# Accelerated Greedy Algorithms for Maximizing Submodular Set Functions

#### Michel Minoux, 1978

Gatsby Computational Neuroscience Unit, UCL

19 August, 2014

- E - - E

Gatsby Unit

Michel Minoux, 1978



A simple and clever idea which is more widely applicable than is billed in the paper. You might be able to use it in your research!

★ E > < E</p>



#### 1 Set and Submodular Functions



Michel Minoux, 1978

Gatsby Unit

イロト イヨト イヨト イヨト

# Set Functions

Consider a set  $E = \{e_1, \ldots, e_n\}$  (where *n* is finite) and a function f(S),  $f : \mathcal{P}(E) \to \mathbb{R}$ , where  $\mathcal{P}(E)$  is the power set (set of all subsets) of *E*. *f* is thus called a set function.

We might want to find  $S^* = \operatorname{argmax}_{S \in \mathcal{P}(E)} f(S)$ .

This problem is in general combinatorially hard, because f(S) may be arbitrary for each  $S \in \mathcal{P}(E)$ , and so these subsets must be exhaustively enumerated.

ヘロト ヘ団ト ヘヨト ヘヨト

#### Submodular Set Functions

We hope real problems have benign structure, letting us find good, non-combinatorial solutions. One case of interest is if f(S) is *submodular*.

#### Definition (Submodular)

A set function  $f : \mathcal{P}(E) \to \mathbb{R}$  is said to be *submodular* iff  $\forall A \in \mathcal{P}(E), B \subset A, e_i \in E/A$ ,

$$f(A \cup e_i) - f(A) \leq f(B \cup e_i) - f(B).$$

This may be summarized as a property of "diminishing gains;" much like concavity.

Michel Minoux, 1978

Gatsby Unit

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

## Examples

- $f(S) = \sum_{s \in S} g(s)$  (Trivial, but submodular)
- $f(S) = \frac{|S|(|S|-1)}{2} + \sum_{s \in S} g(s)$  (Slightly less trivial)
- $f(S) = I(g; \mathbf{y})$  where  $\mathbf{y} = \{y_1 = g(s_1) + \eta_1, ...\}, \eta_i \sim \mathcal{N},$ and *g* is a latent, Gaussian distributed vector.
- Minimum Spanning Tree: Consider a connected graph G = [X, U], with node set X and edge set U. Let w(u),  $w : U \to \mathbb{R}$  be the (fixed) weight of each edge. Define  $w(S) \triangleq \sum_{u \in S} w(u)$  for each  $S \in \mathcal{P}(U)$ . Further, define

 $f(S) = \left\{ egin{array}{cc} -w(U/S) & ext{if } G_S = [X, U/S] ext{ is connected} \ -\infty & ext{otherwise.} \end{array} 
ight.$ 

*f* is submodular because  $f(u \cup S) - f(S) = w(u)$  if  $G_S$  and  $G_{S \cup u}$  are connected, and  $-\infty$  if  $G_S$  is connected and  $G_{S \cup u}$  is not (ignoring the case where  $G_S$  is not connected).

Michel Minoux, 1978

# Contrasting Example

Consider a string of bits, where bits are in triplets  $[e_1, e_2, e_3]$ , where  $e_1, e_2$ , i.i.d. ~ Uniform(0, 1), carry the information and  $e_3$  is a checksum,  $e_3 = e_1 + e_2$ .

$$f(S) \triangleq I(e_3; S),$$

where  $E = \{e_1, e_2\}, S \in \mathcal{P}(E)$ .  $f(\{e_1\}) = f(\{e_2\}) = 0$ , but  $f(\{e_1, e_2\}) = 1$  bit, so adding  $e_1$  or  $e_2$  to  $S = \{\}$  produces less gain in f than adding  $e_1$  or  $e_2$  to  $\{e_2\}$  or  $\{e_1\}$ ; f is thus not submodular.

