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Accurate visual discrimination depends critically on the selective 
responses of neurons in visual cortex for features of the visual scene 
such as the orientation of edges and their direction of motion. Other 
aspects of cortical responses, especially those that influence the spa-
tial and temporal patterns of neuronal activity, are also important 
in visual discrimination. These include response variability1–3, the 
number of responsive neurons4–6 and the degree of correlation in 
neuronal response, all of which affect the performance of population 
coding in the mature visual cortex7–10. How these four features of the 
population response emerge and reach their mature state during the 
development of the visual cortex remains unclear.

Most is known about the development of stimulus selectivity, 
and studies in the ferret indicate that the time course of emergence 
and the role of experience differ according to the type of selectivity. 
For example, orientation selectivity is present and organized in a 
columnar fashion around the time of eye opening11, whereas tun-
ing for direction selectivity emerges shortly after eye opening in a 
process that requires visual experience12. Much less is known about 
the development of the temporal properties of the cortical popula-
tion response, beyond the characterization of single units as “slug-
gish” and unreliable before and around the time of eye opening, 
becoming more crisp and reliable with continued experience13,14. 
Moreover, how these changes in single unit properties are related to 
the number of responsive neurons and the correlation structure of 
evoked responses remains unclear. However, two recent reports in 
rodents suggest that both of these properties may undergo significant 
postnatal maturation15,16.

In this study we used two-photon in vivo calcium imaging to 
characterize the spatial and temporal response properties of large 
numbers of single neurons in ferret visual cortex to assess how these 
factors change during postnatal development. We found that corti-
cal responses at eye opening were characterized by a high density of 
active neurons that displayed prominent wave-like activity, a high 
degree of variability and strong noise correlations. Over the next 
three weeks, the population response became increasingly sparse, 
wave-like activity disappeared, and variability and noise correlations 
were markedly reduced. The decrease in variability and noise corre-
lations both contribute significantly to improvements in the ability 
of cortical neuronal activity to discriminate motion direction, and 
both the decrease in noise correlations and improvement in direction 
discriminability appear highly sensitive to visual experience. Taken 
together with previous observations in the ferret12,17, these results 
indicate that the period following eye opening is distinguished by 
rapid changes in a number of neuronal response properties that are 
critical for motion discrimination.

RESULTS
Ferrets were imaged in three age groups (naive: postnatal day (P) 
29–32, immature: P33–36, and mature: P48–50, with 0–1, 4–6 and 
>15 d visual experience, respectively) following intracortical injec-
tions of AAV expressing the fluorescent protein GCaMP3 (Fig. 1a).  
In animals imaged at eye opening, we observed dense and vigor-
ous responses with strong orientation selectivity but weak direction 
selectivity, whereas in older animals responses were considerably  
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Stimulus discrimination depends on the selectivity and variability of neural responses, as well as the size and correlation 
structure of the responsive population. For direction discrimination in visual cortex, only the selectivity of neurons has been well 
characterized across development. Here we show in ferrets that at eye opening, the cortical response to visual stimulation exhibits 
several immaturities, including a high density of active neurons that display prominent wave-like activity, a high degree of 
variability and strong noise correlations. Over the next three weeks, the population response becomes increasingly sparse, wave-
like activity disappears, and variability and noise correlations are markedly reduced. Similar changes were observed in identified 
neuronal populations imaged repeatedly over days. Furthermore, experience with a moving stimulus was capable of driving a 
reduction in noise correlations over a matter of hours. These changes in variability and correlation contribute significantly to a 
marked improvement in direction discriminability over development.
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sparser and direction selectivity was greatly 
increased (Fig. 1b,c). Pooling across animals, 
we observed similar results to those seen in 
previous work12, with strong selectivity for 
orientation and weak selectivity for direction 
in naive animals, both of which increased  
significantly over the following weeks  
(orientation, Fig. 2a; Kruskal-Wallis test (KW):  
χ2(2) = 309.45, P < 0.001; pairwise Mann-
Whitney U test (MW): naive: Z(1,811) = 
−12.23, P < 0.001; immature: Z(1,447) = −15.30, P < 0.001; mature: 
Z(992) = −6.99, P < 0.001; direction, Fig. 2b; KW: χ2(2) = 473.87,  
P < 0.001; pairwise MW: naive: Z(1,555) = −16.51, P < 0.001; 
immature: Z(1,174) = −18.06, P < 0.001; mature: Z(883) = −7.56,  
P < 0.001). Beyond these expected changes, we found that the trial-
to-trial response variability decreased significantly in immature and 
mature animals as compared to naive animals (Fig. 2c; KW: χ2(2) = 
190.24, P < 0.001; MW: naive versus immature: Z(1,555) = −16.51,  
P < 0.001; naive versus mature: Z(1,174) = 18.06, P < 0.001). Variability 
rebounded slightly but significantly from immature to mature ani-
mals (MW: Z(883) = −7.56, P = 0.001). Over this same period, the 
amplitude of the response evoked by the preferred stimulus did not 
change (Fig. 2d; ∆F/F mean ± s.e.m.: 0.148 ± 0.004, 0.147 ± 0.006 
and 0.138 ± 0.007 for naive, immature and mature respectively; KW: 
χ2(2) = 2.99, P = 0.22).

To quantify the population sparseness4, we examined the fraction of 
identified neurons within a field of view (FOV) that exhibited a response 
to at least one stimulus on a given trial, making this measurement 
resistant to changes in direction selectivity. The fraction of responsive 
cells did not change from naive to immature animals (Fig. 2e; mean ± 
s.e.m. across all trials for all stimuli: 70.2 ± 1.7% versus 68.7 ± 2.1%; KW 
across groups: χ2(2) = 103.2, P < 0.001; MW: naive versus immature:  
Z(226) = 0.35, P = 0.72). However, responses in mature animals  
were considerably sparser (44.4 ± 1.2%; MW: naive versus mature: 
Z(238) = 9.38, P < 0.001; immature versus mature: Z(202) = 8.13,  
P < 0.001). These results cannot be explained through enhanced direc-
tion selectivity, decreased responsivity to preferred stimuli (Fig. 2d), a 
change in the density of labeled neurons (KW: χ2(2) = 2.69, P = 0.26) 
or toxicity related to GCaMP expression (correlations between expres-
sion time and response density were nonsignificant in all groups: naive:  
r(7) = 0.48, P = 0.19; immature: r(3) = −0.65, P = 0.24; mature: r(3) = 
−0.27, P = 0.65), but rather may result from developmental changes  
in receptive field structure13,18. Notably, the response density in  

naive animals does not reflect a global nonspecific hyperexcitability, 
but rather was highly specific for both stimulus orientation and direc-
tion (Fig. 2f, within-group KW across stimuli: naive: χ2(7) = 227.03,  
P < 0.001; immature: χ2(7) = 107.99, P < 0.001; mature: χ2(7) = 139.40, 
P < 0.001; dominant versus orthogonal: naive: Z(526) = 14.12, P < 0.001; 
immature: Z(382) = 8.36, P < 0.001; mature: Z(430) = 9.53, P < 0.001; 
dominant versus opposite: naive: Z(262) = 4.09, P < 0.001; immature: 
Z(190) = 3.31, P < 0.001; mature: Z(214) = 4.78, P < 0.001).

