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Problem setup

We are given samples xt ∈ Rn.
We want to find a projection of these samples, y>x , which:

has high variance,
is likely to “revert to its mean” (tricky to define)

Application: in finance, each dimension of xt can be a time varying signal
(eg a stock).
If a linear combination of the signals has both the above properties, you
can profit when the signal is far from its mean.

Real application: some nice math.
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First proxy for mean reversion: predictability

First proxy for mean reversion: “predictability”.
Univariate case

xt = x̂t + εt ,

where x̂t is the prediction, and noise is Gaussian i.i.d.

E(x2
t )︸ ︷︷ ︸

σ2

= E(x̂2
t )︸ ︷︷ ︸

σ̂2

+ E(ε2t ).

Define

λ =
σ̂2

σ2 .

When this is close to zero, the observations are dominated by Gaussian
noise.
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First proxy for mean reversion: predictability

Predictability for multivariate case: define k-lag autocovariance

Ak = E(xtx>t+k),

with empirical estimate Ak . We want the projection y>x with lowest
predictability (closest to white noise).

Solve

y∗ = argmin λ(y) = argmin
y>Â0y
y>A0y

.

How do we compute the prediction covariance Â0?
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First proxy for mean reversion: predictability

Assume a p-th order autoregressive process (model),

x̂t =

p∑
k=1

Hkxt−k .

For the p = 1 case (for p > 1, just reparametrize),

Â0 = H1A0H>1 A1 = A0H1.

By Yule-Walker, empirical estimate H1 is

H1 = A−1
0 A1.

Making this substitution,

y∗ = argmin λ(y) = argmin
y>
(
A1A−1

0 A>1
)
y

y>A0y
.
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Second proxy: portmanteau criterion

A second proxy for mean reversion is the portmanteau criterion,

φp(y) =
1
p

p∑
i=1

(
y>Aiy
y>A0y

)2

.

This is zero for white noise. Hence we try to minimise this statistic over y .
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Third proxy: crossing statistics

A third proxy for mean reversion is the expected frequency of the time
series crossing the zero axis,

γ(x) = E

(∑T
t=2 Ixtxt−1≤0

T − 1

)
.

Given
xt = axt−1 + εt

then
γ(x) =

arcos(a)
π

.

Thus: minimize first order autocorrelation,

y>A1y ,

while ensuring all remaining
∣∣y>Aky

∣∣ , k > 1 are small (so first order
approximation is valid).
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Optimization problem for predictability (1st)

To minimize predictability, an optimization problem is

minimize y>A1A−1
0 A>1 y

subject to y>A0y ≥ ν
‖y‖2 = 1

Second constraint imposes minimum variance. Third constraint is to avoid
effects of scaling.

Matrix version: define yy> = Y . Then solve

minimize tr(A1A−1
0 A>1 Y )

subject to tr(A0Y ) ≥ ν
tr(Y ) = 1, rank(Y ) = 1, Y � 0
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Optimization problem for predictability (1st)

Semidefinite relaxation: for Y ∈ Sn (positive definite cone),

minimize tr(A1A−1
0 A>1 Y )

subject to tr(A0Y ) ≥ ν
tr(Y ) = 1, Y � 0.

From Brickman (1961),{(
y>Ay , y>By

)
: y ∈ Rn, ‖y2‖ = 1

}
= {(tr(AY ), tr(BY )) : Y ∈ Sn, tr(Y ) = 1}

Hence solution Y ∗ of the semidefinite relaxation can be written y∗y∗>.
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Optimization problem for portmanteau (2nd)

For portmanteau statitic, an optimization problem is

minimize
p∑

i=1

(y>Aiy)2

subject to y>A0y ≥ ν
‖y‖2 = 1

Consider simple case p = 1. Replace objective by
∣∣y>A1y

∣∣.
Then by Brickman, semidefinite relaxation gives exact solution,

minimize t
subject to tr(A1Y ) ≤ t

tr(A1Y ) ≥ −t
tr(A0Y ) ≥ ν
tr(Y ) = 1, Y � 0.
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Optimization problem for portmanteau (2nd)

Portmanteau statitic for p > 1 is

minimize
p∑

i=1

(y>Aiy)2

subject to y>A0y ≥ ν
‖y‖2 = 1

We have the following semidefinite prorgram:

minimize
p∑

i=1

tr(AiY )2

subject to tr(A0Y ) ≥ ν
tr(Y ) = 1, Y � 0.

By e.g. Ben-Tal et al (2009),

SDP ≤ OPT ≤ SDP c log p,
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Optimization problem for crossing (3rd)

Crossing statistic gives optimization problem

minimize y>A1y + µ

p∑
i=2

(y>Aiy)2

subject to y>A0y ≥ ν
‖y‖2 = 1

and semidefinite program

minimize tr(A1Y ) +

p∑
i=2

tr(AiY )2

subject to tr(A0Y ) ≥ ν
tr(Y ) = 1, Y � 0.

Same upper and lower bound-style guarantees as Portmanteau.
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“If this works so well then why aren’t you rich?”

Experiments compare against three methods that don’t maximize variance.

Mean Reversion with a Variance Threshold
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Figure 3. Average Sharpe ratio vs. Transaction
Costs. The Sharpe ratios are computed during the out-of-
sample trade experiment, using the Jurek & Yang (2007)
trading strategy using 50 pre-selected pools of assets dur-
ing each of the 20 trading periods. Transaction costs range
from 0 cents/contract to 0.14 cents per contract, i.e. ap-
proximately 0.35% or 35 basis points.
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Figure 4. Average returns vs. Transaction Costs us-
ing the same setup considered in Figure 3

manage instead to achieve a trade-off between desir-
able mean-reversion properties with sufficient variance
to allow for lower overall transaction costs. Finally, the
bell-shaped curves of Figure 5 show the importance
of setting a variance threshold ν within a reasonable
range as trading costs increase. Indeed, in a typical
trading environment (where costs are between 10 or
20 BP), Figure 5 shows that trading off some mean-
reversion to gain variance instead is needed to remain
profitable.
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Figure 5. Sharpe ratios vs. ν variance threshold for
different trading costs scenarios. In the absence of
market frictions and free trades (above), choosing a high
threshold is irrelevant. Whenever costs rise to reasonable
levels, setting a variance threshold is critical for mean-
reverting strategies to achieve satisfactory performance, as
illustrated by the bell-shaped curves of the Sharpe ratio
(middle, below)

7. Conclusion

We have described three different criteria to quantify
the amount of mean reversion in a time series. For
each of these criteria, we have detailed a tractable al-
gorithm to isolate a vector of weights that has opti-
mal mean reversion, while constraining the variance
(or signal strength) of the resulting univariate series
to be above a certain level. We show that this bound
on variance, together with our new criteria for mean
reversion can significantly improve the performance of
mean reversion statistical arbitrage strategies. These
approaches can also be used in more general settings,
for instance in the context of estimating alarm func-
tionals (Cuturi et al., 2010) for anomaly detection in
non-stationary multivariate time series, or might be
applied to detect relationships of interest to analyze
EEG data (von Bünau et al., 2009; Hara et al., 2010).
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