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About this Talk

m Local Fisher discriminant analysis.

A modified version of linear discriminant analysis to handle
multimodality:

m Only matrix algebra ...
m Sugiyama, M.
Dimensionality reduction of multimodal
labeled data by local Fisher discriminant analysis.

Journal of Machine Learning Research,
vol.8 (May), pp.1027-1061, 2007.

®m Sugiyama, M.
Local Fisher discriminant analysis
for supervised dimensionality reduction.
ICML 2006



Supervised Linear Dimensionality Reduction

Data matrix: X = (x| --- |x,) € R¥™ where x; ¢ R?
Class labels: Y = (y1,...,yn) where y; € {1,2,...,C}
Find T € R™*? to maximize some criterion f(TX,Y).
r<d

T is a linear transform (hence the name).



Linear Discriminant Analysis (LDA)

m Also known as Fisher discriminant
analysis

m 7T is found to maximize Fisher’s
criterion

between-class variance is maximized
within-class variance is minimized

m PCA is an unsupervised algorithm
(does not see class labels).

m 7 € R™2 in the plot

LDA



1d LDA for Two-class Problem

m Find the best direction ¢ to maximize Fisher's criterion:
B t' Syt _ between-class scatter
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m Between-class scatter (difference of projected means)

2
-
(tTHq - tTN2> =t (g — o) (1 — o)t =" Syt



Solution to 1d LDA

. t' Syt
1" = argmax ———
ttl Syt
Scale invariant. Equivalent to
t* = arg max t' Syt

subject to ¢St =1

Lagrangian
L= TS+ A(tTSt 1)
Vil = =25t+2)\S,t=0
= S5t = ASut

A generalized eigenvalue problem.



General LDA

T

arg mj@x tr (TSbTT> = z; tiTSth-
1=

subject to TS, T =1

m Between-class scatter matrix

C
Sy = > nelpe—p) (e —p)'
c=1

where n. = #instances in class ¢, p, = ni iryi—c Ti and
C . -
i
H= Zi:1 Lj.
m Solution: T := (t1]---|t,) where {t;};_, are generalized

eivenvectors
Spti = \iSuti

with eigenvalues A\y > Xy > -+ > A,



#1: Problem with Multimodality

LDA
m LDA cannot handle multimodal data .
e.g., blue class forms 2 clusters. ° . NE
- . - e e o
m Modified objective: S I
L]
maximize between-class variance. oo o :
minimize within-class variance if ‘e * °[e
L]
class samples are close. Do not care e
if they are far away. .
LFDA

m = “Local” Fisher discriminant analysis

m Take locality of data into account



#2: Rank Deficiency of S,

C
Sy = nc(pe— ) (e — )
c=1

m S, € R4 = sum of C rank-one matrices. So, rank (S;) < C.
m The C terms are dependent. In fact, rank (S;) < C — 1.

Sbti = \iSut;

m Implications:
always 0
—_——~~
AL, s Ac—1, A0, - - -, Ag. At most C' — 1 non-zero eigenvalues.

At most C' — 1 meaningful directions can be extracted.
For 2-class problems, only one direction can be extracted!



Basic Ideas of LFDA

m Rewrite S, and S, in a pairwise manner.
m Weight each pair according to a specified affinity matrix A.
m A captures the closeness of samples in the same class.

m LFDA solves both multimodality and rank problems.



Scatter Matrices Rewritten
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where
1/n—1/n. ify,=y; =c,
B;; = )
1/n if yi # y,
W, = 1/nc if Yi =y; = ¢,
0 if yi # vy

m Proof. Expand i, and rearrange terms



Local Scatter Matrices

_ 1 _ T

S = 3 > D Bij (@i —z)) (zi — ;)
i=1j=1

_ 1 oL T

Sw = Z Z Wij (@i — x;) (x; — ;)
i=1j=1

where
5 _ Aij (l/n—l/nc) ifyi:yj:C,
Y 1/ if yi # yj

Wij = Asg /ne if e

0 if yi #y;

m Add A € R™*", a pairwise affinity matrix capturing locality of data.

m S is typically not rank-deficient.



Local Fisher Discriminant Analysis

arg ngxx tr (TSbTT)

subject to TS, T " =T

Effects of LFDA

m Nearby pairs of the same class = close

m Pairs of different classes = apart

m Pairs of the same class but far apart = don't care
Affinity matrix

m If A;; =1 for all in-class pairs, LFDA = LDA.

m To be useful, set A;; = 1 only for nearby points.

m A;; is only needed for in-class pairs. A is block diagonal.



Affinity Matrix Construction
Various choices from ([Belkin and Niyogi, 2003])

m c-neighborhoods:
Aij =1if H:Dz — iI)j”Z <€

May lead to several connected components
m k nearest neighbors (kNN)

Aj; =1if x; € kNN(x;) or ; € kNN(x;)

m Gaussian kernel: 4;; = exp (—|z; — x;||*/20?)

Image from [Zhu, 2007]



Equivalent Problem of LFDA

argmax  tr ( STT
T

subject to  T'S,,

m S =S8+ 8= 30 Sy My (i — @) (i — )

_ _ ~ I if v = s
| Mij = Bz‘j + VVz‘j - ZJ/ . vi yj
In  ify#y;

m maximize between-class scatter = maximize global scatter

m It can be shown that S = XLX " where L = diag (Ml) - M
(Laplacian matrix).

m S, =XL,X" where L,, = diag (Wl) —-W.



Kernel LFDA

= XLX"t; = NXL,X'¢t

m ¢; must be in column space of X. So, t; = Xa; for some a; € R™.

XLX"Xo; = i XLy X Xav;

m Left multiply with X 7. Replace X " X with K (kernel matrix).
where Kij = (¢(x:), d(x;)).

m Nonlinear embedding of '

(a1 Je) | (k(my,a'),... k(@)

rXn nx1




Conclusions

m LDA gives T which

minimizes within-class variance
maximizes between-class variance

m LFDA extends LDA
capture locality of data with affinity matrix

m Kernelized version exists.
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