P2|H)"

= P34 ⊗ P12,
(12)

and rank(A⊥) = 1 & rank(B⊥) which is consistent
with Theorem 3. Furthermore, since A⊥ has only one
nonzero singular value, we have ‖A⊥‖∗ = ‖A⊥‖F =
‖B⊥‖F ≤ ‖B⊥‖∗ (using ‖M‖F ≤ ‖M‖∗ for any matrix
M). Similarly, C⊥ = P43 ⊗ P12 and ‖A⊥‖∗ ≤ ‖C⊥‖∗.
Then we know for sure that the nuclear norm quartet
test will return the correct topology.

When latent variables H and G are not inde-
pendent, we treat it as perturbation ∆ away from the
independent case, i.e., P̃HG = PHP"

G + ∆. The size
of ∆ quantifies the strength of dependence between
H and G. Obviously, when ∆ is small, e.g., ∆ = 0,
we are back to the independence case and it is easy
to discover the correct quartet relation; when it is
large, e.g., ∆ = I − PHP"

G , H and G are determin-
istically related and the different groupings are indis-
tinguishable. The question is how large can ∆ be while
still allowing the nuclear norm quartet test to find the
correct latent relation.

First, from the definition of ∆, we have ∆1 = 0,
and ∆"1 = 0, where 1 and 0 are vectors of all ones
and all zeros. Thus, the perturbation ∆ does not
affect the marginal distributions PH and PG, since
P̃H = P̃HG1 = PHP"

G 1 + ∆1 = PH . Assuming
{{1, 2}, {3, 4}} is the correct quartet relation, ∆ does
not affect the pairwise marginal distribution P12 nei-
ther, since P12 = P1|H diag(PH)P"

2|H and the marginal
PH is the same before and after the perturbation. Sim-
ilar reasoning also applies to P34 = P3|G diag(PG)P"

4|G.

We define excessive dependence of the correct and in-
correct groupings as

θ := min{‖B⊥‖∗ − ‖A⊥‖∗, ‖C⊥‖∗ − ‖A⊥‖∗}.

It quantifies the changes in dependence when we
switch from incorrect groupings to the correct one (in

the case when H and G are independent). Note that
θ is measured only from pairwise marginals (11)-(12),
P12 and P34. Using matrix perturbation analysis we
can show that (see appendix §11 for proof)

Lemma 4 If ‖∆‖F ≤ θ
k2+k , the minimum of ‖A‖∗,

‖B‖∗ and ‖C‖∗ will reveal the correct quartet relation.

Thus, if the excessive dependence θ is large compared
to the number of hidden states, the size of the al-
lowable perturbation can be correspondingly larger.
In other words, if the dependence between variables
within the same group is strong enough compared to
the dependence across groups, we allow for larger ∆
and stronger dependence between hidden variables H
and G (which is closer to the indistinguishable case).
It is difficult to directly compare our recovery con-
ditions with previous work, since we are addressing
the more difficult case where latent state k is un-
known. Our recovery condition constrains the corre-
lation between hidden variables based on observable
quantity θ and the number of latent states k, while
those of Anandkumar et al. (2011) assume the unob-
served correlation ρ between latent variables is given.

Last, under the recovery condition in Lemma 4, and
given m i.i.d. observations, we can obtain the following
guarantee for the quartet test (see appendix, §14 for
proof). Let α = min {‖B‖∗ − ‖A‖∗, ‖C‖∗ − ‖A‖∗}.

Lemma 5 With probability 1−8e− 1
32 mα2

, Algorithm 1
returns the correct quartet relation.

5. Building Latent Tree from Quartets

We can use the resolved quartet relations (Algo-
rithm 1) to discover the structure of the entire
tree via an incremental divide-and-conquer algo-
rithm (Pearl & Tarsi, 1986; Pearl, 1988), summarized
in Algorithm 2 (further details in appendix §10). Join-
ing variable Xi+1 to the current tree of i leaves can be
done with O(log i) tests. This amounts to performing
O(d log d) quartet tests for building an entire tree of d
leaves, which is efficient even if d is large. Moreover,
this algorithm is consistent (Pearl & Tarsi, 1986).