Wave-like propagating responses in naive animals
In addition to the high density of the responsive neurons, a promi-
nent feature of the visual response in young animals was a wave-
like propagation of activity during the stimulus period (Fig. 3a and 
Supplementary Movie 1). The spatiotemporal pattern of activity 
was largely consistent both within and across stimuli (Fig. 3b,c) 
and frequently resembled a linear traveling wave (Fig. 3d). Both 
the fraction of trials eliciting a linear wave and the wave velocity 
exhibited age-dependent declines (wave incidence, Fig. 3e, mean ± 
s.e.m.: naive: 30.7 ± 5.0%, n = 3 FOV from 3 animals; immature:  
10.2 ± 4.5%, n = 6 FOV from 3 animals; mature: 1.6 ± 0.5%, n = 4 FOV 
from 2 animals; KW: χ2(2) = 8.62, P = 0.013; wave velocity, Fig. 3f; 
naive: 256 ± 24 µm/s, n = 115; immature: 91 ± 11 µm/s, n = 60; mature: 
44 ± 7 µm/s, n = 6; KW: χ2(2) = 65.07, P < 0.001).

The stimulus-evoked wave-like pattern of activity demonstrated here 
does not propagate continuously over the surface of the cortex but is 
limited to domains that are tuned to the orientation of the stimulus. 
Consistent with the significant orientation tuning that is present at 
eye opening, the likelihood of eliciting a linear wave within the field of 
view was highly dependent on the orientation of the stimulus (Fig. 3g, 
Friedman’s test: naive: χ2(7) = 19.05, P = 0.008; immature: χ2(7) = 16.00, 
P = 0.025; mature: χ2(7) = 21.00, P = 0.004). There was also a bias toward 
a directional preference in the likelihood of eliciting a linear wave in all 
age groups (compare preferred to null stimulus in Fig. 3g).
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Figure 1 Response properties change 
dramatically following eye opening.  
(a) Experimental timeline. GCaMP3 
expressing AAV was delivered intracortically 
via microinjection and two-photon imaging was 
performed 7–14 d later. Animals were imaged at 
either P29–32 (naive), P32–36 (immature) or 
P48–50 (mature). (b) Representative responses 
from animals in each age group. Left, baseline 
image. Scale bars, 50 µm. Middle, single-trial 
response to preferred stimulus (maximum 
projection across stimulus duration). Right, 
maximum response across all stimuli and all 
trials. EO, days after eye opening. (c) Responses 
for individual neurons highlighted in b. Left, 
response to eight directional stimuli, averaged 
across trials. Right, tuning curves fit with a two-
peaked Gaussian. Horizontal line indicates the 
mean response to a blank stimulus.
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The waves had a strong tendency to travel across the cortex in a 
consistent direction that was distinct for each animal (Fig. 3h; for 
FOVs with minimum 10 traveling waves (5 of 13, 3 naive and 2 imma-
ture); Hodges-Ajne test for nonuniformity: P < 0.05 in 4 of 5 cases 
with ≥30 waves each; fifth case P = 0.49 with 13 waves; statistics in 
Supplementary Table 1). The propagation direction varied signifi-
cantly across animals (circular nonparametric multisample test for 
equal medians (CM)19: M(4) = 35.075, P < 0.001) and did not vary as 
a function of the direction of stimulus motion (CM within animal:  
P > 0.14 in all cases; statistics in Supplementary Table 2).

Noise correlations decrease with age
The presence of highly variable but highly dense responses in naive 
animals suggests a large degree of correlated variability at this age. 
As shared trial-to-trial variability has strong implications for neural 
coding8,10, we examined pairwise noise correlations across develop-
ment. Across all neuronal pairs, noise correlations exhibited a signifi-
cant decline with age (mean ± s.e.m. across animals after averaging 
pairs within each FOV: 0.125 ± 0.023, 0.020 ± 0.003, 0.010 ± 0.002  
for naive, immature and mature, respectively; KW: χ2(2) = 19.94,  
P < 0.001; MW: naive versus immature: U(15) = 72, P < 0.001;  
naive versus mature: U(16) = 81, P < 0.001; immature versus mature: 
U(15) = 63, P = 0.008).

In mature animals, noise correlations tend to be higher between 
nearby neurons with similar tuning properties20–22. We exam-
ined how this difference emerged during development. Noise cor-
relations declined with increasing spatial distance for all groups  
(Fig. 4a, Friedman’s test within group: naive: χ2(13) = 106.55,  
P < 0.001, r(98,643) = −0.49, P < 0.001; immature: χ2(13) = 84.23,  
P < 0.001, r(34,222) = −0.19, P < 0.001; mature: χ2(12) = 35.79, P < 0.001,  
r(7,617) = −0.14, P < 0.001), and the decrease in correlations with 
age was evident at all distances examined (Mack-Skillings test for age 
while controlling for distance: χ2(2) = 253.76, P < 0.001). Noise cor-
relations also decreased with age for all intra-pair tuning differences 
(Fig. 4b, Mack-Skillings test for age while controlling for angular 
difference: χ2(2) = 130.44, P < 0.001). We further observed a strong 
relationship across ages between the mean noise correlation and the 
mean direction selectivity of each neuronal population we imaged 
(Fig. 4c, r(24) = −0.59, P = 0.001), indicating that these changes occur 
over similar timescales during development. Notably, neuron pairs 
with similar tuning and small spatial separation exhibited the high-
est noise correlations in naive animals (Fig. 4d) and also showed the 
largest decreases with age (Fig. 4e,f).

To determine whether the strong wave-like activity present in naive 
animals contributes to high noise correlations, we selected stimuli 
capable of eliciting linear waves and calculated noise correlations 
using only trials with and without waves. Trials with wave-like activ-
ity showed significantly higher noise correlations than those without 
(mean ± s.e.m. across 3 animals: wave present, 0.266 ± 0.019; absent, 
0.125 ± 0.021; Wilcoxon signed-rank test (WSR): Z(2,195) = 39.54, 
P < 0.001, n = 2,197 pairs from 3 animals), indicating that wave-like 
responses are a major, albeit not the only, source of correlated vari-
ability in the naive cortex.

