Unfolding latent tree structures using 4th order tensors

Ishteva, Park, Song

Arthur Gretton's notes

June 7, 2013

Problem setup

We are given:

- d observed (leaf) variables with n states each,
- hidden variables of k (unknown) states each (k can be different for different hidden variables: notational convenience)
- an assumed binary tree: each hidden variable has exactly two children.

Goal: recover the tree.

First step: four leaves, two latent variables

How do we connect four leaves, $x_{1}, x_{2}, x_{3}, x_{4}$, with two latent variables, g, h ?
Assume the true structure is:

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{g, h} P\left(x_{1} \mid h\right) P\left(x_{2} \mid h\right) P(g, h) P\left(x_{3} \mid g\right) P\left(x_{4} \mid g\right)
$$

The joint probability can be concisely written

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\langle\mathcal{T}_{1}, \mathcal{T}_{2}\right\rangle_{3}
$$

where

$$
\begin{aligned}
& \mathcal{T}_{1}=\mathcal{I} \times{ }_{1} P_{1 \mid H} \times{ }_{2} P_{2 \mid H} \\
& \mathcal{T}_{2}=\mathcal{I} \times{ }_{1} P_{3 \mid G} \times{ }_{2} P_{4 \mid G} \times{ }_{3} P_{H G}
\end{aligned}
$$

and \mathcal{I} is the unit 3-tensor (size $k \times k \times k$).

Joint probability table is 4th order tensor

There are three possibilities:

(b) $\{\{1,2\},\{3,4\}\}$

$\{\{1,3\},\{2,4\}\}$

$\{\{1,4\},\{2,3\}\}$

The following reshapings group the variables such that variables sharing a latent factor are either in the rows, or in the columns:
$A=\operatorname{reshape}\left(\mathcal{P}, n^{2}, n^{2}\right)$;
$B=\operatorname{reshape}\left(\operatorname{permute}(\mathcal{P},[1,3,2,4]), n^{2}, n^{2}\right)$;
$C=\operatorname{reshape}\left(\right.$ permute $\left.(\mathcal{P},[1,4,2,3]), n^{2}, n^{2}\right)$.

Unfoldings of the fourth order tensor

The following equations give the linear algebraic expressions for these unfoldings:

Note that:

- $\operatorname{rank}(A)=\operatorname{rank}\left(P_{G H}\right)=k$
- $\operatorname{rank}(B)=\operatorname{rank}(C)=n n z\left(P_{G H}\right)$ (number of non-zero entries).

Thus, generally speaking, $\operatorname{rank}(A) \ll \operatorname{rank}(B)=\operatorname{rank}(C)$.

Nuclear norm proxy for rank

Instead of rank, use nuclear norm

$$
\|M\|_{*}=\sum_{i=1}^{n} \sigma_{i}(M)
$$

where $\sigma_{i}(M)$ is i th singular value. From Fazel et al. (2001): best convex lower bound of the rank over the unit ball of matrices $M:\|M\|_{F}=\sigma_{1}(M) \leq 1$.

Nuclear norm proxy for rank

Instead of rank, use nuclear norm

$$
\|M\|_{*}=\sum_{i=1}^{n} \sigma_{i}(M)
$$

where $\sigma_{i}(M)$ is i th singular value. From Fazel et al. (2001): best convex lower bound of the rank over the unit ball of matrices $M:\|M\|_{F}=\sigma_{1}(M) \leq 1$.

[^0]
Dependence interpretation

Dependence interpretation:

- A encodes the dependence between pair $\{1,2\}$ and pair $\{3,4\}$,
- $\|A\|_{*}$ is the strength of this dependence
- Given the graph structure, $\{1,2\}$ and $\{3,4\}$ are weakly dependent, but $\{1,3\}$ and $\{2,4\}$ are strongly dependent.

When is recovery possible?

Given that we use the proxy $\|M\|_{*}$ for $\operatorname{rank}(M)$, when can we recover the structure?