Tree recovery conditions and guarantees. When
a quartet is taken from a latent tree, each edge of
the quartet corresponds to a path in the tree in-
volving a chain of variables (Fig. 2(a)). We need to
bound the perturbation to each single edge of the
tree such that joint path perturbations satisfy edge
perturbation conditions from Lemma 4. For a quar-
tet q = {{i1, i2}, {i3, i4}} corresponding to a single
edge between H and G, denote the excessive depen-
dence by θq. By adding perturbation ∆q of size

smaller than
θq

k2+k to PHP"
G we can still correctly
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Conditions for quartet recovery

Define

θ := min {‖B⊥‖∗ − ‖A⊥‖∗ , ‖C⊥‖∗ − ‖A⊥‖∗}
∆ := PGH − PGP>H
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norm does not satisfy the same relation as the rank.
That is, it might happen that rank(A) ≤ rank(B) but
‖A‖∗ ≥ ‖B‖∗. Next, we present sufficient conditions
under which nuclear norm returns successful test.

When latent variables H and G are indepen-
dent, rank(PHG) = 1, since PHG = PHP"

G (P (h, g) =
P (h)P (g)). Let {{1, 2}, {3, 4}} be the correct quar-
tet relation. We can obtain simpler characterizations
of the 3 unfoldings of P(X1, X2, X3, X4), denoted as
A⊥, B⊥ and C⊥ respectively. Using Lemma 2 and the
independence of H and G (see appendix, (27)–(28)),

A⊥ = (P2|H $ P1|H) PHP"
G (P4|G $ P3|G)"

= P12(:) P34(:)
",

(11)

B⊥ = (P3|G ⊗ P1|H)(diag(PG) ⊗ diag(PH))(P4|G ⊗ P2|H)"

= P34 ⊗ P12,
(12)

and rank(A⊥) = 1 & rank(B⊥) which is consistent
with Theorem 3. Furthermore, since A⊥ has only one
nonzero singular value, we have ‖A⊥‖∗ = ‖A⊥‖F =
‖B⊥‖F ≤ ‖B⊥‖∗ (using ‖M‖F ≤ ‖M‖∗ for any matrix
M). Similarly, C⊥ = P43 ⊗ P12 and ‖A⊥‖∗ ≤ ‖C⊥‖∗.
Then we know for sure that the nuclear norm quartet
test will return the correct topology.

When latent variables H and G are not inde-
pendent, we treat it as perturbation ∆ away from the
independent case, i.e., P̃HG = PHP"

G + ∆. The size
of ∆ quantifies the strength of dependence between
H and G. Obviously, when ∆ is small, e.g., ∆ = 0,
we are back to the independence case and it is easy
to discover the correct quartet relation; when it is
large, e.g., ∆ = I − PHP"

G , H and G are determin-
istically related and the different groupings are indis-
tinguishable. The question is how large can ∆ be while
still allowing the nuclear norm quartet test to find the
correct latent relation.

First, from the definition of ∆, we have ∆1 = 0,
and ∆"1 = 0, where 1 and 0 are vectors of all ones
and all zeros. Thus, the perturbation ∆ does not
affect the marginal distributions PH and PG, since
P̃H = P̃HG1 = PHP"

G 1 + ∆1 = PH . Assuming
{{1, 2}, {3, 4}} is the correct quartet relation, ∆ does
not affect the pairwise marginal distribution P12 nei-
ther, since P12 = P1|H diag(PH)P"

2|H and the marginal
PH is the same before and after the perturbation. Sim-
ilar reasoning also applies to P34 = P3|G diag(PG)P"

4|G.

We define excessive dependence of the correct and in-
correct groupings as

θ := min{‖B⊥‖∗ − ‖A⊥‖∗, ‖C⊥‖∗ − ‖A⊥‖∗}.

It quantifies the changes in dependence when we
switch from incorrect groupings to the correct one (in

the case when H and G are independent). Note that
θ is measured only from pairwise marginals (11)-(12),
P12 and P34. Using matrix perturbation analysis we
can show that (see appendix §11 for proof)

Lemma 4 If ‖∆‖F ≤ θ
k2+k , the minimum of ‖A‖∗,

‖B‖∗ and ‖C‖∗ will reveal the correct quartet relation.