Chronic two-photon imaging of emergence of direction selectivity
To track the developmental changes that occur in individual neurons, 
we performed longitudinal imaging of a defined neuronal popula-
tion over several days following eye opening. We successfully imaged 
four ferrets over two or three imaging sessions starting around eye 
opening (Fig. 5a,b). In these experiments, we only considered neu-
rons that could be conclusively identified across all imaging sessions 
(73.8 ± 7.8 of cells identified in first imaging session, mean ± s.e.m. 
across 4 animals). In the example shown in Figure 5c,d, we imaged 
126 visually responsive neurons over 3 imaging sessions from P32 to 
P37. In this population, we found an increase in direction selectiv-
ity from P32 to P35, which did not change further by P37 (Fig. 5d, 
Friedman’s test: χ2(2) = 14.02, P < 0.001; post hoc WSR: P32 ver-
sus P35: Z(124) = −3.84, P < 0.001; P32 versus P37: Z(124) = −3.33,  
P < 0.001; P35 versus P37: Z(124) = 0.31, P = 0.754). To examine the 
changes underlying this increase in selectivity, we compared orienta-
tion and direction preferences for identified neurons across imaging 
sessions. We found that orientation preference was largely stable over 
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Figure 2 Stimulus selectivity increases and population response density 
decreases with age and experience. Naive, P29–32 (n = 9 animals); 
immature, P33–36 (n = 5 animals); mature, P48–50 (n = 5 animals).  
(a) Orientation selectivity (OSI) increased significantly with age (n = 1,134, 
679 and 315 neurons for naive, immature and mature, respectively).  
(b) Direction selectivity (DSI) increases significantly with age (n = 924, 633  
and 252 for naive, immature and mature, respectively). (c) Response 
variability (shown as s.d. across trials) to the preferred stimulus decreases 
with age. (d) Response amplitude to the preferred stimulus does not change 
across age (mean response across trials). (e) Response density (fraction 
of active neurons on a given trial out of all identified neuronal ROIs with 
at least one response) declines significantly from the naive and immature 
groups to the mature group. (f) Response density is stimulus specific. In 
all age groups, the fraction of neurons active on a given trial is significantly 
greater for the dominant (Dom) stimulus (the stimulus producing activity in 
the largest fraction of neurons, aligned across animals) than for a stimulus 
with opposite direction of motion (null, +180°) or an orthogonal orientation. 
Dashed line indicates mean fraction of neurons active during blank stimuli. 
Error bars are mean ± s.e.m. across animals.
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this period, while orientation selectivity increased significantly as 
would be expected from previous work11 (Supplementary Figs. 1 
and 2a,c,e; WSR: Z(317) = 12.66, P < 0.001). Interestingly, direction 
preference exhibited approximately 180° reversals in a subset of neu-
rons (Fig. 5e,g). Among neurons with a stable preferred direction, 
selectivity increased significantly over imaging sessions (Fig. 5f; WSR: 
Z(239) = 5.61, P < 0.001).

Increased direction selectivity could occur through either poten-
tiation of responses to the preferred direction, suppression of  
null responses or both. In neurons that maintained a stable direction  

preference (see Online Methods and Fig. 5g, top), the rise in selectiv-
ity was due to a potentiation of the response to the preferred direc-
tion (Fig. 5h, top; mean ∆F/F ± s.e.m., with WSR, initial versus final: 
preferred: 0.33 ± 0.02 versus 0.43 ± 0.02, Z(113) = 5.051, P < 0.001; 
null: 0.17 ± 0.01 versus 0.18 ± 0.01, Z(113) = 1.066, P = 0.286; orthog-
onal: 0.04 ± 0.01 versus −0.01 ± 0.00, Z(113) = −7.725, P < 0.001;  
n = 115), consistent with the initial changes reported using pooled 
acute single-unit recordings23. Notably, neurons that exhibited  
reversals in preference (for example, Fig. 5g, middle) showed both a 
potentiation of the final preferred response and a depression of the 
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Figure 3 Wave-like responses to visual stimulation in young animals. (a) Pseudocolored time course of response to single stimulus. Propagating activity 
appears as a gradient from blue to orange. Scale bar, 50 µm; applies to a–d. (b) Single-trial example responses. Top row, responses to grating drifting 
down and to the left; bottom row, responses to stimulus of same orientation but opposite direction of motion. (c) Average response across all trials 
with strong wave-like activity. (d) Example response well fit by a linear traveling wave (wave index (WI) = 100). (e) Frequency of linear waves declines 
significantly with age (n = 3 FOV from 3 animals, 6 FOV from 3 animals and 4 FOV from 2 animals for naive, immature and mature, respectively). 
Circles indicate individual FOVs; squares indicate mean ± s.e.m. (f) Velocity of linear waves declines significantly with age (mean ± s.e.m.: naive:  
256.8 ± 23.7 µm/s, n = 115 waves; immature: 91.3 ± 10.6 µm/s, n = 60 waves; mature: 44.2 ± 7.1 µm/s n = 6 waves). Dashed lines indicate 
geometric means. (g) Occurrence of linear waves is stimulus specific. P, preferred stimulus; N, null stimulus with opposite direction of motion from 
preferred; B, blank stimulus. Error bars are mean ± s.e.m. across animals. (h) Wave direction is largely consistent across all stimuli within an animal  
but differs across animals. Each histogram shows propagation directions for one animal in the naive group. Bar color indicates stimulus identity.
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initial preferred (final null) (Fig. 5h, middle; mean ∆F/F ± s.e.m., with 
WSR: initial versus final: preferred: 0.24 ± 0.03 versus 0.53 ± 0.06,  
Z(22) = 4.286, P < 0.001; null: 0.34 ± 0.04 versus 0.27 ± 0.03, Z(22) = 
−2.171, P = 0.030; orthogonal: 0.04 ± 0.01 versus −0.04 ± 0.01, Z(22) =  
−3.829, P < 0.001; n = 24), as did cells with an initially uncertain 
preference that developed over time (Fig. 5g,h, bottom; mean ∆F/F ±  
s.e.m., with WSR, initial versus final: preferred: 0.26 ± 0.02 versus  
0.37 ± 0.02, Z(96) = 5.732, P < 0.001; null: 0.21 ± 0.02 versus 0.17 ± 0.01,  
Z(96) = −2.748, P = 0.006; orthogonal: 0.07 ± 0.01 versus 0.00 ± 0.01, 
Z(96) = −6.844, P < 0.001; n = 98).

These changes in single-cell response were accompanied by a sig-
nificant decline in pairwise noise correlation among the longitudi-
nally imaged populations (Fig. 6a and Supplementary Fig. 3; WSR: 
Z(18,946) = −98.10, P < 0.001, n = 18,948 pairs). We next assessed the 
relationship between the change in selectivity of individual neurons 
and the structure of the population response during the period fol-
lowing eye opening (Fig. 6b). In three of four longitudinal imaging 
experiments, direction selectivity increased from the initial to the 
final imaging session (Friedman’s test: P < 0.05 for each experiment 
with 33, 147 and 126 neurons per experiment, respectively; statistics 
in Supplementary Table 3), while pairwise noise correlations among 
this same population decreased (Friedman’s test: P < 0.001 for each 
experiment, with 489, 10,618 and 7,770 pairs per experiment, respec-
tively; statistics in Supplementary Table 3). In the fourth experiment, 
only 13 neurons were both identifiable and visually responsive across 
days and neither changes in direction selectivity nor in noise correla-
tion were significant (Friedman’s test: direction selectivity: P = 0.58, 
n = 13 cells, correlation: P = 0.49, n = 69 pairs). We also observed 
a strong decrease in trial-to trial variability over this same period 
(initial versus final imaging session, WSR: Z(317) = 15.48, P < 0.001). 