- G, H independent, and $P_{G H}=P_{G} P_{H}^{\top}$. Then

$$
\begin{align*}
A_{\perp} & =\left(P_{2 \mid H} \odot P_{1 \mid H}\right) P_{H} P_{G}^{\top}\left(P_{4 \mid G} \odot P_{3 \mid G}\right)^{\top} \tag{11}\\
& =P_{12}(:) P_{34}(:)^{\top}, \\
B_{\perp}= & \left(P_{3 \mid G} \otimes P_{1 \mid H}\right)\left(\operatorname{diag}\left(P_{G}\right) \otimes \operatorname{diag}\left(P_{H}\right)\right)\left(P_{4 \mid G} \otimes P_{2 \mid H}\right)^{\top} \\
= & P_{34} \otimes P_{12}, \tag{12}
\end{align*}
$$

hence $\operatorname{rank}\left(A_{\perp}\right)=1 \ll \operatorname{rank}\left(B_{\perp}\right)$.

- $G=H$ (deterministic relation), then indeterminate.

Conditions for quartet recovery

Define

$$
\begin{aligned}
\theta & :=\min \left\{\left\|B_{\perp}\right\|_{*}-\left\|A_{\perp}\right\|_{*},\left\|C_{\perp}\right\|_{*}-\left\|A_{\perp}\right\|_{*}\right\} \\
\Delta & :=P_{G H}-P_{G} P_{H}^{\top}
\end{aligned}
$$

Lemma 4 If $\|\Delta\|_{F} \leq \frac{\theta}{k^{2}+k}$, the minimum of $\|A\|_{*}$, $\|B\|_{*}$ and $\|C\|_{*}$ will reveal the correct quartet relation.

Conditions for quartet recovery

Define

$$
\begin{aligned}
\theta & :=\min \left\{\left\|B_{\perp}\right\|_{*}-\left\|A_{\perp}\right\|_{*},\left\|C_{\perp}\right\|_{*}-\left\|A_{\perp}\right\|_{*}\right\} \\
\Delta & :=P_{G H}-P_{G} P_{H}^{\top}
\end{aligned}
$$

Lemma 4 If $\|\Delta\|_{F} \leq \frac{\theta}{k^{2}+k}$, the minimum of $\|A\|_{*}$, $\|B\|_{*}$ and $\|C\|_{*}$ will reveal the correct quartet relation.

When we compute probabilty tables from m observations, and defining $\alpha=\min \left\{\|B\|_{*}-\|A\|_{*},\|C\|_{*}-\|A\|_{*}\right\}$

Lemma 5 With probability $1-8 e^{-\frac{1}{32} m \alpha^{2}}$, Algorithm 1 returns the correct quartet relation.

Tree recovery algorithm

The quartet test may be used to recover trees:

```
Algorithm \(2 \mathcal{T}=\operatorname{BuildTree}\left(X_{1}, \ldots, X_{d}\right)\)
    1: Connect any 4 variables \(X_{1}, X_{2}, X_{3}, X_{4}\) with 2
        latent variables in a tree \(\mathcal{T}\) using Algorithm 1.
    2: for \(i=4,5, \ldots, d-1\) do \(\left\{\right.\) insert ( \(i+1\) )-th leaf \(\left.X_{i+1}\right\}\)
    3: Choose root \(R\) that splits \(\mathcal{T}\) into sub-trees
        \(\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}\) of roughly equal size.
        Choose any triplet ( \(X_{i_{1}}, X_{i_{2}}, X_{i_{3}}\) ) of leaves from
        different sub-trees.
    5: \(\quad\) Test which sub-tree should \(X_{i+1}\) be joined to:
        \(i^{*} \leftarrow \operatorname{Quartet}\left(X_{i+1}, X_{i_{1}}, X_{i_{2}}, X_{i_{3}}\right)\).
    6: Repeat recursively from step 3 with \(\mathcal{T}:=\mathcal{T}_{i^{*}}\).
        This will eventually reduce to a tree with a single
        leaf. Join \(X_{i+1}\) to it via hidden variable.
    7: end for
```


[^0]: Algorithm $1 i^{*}=\operatorname{Quartet}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$
 1: Estimate $\widehat{\mathcal{P}}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ from a set of m i.i.d. samples $\left\{\left(x_{1}^{l}, x_{2}^{l}, x_{3}^{l}, x_{4}^{l}\right)\right\}_{l=1}^{m}$.
 2: Unfold $\widehat{\mathcal{P}}$ in three different ways into matrices \widehat{A}, \widehat{B} and \widehat{C}, and compute their nuclear norms

 $$
 a_{1}=\|\widehat{A}\|_{*}, a_{2}=\|\widehat{B}\|_{*} \text { and } a_{3}=\|\widehat{C}\|_{*}
 $$

 3: Return $i^{*}=\operatorname{argmin}_{i \in\{1,2,3\}} a_{i}$.