Thus, if the excessive dependence θ is large compared
to the number of hidden states, the size of the al-
lowable perturbation can be correspondingly larger.
In other words, if the dependence between variables
within the same group is strong enough compared to
the dependence across groups, we allow for larger ∆
and stronger dependence between hidden variables H
and G (which is closer to the indistinguishable case).
It is difficult to directly compare our recovery con-
ditions with previous work, since we are addressing
the more difficult case where latent state k is un-
known. Our recovery condition constrains the corre-
lation between hidden variables based on observable
quantity θ and the number of latent states k, while
those of Anandkumar et al. (2011) assume the unob-
served correlation ρ between latent variables is given.

Last, under the recovery condition in Lemma 4, and
given m i.i.d. observations, we can obtain the following
guarantee for the quartet test (see appendix, §14 for
proof). Let α = min {‖B‖∗ − ‖A‖∗, ‖C‖∗ − ‖A‖∗}.

Lemma 5 With probability 1−8e− 1
32 mα2

, Algorithm 1
returns the correct quartet relation.

5. Building Latent Tree from Quartets

We can use the resolved quartet relations (Algo-
rithm 1) to discover the structure of the entire
tree via an incremental divide-and-conquer algo-
rithm (Pearl & Tarsi, 1986; Pearl, 1988), summarized
in Algorithm 2 (further details in appendix §10). Join-
ing variable Xi+1 to the current tree of i leaves can be
done with O(log i) tests. This amounts to performing
O(d log d) quartet tests for building an entire tree of d
leaves, which is efficient even if d is large. Moreover,
this algorithm is consistent (Pearl & Tarsi, 1986).

Tree recovery conditions and guarantees. When
a quartet is taken from a latent tree, each edge of
the quartet corresponds to a path in the tree in-
volving a chain of variables (Fig. 2(a)). We need to
bound the perturbation to each single edge of the
tree such that joint path perturbations satisfy edge
perturbation conditions from Lemma 4. For a quar-
tet q = {{i1, i2}, {i3, i4}} corresponding to a single
edge between H and G, denote the excessive depen-
dence by θq. By adding perturbation ∆q of size

smaller than
θq

k2+k to PHP"
G we can still correctly

When we compute probabilty tables from m observations, and defining
α = min {‖B‖∗ − ‖A‖∗ , ‖C‖∗ − ‖A‖∗}
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norm does not satisfy the same relation as the rank.
That is, it might happen that rank(A) ≤ rank(B) but
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of the 3 unfoldings of P(X1, X2, X3, X4), denoted as
A⊥, B⊥ and C⊥ respectively. Using Lemma 2 and the
independence of H and G (see appendix, (27)–(28)),

A⊥ = (P2|H $ P1|H) PHP"
G (P4|G $ P3|G)"

= P12(:) P34(:)
",

(11)

B⊥ = (P3|G ⊗ P1|H)(diag(PG) ⊗ diag(PH))(P4|G ⊗ P2|H)"

= P34 ⊗ P12,
(12)

and rank(A⊥) = 1 & rank(B⊥) which is consistent
with Theorem 3. Furthermore, since A⊥ has only one
nonzero singular value, we have ‖A⊥‖∗ = ‖A⊥‖F =
‖B⊥‖F ≤ ‖B⊥‖∗ (using ‖M‖F ≤ ‖M‖∗ for any matrix
M). Similarly, C⊥ = P43 ⊗ P12 and ‖A⊥‖∗ ≤ ‖C⊥‖∗.
Then we know for sure that the nuclear norm quartet
test will return the correct topology.

When latent variables H and G are not inde-
pendent, we treat it as perturbation ∆ away from the
independent case, i.e., P̃HG = PHP"

G + ∆. The size
of ∆ quantifies the strength of dependence between
H and G. Obviously, when ∆ is small, e.g., ∆ = 0,
we are back to the independence case and it is easy
to discover the correct quartet relation; when it is
large, e.g., ∆ = I − PHP"

G , H and G are determin-
istically related and the different groupings are indis-
tinguishable. The question is how large can ∆ be while
still allowing the nuclear norm quartet test to find the
correct latent relation.

First, from the definition of ∆, we have ∆1 = 0,
and ∆"1 = 0, where 1 and 0 are vectors of all ones
and all zeros. Thus, the perturbation ∆ does not
affect the marginal distributions PH and PG, since
P̃H = P̃HG1 = PHP"

G 1 + ∆1 = PH . Assuming
{{1, 2}, {3, 4}} is the correct quartet relation, ∆ does
not affect the pairwise marginal distribution P12 nei-
ther, since P12 = P1|H diag(PH)P"

2|H and the marginal
PH is the same before and after the perturbation. Sim-
ilar reasoning also applies to P34 = P3|G diag(PG)P"

4|G.