These results clearly show that individual neurons in defined popula-
tions become both more selective for direction of motion, less variable 
and less correlated following eye opening.

Given that noise correlations can reflect the influence of common 
inputs and recurrent connectivity24,25, it is possible that high noise 
correlations between pairs of neurons early in development may pre-
dict shared tuning properties later on. To examine this, we compared 
noise correlations during the initial imaging session for neurons with 
similar preferred directions (within 45°) that maintained that similar-
ity (S–S pairs) versus those that adopted opposite preferences by the 
final imaging session (S–O pairs) (Fig. 6c and Supplementary Fig. 4).  
Initial noise correlations were significantly higher for S–S pairs than 
S–O pairs (Fig. 6d; MW: Z(4,857) = 3.01, P < 0.001, n = 3,098 and 
1,761 for S–S and S–O, respectively). Likewise, initial noise correla-
tions were higher between pairs with opposite preferences that would 
ultimately adopt similar tuning (O–S pairs) than for pairs that would 
maintain opposing preferred directions (O–O pairs) (Fig. 6e; MW: 
Z(2,448) = 8.74, P < 0.001, n = 921 and 1,529 for O–S and O–O, 
respectively). Taken together, these results indicate that initial pair-
wise noise correlations may predict future tuning similarity, sug-
gesting the presence of functionally interconnected subpopulations 
destined to adopt similar tuning.

Decline in variance improves direction discriminability
Traditional measures of direction selectivity are based on the average 
response of neurons over multiple stimulus trials in order to ‘average 
out’ the noise that can be present on a single trial. However, reliable 
behavioral discriminations of motion direction are based on neuro-
nal responses to a single stimulus presentation. Thus, in addition to 
selectivity, the variability in single neuron response and correlation in 
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Figure 4 Noise correlations decline with age and 
experience. (a) Pairwise noise correlation as a 
function of intra-pair spatial distance. There is a  
significant decrease in noise correlation across 
age groups, as well as a significant decrease  
in noise correlation as a function of distance 
within each group. (b) Pairwise noise correlation 
as a function of the intra-pair difference in  
preferred direction. For all age groups, noise 
correlations were significantly higher for pairs 
with similar orientation preferences than for those 
with orthogonal preferences. Likewise, all age 
groups exhibited significantly higher correlations 
for pairs with similar as opposed to opposite 
direction preferences. Data in a,b are represented 
as the mean ± s.e.m. across animals after taking 
the mean across all pairs within an animal.  
(c) Noise correlations decrease and DSI increases 
with age. Circles, mean ± s.e.m. for each FOV; 
squares, mean ± s.e.m. across all animals in each 
age group. There is a significant correlation  
(R = −0.59; P < 0.01) between noise correlation 
and DSI across all experiments. (d–f) Maps of  
pairwise noise correlation as a function of intra-
pair spatial distance and difference in preferred 
direction (local average based on Gaussian kernel, 
σx = 15 µm, σy = 15 deg). Early, noise correlation 
is large for small distances, in particular in  
pairs with similar preferred direction. In the 
mature cortex, this bias is reduced and noise 
correlations are small irrespective of distance  
and tuning difference. Black indicates regions 
with insufficient data (less than 20 pairs  
per 30-µm × 22.5-deg region).
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response of the active population may affect the capacity of network 
activity to discriminate different directions of motion.

As would be expected, the direction discriminability 
(Supplementary Fig. 5a) of single neurons improved considerably 
from the naive to immature groups (Fig. 7a; MW: Z(1,920) = −18.3, 
P < 0.001). To assess whether this increase resulted primarily from an 
increase in the selectivity of individual neurons (Fig. 2b) or a decrease 
in the variance of their response (Fig. 2c), we computing direction dis-
criminability for two hybrid data sets (see Online Methods). Replacing 
the variance in naive neurons with that of immature neurons resulted 
in much higher direction discriminability than using immature tun-
ing with naive variance (Fig. 7a). This suggests that within a few days 
after eye opening, the reduction of variance, albeit modest, has a 
stronger impact on improvements in direction discriminability than 
the increase in direction selectivity (MW: Z(1,998) = −4.10, P < 0.001). 
Between the immature and the mature stage, single neuron discrimi-
nability changed little (Fig. 7a) despite an increase in direction selec-
tivity during this period (Fig. 2b), which is consistent with the slight 
increase in variability observed over the same period (Fig. 2c).

To determine the degree to which developmental reductions in 
trial-to-trial variability enhance discriminability in individual 
neurons, we examined direction discriminability in longitudinally 
imaged animals. We found a significant increase in discrimina-
bility over days (Supplementary Fig. 6a,b; WSR: Z(201) = −6.56,  
P < 0.001), including within a subset of neurons that exhibited 
reduced selectivity (termed LS for low selectivity; Supplementary 
Fig. 6c). In LS neurons, the response amplitude to both the preferred 
and null stimuli did not change (Supplementary Fig. 6d; WSR: pre-
ferred: Z(30) = 1.46, P = 0.145; null: Z(30) = 0.79, P = 0.432; n = 32), 
in contrast to that in neurons with increased selectivity (termed HS 
neurons), in which the preferred response was enhanced and the null 
suppressed (Supplementary Fig. 6e; WSR: preferred: Z(110) = 5.33,  
P < 0.001; null: Z(110) = −5.20, P < 0.001; n = 112). Notably, although 
in both groups variability decreased and this decrease contributed 
significantly to a rise in discriminability, the decline in variability 
and corresponding contribution to improved discriminability were 

both significantly greater in cells lacking an increase in selectivity 
(Supplementary Fig. 6f–i; WSR: variance: LS: Z(30) = −3.85, P < 0.001, 
HS: Z(110) = −4.26, P < 0.001; MW, LS versus HS: Z(142) = −2.38,  
P = 0.017; effect of variance on discriminability, WSR: LS: Z(30) = 
4.02, P < 0.001; HS: Z(110) = 4.23, P < 0.001; MW, LS versus HS: 
Z(142) = 3.09, P = 0.002). These results show that developmental 
reductions in variability are capable of driving increased discrimina-
bility in the absence of improved selectivity.

Decrease in noise correlations improves discriminability
While direction discriminability based on the responses of single 
neurons is enhanced with age, behaviorally relevant direction dis-
criminations are likely to depend on the distribution of activity in 
populations of cortical neurons where both trial-to-trial variance and 
noise correlations are contributing factors (Supplementary Fig. 5b).  
Therefore, we sought to assess changes in discriminability in groups 
of neurons over the course of development and the contribution  
of a reduction in noise correlation and variance to these changes. 
As expected, the median discriminability increased with group  
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Red dashed lines indicate 180-degree shift from day 0. Pref. dir., 
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marker size) do not show an increase in selectivity. (g,h) Example (g) and 
average (h) tuning curves showing neurons that maintained a preferred 
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a clear preferred direction (bottom). Purple symbols in c,e–g indicate 
corresponding neurons. Error bars in g are s.e.m. across trials (n = 12). 
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reversed and developed a preferred direction, respectively). For ease of 
comparison, tuning curves were shifted to align preferred stimuli on day 5.
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size (Fig. 7b,c). Consistent with the single cell results, discriminabil-
ity improved considerably from the naive to the immature stage for 
group sizes up to N = 20 (Fig. 7b). To disentangle the different factors 
contributing to this improvement, we again constructed hybrid data 
sets combining aspects of both the naive and immature data sets (see 
Online Methods). Combining direction selectivity of the naive set 
with the variance and correlation structure of the immature cortex, 
we obtained levels of discriminability close to those reached by the 
true immature set (Fig. 7b), confirming the single-cell result above 
that, early on, the increase in direction selectivity is not the prevalent 
factor in strengthening direction discriminability.