Michel Minoux, 1978

ヘロト ヘ回ト ヘヨト ヘヨト

# **Greedy Algorithms**

- In general, maximizing over combinatorial sets  $\implies$  combinatorial complexity.
- Greedy heuristic: iteratively add to S<sup>k</sup> the element within the set E/S<sup>k</sup> which provides the greatest gain in the objective function.
  - Provides an important alternative to doing the full optimization, but often no theoretical guarantees.
  - If objective function is submodular, guarantees may be obtained (e.g., Krause 2005, 2008).

# Simple Greedy Algorithm

$$\begin{array}{l} \underbrace{\operatorname{stendard} \operatorname{greedy} \operatorname{algorithm}}_{(a) \operatorname{Take S}^{\circ} = \emptyset ; \operatorname{itfration} k = 0 \\ (b) \ \operatorname{at step} k, \ \operatorname{S}^{k} \ \operatorname{is the current solution of cost} f(\operatorname{S}^{k}) \ \operatorname{and} \left|\operatorname{S}^{k}\right| = k \\ (c) \ \operatorname{for all} e_{\underline{i}} \in \mathbb{E} - \operatorname{S}^{k}, \ \operatorname{compute} : \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$$

Michel Minoux, 1978

Gatsby Unit

< E > < E

## An Additional Problem

- The problem of actually determining which element of the decision set is truly the greedy choice may be computationally expensive.
- If there are *n* elements in *E*, we may have to evaluate f(S ∪ e<sub>i</sub>), ∀e<sub>i</sub> ∈ E/S, once for each iteration of the algorithm (potentially *n* times); this scales as O(n<sup>2</sup>c), where *c* is (assumed fixed) the cost of evaluating f(S ∪ e<sub>i</sub>).
- Adaptive Greedy (AG) algorithms improve upon this.

< <p>O > < <p>O >

. . . . . . . .

## Adaptive Greedy Algorithm

The accelerated greedy algorithm (AG) (a) Take S° = ∅ as a starting solution step k = 0(b) for every e, €E, compute :  $\Delta(e_i) = f(\{e_i\}) - f(\emptyset)$ (c) At step k, let SK be the current solution, of cost f(SK) Select  $e_{io} \in E - S^k$  such that :  $\Delta(e_{io}) = \max_{e_i \in E_i = S^k} \left\{ \Delta(e_i) \right\}$ If  $e_{i_0}$  has already been selected once at step k set :  $\delta = \Delta(e_{i_0})$  and go to (e) (d) compute  $\overline{\delta} = f(s^k + \{e_i\}) - f(s^k)$ and set :  $\Delta(e_{10}) \leftarrow \delta$ if  $\delta < \max_{e_i \in E - S^k} [\Delta(e_i)]$ e, ≠ e, return to (c) otherwise : (e) if  $\delta \leq 0$  STOP : solution  $s^k$  is (locally) optimal - Otherwise ( $\delta > 0$ ) : (f) Set : sk+1 ← sk + {e,}  $\Delta(e_{i_0}) = 0$ k ← k + 1 and return to (c).

If maximizer at each iteration is unique, same results as SG.

Michel Minoux, 1978

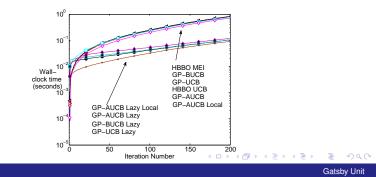
Gatsby Unit

## Surely that won't matter that much!

Accelerated Greedy Algorithms for Maximizing Submodular Set Functions

But it does!

- Minoux (1978) claims a reduction of hours to minutes (50-100x) on a test problem.
- And our results (Desautels, Krause, & Burdick, 2012 & 2014) using a similar technique show big speedups as well:



Michel Minoux, 1978

Minoux also provides a proof that the AG algorithm is computationally optimal within the class of algorithms which iteratively consider additions of only one element of E/S to S.

In conclusion:

- Minoux's trick is simple and easy, but exact.
- It's applicable whenever you're trying to greedily optimize a set function where the gain for adding e<sub>i</sub> ∈ E/S is strictly non-increasing with respect to S.

. . . . . . .