We define excessive dependence of the correct and in-
correct groupings as

θ := min{‖B⊥‖∗ − ‖A⊥‖∗, ‖C⊥‖∗ − ‖A⊥‖∗}.

It quantifies the changes in dependence when we
switch from incorrect groupings to the correct one (in

the case when H and G are independent). Note that
θ is measured only from pairwise marginals (11)-(12),
P12 and P34. Using matrix perturbation analysis we
can show that (see appendix §11 for proof)

Lemma 4 If ‖∆‖F ≤ θ
k2+k , the minimum of ‖A‖∗,

‖B‖∗ and ‖C‖∗ will reveal the correct quartet relation.

Thus, if the excessive dependence θ is large compared
to the number of hidden states, the size of the al-
lowable perturbation can be correspondingly larger.
In other words, if the dependence between variables
within the same group is strong enough compared to
the dependence across groups, we allow for larger ∆
and stronger dependence between hidden variables H
and G (which is closer to the indistinguishable case).
It is difficult to directly compare our recovery con-
ditions with previous work, since we are addressing
the more difficult case where latent state k is un-
known. Our recovery condition constrains the corre-
lation between hidden variables based on observable
quantity θ and the number of latent states k, while
those of Anandkumar et al. (2011) assume the unob-
served correlation ρ between latent variables is given.

Last, under the recovery condition in Lemma 4, and
given m i.i.d. observations, we can obtain the following
guarantee for the quartet test (see appendix, §14 for
proof). Let α = min {‖B‖∗ − ‖A‖∗, ‖C‖∗ − ‖A‖∗}.

Lemma 5 With probability 1−8e− 1
32 mα2

, Algorithm 1
returns the correct quartet relation.

5. Building Latent Tree from Quartets

We can use the resolved quartet relations (Algo-
rithm 1) to discover the structure of the entire
tree via an incremental divide-and-conquer algo-
rithm (Pearl & Tarsi, 1986; Pearl, 1988), summarized
in Algorithm 2 (further details in appendix §10). Join-
ing variable Xi+1 to the current tree of i leaves can be
done with O(log i) tests. This amounts to performing
O(d log d) quartet tests for building an entire tree of d
leaves, which is efficient even if d is large. Moreover,
this algorithm is consistent (Pearl & Tarsi, 1986).

Tree recovery conditions and guarantees. When
a quartet is taken from a latent tree, each edge of
the quartet corresponds to a path in the tree in-
volving a chain of variables (Fig. 2(a)). We need to
bound the perturbation to each single edge of the
tree such that joint path perturbations satisfy edge
perturbation conditions from Lemma 4. For a quar-
tet q = {{i1, i2}, {i3, i4}} corresponding to a single
edge between H and G, denote the excessive depen-
dence by θq. By adding perturbation ∆q of size

smaller than
θq

k2+k to PHP"
G we can still correctly
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Tree recovery algorithm

The quartet test may be used to recover trees:
Unfolding Latent Tree Structures using 4th Order Tensors

Algorithm 2 T = BuildTree(X1, . . . , Xd)

1: Connect any 4 variables X1, X2, X3, X4 with 2
latent variables in a tree T using Algorithm 1.

2: for i = 4, 5, . . . , d−1 do {insert (i+1)-th leaf Xi+1}
3: Choose root R that splits T into sub-trees

T1, T2, T3 of roughly equal size.
4: Choose any triplet (Xi1 , Xi2 , Xi3) of leaves from

different sub-trees.
5: Test which sub-tree should Xi+1 be joined to:

i∗ ← Quartet(Xi+1, Xi1 , Xi2 , Xi3).
6: Repeat recursively from step 3 with T := Ti∗ .

This will eventually reduce to a tree with a single
leaf. Join Xi+1 to it via hidden variable.