To estimate how much of this enhancement is due to a change in 
noise correlation, rather than a decrease in (single cell) variance, we 
generated a second hybrid set, which shared direction tuning and 
variance with the naive but structure of noise correlations with the 
immature set. For group sizes of four or larger, discriminability was 

higher in this set than in the true naive set (Fig. 7b, MW: P < 0.05; 
full statistics in Supplementary Table 4) and nearly as high as when 
destroying all noise correlations in the naive set by shuffling (Fig. 7c),  
with the effects of noise correlations increasing with group size  
(Fig. 7b,d). For the immature and mature sets, differences between 
the real and trial-shuffled controls were close to zero for all group 
sizes. These results indicate that on a population level changes in the 
structure of correlations contribute considerably to the improvement 
in direction discrimination early in development.

Motion training decreases noise correlations
Our results showing changes in variance and noise correlation, and 
their contributions to improvements in discriminability, raise two 
important questions: (i) how rapidly can these changes in selectivity, 
variance and correlation, as well as their contributions to discrimina-
bility, occur? and (ii) are these changes affected by the visual experi-
ence of the animal?
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Figure 6 Correlation between decrease in noise correlation and direction 
selectivity. (a) Pairwise noise correlations decreased significantly from 
the initial to the final imaging session. Red dot indicates mean across 
all pairs and animals. (b) Relationship between change in pairwise noise 
correlation and direction selectivity (relative to day 0) for 4 animals in 
which chronic imaging was performed. In 3 of 4 cases, noise correlations 
exhibited a significant decrease by the final imaging session, whereas 
direction selectivity significantly increased (n = 33, 147 and 126 neurons 
per experiment). In one experiment (F1319, orange, n = 13 neurons), 
changes in neither DSI nor correlations were significant. Data are shown 
as mean ± s.e.m. across all neurons. Averaging across all neurons and 
pairs on the final imaging session (black) reveals a significant decrease in 
noise correlation and a significant rise in direction selectivity. (c) Cartoon 
depicting possible relationships in pairwise angular preference across 
imaging sessions. (d) Initial pairwise noise correlations were higher for pairs 
that will maintain similar preferences (S–S pairs) than those that adopt 
opposite preferences (S–O pairs). (e) Initial correlations were higher for 
pairs with opposite preferences if that pair will adopt matching preferred 
directions on the final imaging session (O–S) than for pairs that maintain 
opposite preferences (O–O).
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increased discriminability over development. (a) Single-cell direction  
discriminability increases significantly between the naive and immature 
ages (black versus dark blue). Combining immature levels of variance  
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Previous results have shown that the emergence of direction selec-
tivity is highly sensitive to the impact of visual experience shortly after 
eye opening. Stimulation with a moving (but not static) grating for 
as little as 4–6 h can induce significant changes in direction selectiv-
ity17,26, indicating that the nature of visual stimulation is critical. We 
therefore asked whether exposure to a moving stimulus induces a 
rapid decrease in variability and noise correlations and, if so, whether 
these changes improve discriminability beyond that expected from 
gains in selectivity alone. Data originally reported by Li et al.17 from 
ferrets that underwent 4–6 h of motion training (Fig. 8a) were ana-
lyzed for changes in pairwise noise correlations as a function of train-
ing. In a population of 13 neurons from an example animal (Fig. 8b,c), 
we observed a strong increase in direction selectivity, as would be 
expected following motion training (Fig. 8b, single FOV, n = 13 cells, 
mean difference ± s.e.m.: +0.29 ± 0.11, MW: Z(24) = 2.46, P = 0.014; 
for all experiments: n = 396 cells, +0.22 ± 0.02, MW: Z(394) = −11.80,  
P < 0.001). Among this same population, we also observed a  
significant decrease in pairwise noise correlations (Fig. 8c, single 
FOV: n = 14 pairs, mean difference ± s.e.m.: −0.10 ± 0.04, MW: 
Z(26) = −2.37, P = 0.018; for all experiments: n = 1,247 pairs, 
−0.022 ± 0.004, MW: Z(1,245) = −4.47, P < 0.001). In contrast, flash  
training with unmoving stimuli, which fails to elicit changes in 
direction selectivity17, not only failed to produce a decrease in noise  
correlations but actually significantly increased noise correlations 

(change +0.05 ± 0.01, MW: Z(253) = 4.78, P < 0.001, n = 255 pairs). 
In control experiments where no training stimulus was given, nei-
ther direction selectivity nor noise correlations exhibited significant 
changes (change −0.006 ± 0.005; MW: Z(1,026) = −1.19, P = 0.234,  
n = 1,028 pairs). When analyzed over all experiments, there was a  
clear relationship between increasing direction selectivity and  
decreasing noise correlations (Fig. 8d,e; correlation r(13) = −0.57; 
P = 0.025, n = 15 experiments (10 motion, 2 flash, 3 control)).  
These results demonstrate that visual experience with moving  
stimuli drives rapid changes both in selectivity and in noise correlation,  
and demonstrate that these changes depend on the nature of  
visual experience.

Next we tested the degree of specificity by which changes in noise 
correlations are inter-related with changes in direction selectivity. As 
during normal development, the largest training-induced decrease in 
noise correlations occurred in pairs with similar tuning properties 
(similar preferred direction and small cortical distance) (Fig. 8f,g; com-
pare Fig. 4d–f). However, only the cell pairs with similar tuning before 
and after training (the prevalent case) showed a significant decrease in 

