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The Upshot

A simple and clever idea which is more widely applicable than
is billed in the paper.
You might be able to use it in your research!
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Set Functions

Consider a set E = {e1, . . . ,en} (where n is finite) and a
function f (S), f : P(E)→ R, where P(E) is the power set (set
of all subsets) of E . f is thus called a set function.
We might want to find S∗ = argmaxS∈P(E) f (S).
This problem is in general combinatorially hard, because f (S)
may be arbitrary for each S ∈ P(E), and so these subsets must
be exhaustively enumerated.
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Submodular Set Functions

We hope real problems have benign structure, letting us find
good, non-combinatorial solutions.
One case of interest is if f (S) is submodular.

Definition (Submodular)

A set function f : P(E)→ R is said to be submodular iff
∀A ∈ P(E),B ⊂ A,ei ∈ E/A,

f (A ∪ ei)− f (A) ≤ f (B ∪ ei)− f (B).

This may be summarized as a property of "diminishing gains;"
much like concavity.
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Examples

f (S) =
∑

s∈S g(s) (Trivial, but submodular)
f (S) = |S|(|S|−1)

2 +
∑

s∈S g(s) (Slightly less trivial)
f (S) = I(g;y) where y = {y1 = g(s1) + η1, . . . }, ηi ∼ N ,
and g is a latent, Gaussian distributed vector.
Minimum Spanning Tree: Consider a connected graph
G = [X ,U], with node set X and edge set U. Let w(u),
w : U → R be the (fixed) weight of each edge. Define
w(S) ,

∑
u∈S w(u) for each S ∈ P(U). Further, define

f (S) =

{
−w(U/S) if GS = [X ,U/S] is connected
−∞ otherwise.

f is submodular because f (u ∪ S)− f (S) = w(u) if GS and
GS∪u are connected, and −∞ if GS is connected and GS∪u
is not (ignoring the case where GS is not connected).
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Contrasting Example

Consider a string of bits, where bits are in triplets [e1,e2,e3],
where e1,e2, i.i.d. ∼ Uniform(0,1), carry the information and e3
is a checksum, e3 = e1 + e2.

f (S) , I(e3;S),

where E = {e1,e2},S ∈ P(E).
f ({e1}) = f ({e2}) = 0, but f ({e1,e2}) = 1 bit, so adding e1 or
e2 to S = {} produces less gain in f than adding e1 or e2 to
{e2} or {e1}; f is thus not submodular.
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Greedy Algorithms

In general, maximizing over combinatorial sets =⇒
combinatorial complexity.
Greedy heuristic: iteratively add to Sk the element within
the set E/Sk which provides the greatest gain in the
objective function.

Provides an important alternative to doing the full
optimization, but often no theoretical guarantees.
If objective function is submodular, guarantees may be
obtained (e.g., Krause 2005, 2008).
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Simple Greedy Algorithm
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An Additional Problem

The problem of actually determining which element of the
decision set is truly the greedy choice may be
computationally expensive.
If there are n elements in E , we may have to evaluate
f (S ∪ ei), ∀ei ∈ E/S, once for each iteration of the
algorithm (potentially n times); this scales as O(n2c),
where c is (assumed fixed) the cost of evaluating f (S ∪ ei).
Adaptive Greedy (AG) algorithms improve upon this.
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Adaptive Greedy Algorithm

If maximizer at each iteration is unique, same results as SG.
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Surely that won’t matter that much!

But it does!
Minoux (1978) claims a reduction of hours to minutes
(50-100x) on a test problem.
And our results (Desautels, Krause, & Burdick, 2012 &
2014) using a similar technique show big speedups as well:
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Minoux also provides a proof that the AG algorithm is
computationally optimal within the class of algorithms which
iteratively consider additions of only one element of E/S to S.

In conclusion:
Minoux’s trick is simple and easy, but exact.
It’s applicable whenever you’re trying to greedily optimize a
set function where the gain for adding ei ∈ E/S is strictly
non-increasing with respect to S.
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