7: end for

recover q. Let θmin := minquartet q θq. If we re-
quire ‖∆q‖F ≤ θmin

k2+k , all such quartet relations will
be recovered successfully. If we further restrict the
size of the perturbation by the smallest value in a
marginal probability distribution of a hidden variable,
γmin := minhidden node H mini=1...k PH(i), we can guar-
antee that all quartet relations corresponding to a path
between H and G can also be successfully recovered by
the nuclear norm test (see appendix §12). The intu-
itive interpretation of γmin is that if a hidden state
rarely occurs (small probability), samples for the ob-
served variables contain very little information about
the hidden variable. It becomes harder to identify the
latent structure in this case and hence smaller pertur-
bation away from independence is allowed. Therefore,
we assume that (A3) ‖∆q‖F ≤ min{ θmin

k2+k , γmin} for
all quartets q in a tree.

Theorem 6 Given condition (A1)–(A3) and poplu-
ation quantities, algorithm 2 returns the correct tree
topology.

The recovery conditions guarantee that all quartet re-
lations can be resolved correctly and simultaneously.
Then a consistent algorithm using a subset of the quar-
tet relations should return the correct tree structure.
We note that condition (A2) could be relaxed to allow
hidden variables to have more than 3 neighbors. In this
case, instead of using the minimum of the the nuclear
norm of A, B and C for quartet tests, we may need to
consider their differences, e.g., ‖A‖∗ −‖B‖∗, to decide
whether to join the observed variables with one or with
two variables, as in Anandkumar et al. (2011). This
is left as our future work. Last, given m i.i.d. sam-
ples, we have the following statistical guarantee for
the Algorithm 2 (see appendix, §15 for proof). Let
αmin := minquartet q αq, and a constant c,

Theorem 7 Given condition (A1)–(A3) and m
samples, Algorithm 2 recovers the correct tree topol-
ogy, with probability 1 − 8 · c · d log d · e− 1

32 mα2
min .

We note that the conditions needed for our re-
sults are stronger than those used by previous work
(Anandkumar et al. (2011)). This is partly due to
the fact that our method deals with a more difficult
case where we do not know the number of hidden
states. Another reason is that our analysis relies on
the simple reconstruction algorithm by Pearl & Tarsi
(1986). There are better quartet based algorithms for
building latent trees with stronger statistical guaran-
tees, e.g. Erdös et al. (1999). We can adapt our nu-
clear norm based quartet test to those algorithm as
well. However, this is not the main focus of the paper.
We choose the divide-and-conquer algorithm due to its
simplicity, ease of analysis and it illustrates well how
our quartet recovery guarantee can be translated into
a guarantee for latent tree reconstruction.

6. Experiments

We compared our algorithm with the neighbor-
joining algorithm (NJ) (Saitou & Nei, 1987), a quar-
tet based algorithm of Anandkumar et al. (2011)
(Spectral@k), the Chow-Liu neighbor Joining algo-
rithm (CLNJ) (Choi et al., 2011), and an algorithm
of Harmeling & Williams (2010) (HW).

NJ proceeds by recursively joining two variables that
are closest according to an additive distance defined as
dij = 1

2 log det diag Pi−log | detPij |+ 1
2 log det diag Pj ,

where “det” denotes determinant, “diag” is a diago-
nalization operator, Pij denotes the joint probability
table P (Xi, Xj), and Pi and Pj the probability vector
P (Xi) and P (Xj) respectively (Lake, 1994). When
Pij has rank k < n, log | detPij | is not defined, NJ can
perform poorly. Spectral@k uses singular values of
Pij to design a quartet test (Anandkumar et al.,
2011). For instance, if the true quartet configu-
ration is {{1, 2}, {3, 4}} as in Fig. 2(b), then the

quartet needs to satisfy
∏k

s=1 σs(P12)σs(P34) >

max{∏k
s=1 σs(P13)σs(P24),

∏k
s=1 σs(P14)σs(P23)}.

Based on this relation, a confidence interval based
quartet test is designed and used as a subroutine for a
tree reconstruction algorithm. Spectral@k can handle
cases with k < n, but still requires k as an input. We
will show in later experiments that its performance
is sensitive to the choice of k. CLNJ first applies
Chow-Liu algorithm (Chow & Liu, 1968) to obtain
a fully observed tree and then proceeds by adding
latent variables using neighbor joining algorithm. The
HW algorithm is a greedy algorithm to learn binary
trees by iteratively joining two nodes with a high
mutual information. The number of hidden states is
automatically determined in the HW algorithm and
can be different for different latent variables.
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