Figure 8 Motion training induces decrease in noise correlations  
and increase in direction selectivity. (a) Experimental timeline.  
Shortly after eye opening, animals received 4–6 h of motion training.  
PND, postnatal day. (b) Example (from point with black error bars in d)  
of direction selectivity increase following motion training. (c) Example of 
decrease in pairwise noise correlations following motion training.  
(d) Following motion training, noise correlations decreased and direction  
selectivity increased, whereas direction selectivity did not change and  
noise correlations increased following flash training. In control animals  
with no training, noise correlations and direction selectivity remained  
unchanged. Pref. dir., preferred direction; corr. coeff., correlation 
coefficient. (e) Change in noise correlation as a function of training type,  
pooled across all animals. Error bars in d,e are mean ± s.e.m. across  
neurons. (f) Before training, noise correlation was highest in pairs for  
which the difference in preferred direction and cortical distance was  
small (map generated as in Fig. 4d–f using a Gaussian smoothing  
kernel, σx = 15 µm, σy = 15 deg). (g) The correlation in this group  
decreased after training, primarily owing to the subset of pairs 
maintaining a small difference in preferred direction, as opposed to those  
preferring opposite directions after training. (h–k) Discriminability 
measures in training data set. (h) Discriminability of the trained 
orientation increases with training. Switching the pre- and post-training 
variances (light green) did not change discriminability. (i) In larger  
groups of cells, the change in variance, but not noise correlation,  
had a detectable effect on discriminability (discrim.). (j) Effect of 
eliminating noise correlations by trial shuffling on discriminability  
in training data set. (k) Difference between solid and dashed lines  
from j. Shaded regions show ± 1 s.e.m.
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noise correlation, whereas for pairs that changed from same to oppo-
site preferred direction over training, noise correlations remained 
significantly larger (change in correlation: similar: −0.016 ± 0.007,  
n = 314; opposite: +0.007 ± 0.009, n = 121; MW: Z(433) = −2.35,  
P = 0.018). Similar results were obtained when comparing noise corre-
lations from identified populations in longitudinally imaged animals, 
where correlations for cell pairs with similar preferences on the final 
day underwent greater reductions than those for pairs with oppo-
site final-day preferences (Supplementary Fig. 7; MW: S–S versus 
S–O: Z(4,857) = −3.55, P < 0.001, n = 3,098, 1,761; O–S versus O–O: 
Z(2,448) = −2.60, P = 0.009, n = 921, 1,529). As positive noise cor-
relations are most detrimental among pairs with similar tuning10,27, 
our results suggest the changes in noise correlations both over normal 
development and induced by motion training are not simply a general 
decrease in the strength of all correlations, but may be specifically 
structured in such a way as to improve discriminability.

Motion training significantly improved discriminability in single-
cell responses along the trained orientation (Fig. 8h, mean ± s.e.m.: 
0.05 ± 0.19, n = 396 cells, MW: Z(394) = −3.28, P < 0.001). Unlike in 
our acute data set, we failed to detect a significant change in variance 
(Supplementary Fig. 8; Z(394) = −0.64, P = 0.52), and the increase 
in single-cell discriminability could be explained by an increase in 
selectivity (Fig. 8h). However, the impact of altered variability became 
apparent when examining larger populations (Fig. 8i). Removing 
noise correlations through shuffling resulted in improved discrimi-
nability, both before and after training (Fig. 8j,k, before training:  
P < 0.05 for group size >3, after training: P < 0.05 for group size >7; 
full statistics in Supplementary Table 5). However, changes in vari-
ance made a larger contribution to improved discriminability than 
changes in correlation (Fig. 8i, MW: for group size >2, P < 0.05; full 
statistics in Supplementary Table 6). These results demonstrate not 
only that changes in noise correlations and discriminability can occur 
in as little as hours but also that these changes depend on the nature 
of visual experience.

DISCUSSION
Over a brief period of time following eye opening, the population 
response in the visual cortex of the ferret undergoes a series of 
changes that dramatically improve stimulus discriminability. In addi-
tion to previously documented increases in direction selectivity12,  
we find that in the 2 to 3 weeks following eye opening, the active 
population undergoes a striking transformation from a highly dense 
response with complex spatiotemporal wave-like dynamics to a sparse 
distribution of active neurons. This transformation is characterized 
by a decline in variance and pairwise noise correlations over this 
period, occurring with the same time course and in the same neu-
ronal population as the rise in direction selectivity. The high noise 
correlations present at eye opening limit the direction discriminabil-
ity of the neuronal population, which improves significantly with the 
decline in noise correlation. In naive animals, the nature of visual 
experience appears to play a major role in these processes: experience 
with moving, but not static, stimuli drives both an enhancement in 
direction selectivity and a decrease in noise correlations, resulting in 
improved discrimination.

Dense wave-like responses dominate at eye opening
At eye opening, visual stimulation engages a high percentage of layer 
2/3 neurons, and the calcium responses in these neurons exhibit com-
plex spatiotemporal dynamics that have the appearance of propagating 
waves. Spontaneous wave-like activity appears to be a common feature 
throughout the developing brain, including the retina, thalamus and 

cortex, and is thought to help to establish orderly maps of retinotopy 
and ocular dominance through its ability to synchronize the activity of 
nearby neurons28–30. This suprathreshold activity is distinct from the 
traveling waves of fast subthreshold depolarization observed in adult 
visual cortex in response to focal sensory stimulation31,32.

The wave-like responses and the sparsification with age that we 
report here are reminiscent of changes observed in the spontaneous 
calcium activity in the developing mouse cortex, which is especially 
prominent before eye opening15. However, there are several nota-
ble differences between the waves we observe and those described 
previously in mice15,33–35. First, wave-like activity in naive ferrets is 
stimulus specific and local, rather than propagating across the entire 
cortical surface33,35. Second, the propagation direction varies greatly 
across animals, suggesting the absence of a stereotypic wave pattern34. 
Lastly, the developmental profile of cortical waves appears to differ 
across species, with waves in mice reflecting, at least in part, the trans-
mission of spontaneous retinal wave activity through the early visual 
system33,34, whereas spontaneous retinal wave activity is thought to 
have diminished by eye opening in the ferret36.

Regardless of whether the wave-like patterns of activity evoked in the 
developing ferret cortex are a reflection of retinal waves or downstream 
processes, it is clear that these patterns of activity reflect an interaction 
of this input with cortical circuitry37,38, as they are constrained by the 
architecture of orientation selective domains. It is possible that these 
intracolumnar waves serve as a source of local temporal correlation 
that promotes map refinement and local response coherence.

Response decorrelation with visual experience
In visually naive ferrets, we found that removing noise correlations 
via shuffling resulted in considerable improvements in direction 
discriminability. Thus, in the developing ferret cortex, correlated 
noise limits the performance of the population. As noise correla-
tions decrease with visual experience, these limits are relaxed and the 
population nears the performance achievable by a completely decor-
related network. Moreover, by factoring out any increase in direction 
selectivity taking place over the considered period, we found that the 
observed early changes in noise correlation and variance alone can 
lead to strong improvements in direction discriminability. The rela-
tive contribution of noise correlations becomes more apparent when 
considering larger groups of neurons (n < 20). We expect their impact 
to be even more pronounced in larger groups or neurons, but a direct 
assessment was not possible in our data owing to the limited number 
of stimulus repetitions and the early saturation in discriminability 
encountered with moving grating stimuli.

One concern that may arise is whether the use of anesthesia for 
these experiments undermines the significance of the observations. It 
is possible that the patterns of cortical activity in the awake animal at 
these ages differ from those encountered in our preparation; however, 
our results show that animals maintained under the same anesthetic 
regime at different ages exhibit profoundly different patterns of activ-
ity in response to an identical stimulus, which results in sizable differ-
ences in discriminability. How the developmental changes in cortical 
responses observed under these conditions manifest in the awake 
animal and how these changes contribute to behavioral performance 
remain important questions for future studies.

Potential circuit mechanisms for response maturation
The decline in noise correlations during the period following eye open-
ing represents a major operational shift for the developing cortex, from 
a design that is well suited for maximizing the correlations in patterns 
of spontaneous activity necessary to build circuits to a design that  
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minimizes correlation in order to improve discrimination of activity 
patterns evoked by sensory stimulation. A refinement of feedforward 
inputs along with an increase in the degree of preferential intercon-
nectivity among similarly tuned cells39,40 could account for many of our 
results, including the increases in selectivity and sparseness, as well as 
the decrease in wave-like activity. As noise correlations can reflect com-
mon inputs24,25, such refinement could also drive reductions in noise 
correlations.

The maturation of intracortical inhibition over this period of  
development41,42, which likewise can promote response selectivity43 and 
sparsification44, dampen wave-like activity and decrease noise correla-
tions45–49, is also likely to contribute. Ultimately, whether the result of a 
refinement of excitatory connections, a maturation of inhibition or both, 
population response properties undergo dramatic changes following 
eye-opening that have profound effects on stimulus discriminability.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Animals. All experimental procedures were approved by the Max Planck Florida 
Institute for Neuroscience or the Duke University Institutional Animal Care and 
Use Committee and were performed in accordance with guidelines from the US 
National Institutes of Health. Female ferret kits were obtained from Marshall 
Farms and were housed with a jill on a 16 h light/8 h dark cycle. Kits were  
examined daily to determine the date of eye opening.

Viral injections and gcaMP imaging. Microinjections of  
AAV2/1.hSyn.GCaMP3.WPRE.SV40 (ref. 50; obtained from University of 
Pennsylvania Vector Core) were made into the visual cortex approximately  
7–14 d before imaging (range 6–22 d) using pulled glass pipettes and aseptic 
surgical technique. Anesthesia was induced with ketamine (50 mg/kg) and  
maintained with isoflurane (1–2%) and nitrous oxide (0–50% in oxygen). 
Atropine (0.2 mg/kg) was given at induction to reduce bronchial secretions. 
Animals were maintained at approximately 37 °C with a homeothermic heating 
blanket. Skin and muscle overlying visual cortex were reflected and a small burr 
hole was made with a hand-held drill (Fordom Electric Co.). Approximately  
1 µL of virus was injected over 10 min using a Nanoject-II (WPI). Following  
the injection, muscle and skin were sutured closed and the animal was recovered 
and returned to its home cage.

After allowing time for expression of GCaMP3, animals were anesthetized as 
before, a tracheotomy was performed and an IV catheter was inserted into either 
the femoral vein or the external jugular vein. Animals were mechanically venti-
lated and heart rate and end-tidal CO2 were monitored throughout the experi-
ment. A metal headplate was implanted over the injected region and a craniotomy 
(~5 mm) was performed. Dura was resected and the brain was stabilized with 
2% agarose and a coverslip.

For imaging, isoflurane was reduced to 0.5–1% and animals were paralyzed 
with vecuronium bromide (2 mg/kg/h in lactated Ringer’s, delivered IV). This 
anesthetic regime produced highly stable heart rates of 280–300 b.p.m. for  
the duration of imaging, with end-tidal CO2 levels stably maintained between 
35–40 mm Hg. Phenylephrine (5%) and tropicamide (0.5%) were applied to  
the eyes to retract the nictitating membrane and dilate the pupil, and the cornea 
was protected with silicon oil.

Visual stimulation and two-photon imaging. Visual stimuli were delivered on 
an LCD screen placed approximately 25–30 cm in front of the eyes. Stimuli were 
full-field sinusoidal gratings at 100% contrast, at 0.06–0.08 cycles per degree, 
drifting at 4 Hz, presented at one of eight directions of motion. Stimuli were 
randomly interleaved and were presented for 5 s followed by a 5 s gray screen. 
A 5 s gray screen was used as a blank stimulus and was interleaved with grating 
stimuli. Stimuli were produced using either Matlab (The MathWorks Inc.) and 
Psychtoolbox51,52 or PsychoPy53.

Two-photon imaging was performed with an Ultima IV microscope (Prairie 
Technologies) driven by a Mai-Tai DeepSee laser (Spectra Physics) at 910 nm. 
Images 512 × 512 pixels were collected at 0.6–1.6 Hz. In a subset of experiments, 
imaging was performed using a resonant scanner (Prairie Technologies). In these 
experiments, rectangular images (512 pixels × 256 lines with a 1:2 aspect ratio) 
were collected at 60 Hz and downsampled to 15 Hz by averaging every 4 suc-
cessive frames. Before analysis, these images were resized to 512 × 512 pixels via 
bilinear interpolation along the vertical dimension.

data analysis. Data analysis was performed in ImageJ and Matlab, using MIJ 
(D. Sage, D. Prodanov, J. Tinevez and J. Schindelin, MIJ: making interoperabil-
ity between ImageJ and Matlab possible, ImageJ User & Developer Conference, 
24–26 October 2012, Luxembourg, http://bigwww.epfl.ch/sage/soft/mij/). In this 
study, we used fluorescent calcium sensors to report the activity of large popula-
tions of neurons simultaneously. The relative change in fluorescence of all three 
calcium sensors used in this study (GCaMP3, GCaMP6s and OGB) has been 
shown to be proportional to firing rate, and this relationship is roughly linear 
over the range of firing rates commonly observed in the visual cortex of juvenile 
ferrets13,23,50,54–57. To extract fluorescence traces from image stacks, ROIs were 
manually drawn around identified neurons and raw fluorescence for each frame 
was computed as the mean of all pixels in the ROI. Fluorescence traces were 
filtered with a first-order high-pass Butterworth filter with a cut-off time (TC) 
of 300 s. Similar results were obtained using ∆F/F with F0 taken as the last 2 s  

of the inter-stimulus interval immediately preceding stimulus onset. Stimulus-
evoked responses were taken as the average high-pass filtered fluorescence over 
the full stimulus interval. Neurons were considered visually responsive and ana-
lyzed further if the response to the preferred stimulus (averaged across trials) was 
both greater than zero and 2 s.d. above the blank response.

To determine the density of the population response, a neuron was considered 
responsive on a given trial if its response to any stimulus on that trial was greater 
than 2 s.d. above the response to a blank stimulus. Only neurons exhibiting at 
least one response during the imaging session (>90% of neurons) were included 
in this analysis, to prevent counting poorly labeled or unhealthy neurons as unre-
sponsive. To examine the stimulus specificity of response density, we aligned all 
FOVs by the dominant stimulus—that which evoked a response in the largest 
fraction of neurons within the imaging field.

To compute tuning curves and determine the preferred direction (θpref), 
responses were averaged across trials and fit with a two-peaked Gaussian func-
tion, where the peaks were constrained to be 180° apart. Poorly fit (correlation 
between fit and actual responses with P > 0.05) or unresponsive neurons were 
excluded from further analysis. Orientation and direction selectivity were com-
puted as described17 

OSI
Pref Orth
Pref Blank

ori

ori
=

−
−







min ,1

where

Pref mean(Resp Respori pref pref= +( ), ( ))θ θ 180

Orth mean Resp Resppref pref= + −( ( ), ( ))θ θ90 90

and

DSI
Pref Opp
Pref Blank

dir

dir
=

−
−







min ,1

where 

Pref Resp and Opp Respdir pref pref= = +( ) ( )θ θ 180

Only neurons with significant orientation selectivity (Hotelling’s t2-test with  
P < 0.05; see ref. 17) were included for analysis of direction selectivity.

Pairwise noise correlations were calculated by first attempting to remove all 
signal correlations between neurons. This was achieved by filtering the data with 
a short cut-off time, first-order Butterworth filter (TC = 5 s), then Z-scoring the 
data individually for each stimulus with respect to the mean of that stimulus. 
The Z-scored responses (containing all data points acquired during the stimulus 
presentation) were then concatenated across all stimuli and the blank condi-
tion. Pairwise noise correlations were then computed using the Matlab corrcoef 
function. To prevent contamination of the fluorescence signal from neighboring  
neurons, we only considered pairs separated by at least 30 µm. Because of the 
slower scanning rate (0.5–0.7 Hz) for the training data, two cells were required 
to be sampled within 100 ms of each other to be included in the pairwise  
correlation analysis.

Nonparametric statistics were used unless noted, with Kruskal-Wallis (KW) tests 
followed by post hoc Mann-Whitney U tests (MW). Wilcoxon signed-rank tests 
(WSR) were used for paired comparisons. Data are presented as mean ± s.e.m.

Analysis of wave-like responses. Only experiments performed with a resonant 
scanner were used for the analysis of wave-like responses. To compute temporally 
colored images (Fig. 3a,b), images were Z-scored pixel-wise relative to the mean 
and s.d. of images collected during blank stimuli. Images were then smoothed 
with a mean filter (2 × 2 pixels in x and y and 2 frames (0.133 s) in t). Frames 
were then binned into 0.26-s intervals, averaged, and pseudocolored by time. 
Finally, pseudocolored images were summed across the full stimulus period. For 
calculating the average wave image (Fig. 3c), only trials with a significant linear 
wave (see below) were included.

To determine the presence of a linear wave, we used methods based on those 
of Siegel et al.34. First we found the peak response time (tpeak) for each responsive 
neuron on a given trial. For this analysis, a neuron was considered responsive if its 
fluorescence was >3 s.d. above the response to a blank stimulus for six successive 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)
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frames. Response onset was defined as the first time during the response that the 
fluorescence exceeded 1 s.d. above the blank. Peak response times were then fit 
with a linear traveling wave, where the response time (tfit) is given by

t p v tfit = +/ 0

where v is the velocity of the wave along its propagation direction and t0 is the 
time the wave crossed the origin of the image coordinate system (positioned at 
the top left pixel). p is the projection of the neuron’s x and y coordinates onto a 
unit vector describing the waves propagation angle:

p x y= ⋅( ) ( ), cos ,sinq q

where x and y define a neuron’s position and θ is the propagation angle of the 
wave. The error of the fit was defined as the sum of squared errors of tfit relative 
to tpeak, and v, θ and t0 were adjusted to minimize this error. For each stimulus, 
we then calculated a goodness of fit by shuffling tpeak 100 times, refitting each 
shuffled data set, and determining an error. The fraction of shuffled responses 
with errors larger than that of the original data set acts as a waviness index, giving 
an indication of the waviness of the response. (For a wave-like event, shuffling 
the response times should produce fits with higher errors.) Only responses with 
waviness indices >0.9 were considered as waves and included for determining 
velocity and propagation direction.

Given the frame rate of our microscope and the size of our FOVs, there was 
an upper limit to the wave velocity that we were able to observe. We estimate that 
this detection limit is faster than 1,500 µm/s. At such a velocity, a wave would 
traverse our FOV (512 pixels at 0.77 µm/pixel) in 4 imaging frames, ensuring that 
the wavefront position could be captured by at least three images. This threshold 
is approximately 6 times greater than the mean velocity (and 8 times greater than 
the median velocity) that we observed in naive animals (Fig. 3g).

If neurons are distributed in an elongated manner within a FOV, it is possible 
that our ability to detect waves propagating along the short axis could be reduced. 
If such an aperture effect is present in our data, then the ability to detect a wave 
traveling along the short axis should depend on the wave velocity, and fast moving 
waves should be under-represented along this axis. To determine whether such 
an effect is present in our data, we computed the velocities of waves traveling 
within 22.5° of either the long or short axis of a FOV. Considering only naive 
animals, in which both the frequency and velocity of waves were relatively high, 
there was no significant difference between velocity distributions for the two 
propagation directions (mean ± s.e.m. 310.0 ± 63.2 versus 281.2 ± 58.9 µm/s;  
n = 30 and 17, respectively; MW: P = 0.816). Furthermore, the asymmetry in 
wave propagation direction we report is present even if we discard from our 
analysis all waves that moved faster than the short-axis velocity detection limit 
(taken conservatively to be 400 µm/s; see below), showing that this effect cannot 
be from a bias in detectability.

To demonstrate the robustness of our detection algorithm, we performed a 
sensitivity analysis using simulated wavefronts. We constructed FOVs of 200 
neurons with positions drawn from a two-dimensional Gaussian distribution 
with covariance similar to that of our actual data. Propagation directions were 
drawn from a uniform distribution of 0 to 2π and velocities drawn from a uni-
form distribution of 2,000–3,000 µm/s. To simulate a wave, response times were 
calculated for a subset of cells, with the number of cells participating in each wave 
drawn from a uniform distribution between 5 and 40, with a random selection 
of cells from within the 200-cell FOV for each wave. Detection is more difficult 
with low numbers of participating neurons, and this range covers the lower range 
observed in naive animals (mean ± s.d. 38 ± 28, with quartiles of 16, 31.5 and 
53 cells per wave), where we required at least five active neurons to define a 
wave. After calculating the response times of participating cells, uniform noise 
(scaled to be 50% of the range of response times on a given wave) was added and 
response times were binned into intervals of 1/15 s to match the imaging frame 
rate. Each simulated wave was then fit, and the same detection threshold used 
for the actual data was applied. In simulated data, our algorithm readily detected 
waves traveling between 2,000 and 3,000 µm/s (84.5%, 845 of 1,000, with 5–40 
active neurons per wave), suggesting that 1,500 µm/s is a conservative estimate 
of the upper limit for detection.

We also repeated our simulations using highly elliptical FOVs (mean ellipticity 
>0.84), with wave velocities drawn from a normal distribution with mean and 
s.d. of 1,000 µm/s. In these FOVs, our detection algorithm identified 92.7% (395 

(6)(6)

(7)(7)

of 426) of waves traveling 1,000–2,000 µm/s, containing on average 23 active 
neurons per wave, including 87.8% (101 of 115) of waves traveling within 22.5° 
of the short axis. For waves traveling under 1,000 µm/s, the detection rate along 
the short axis increased to 98.1%. In our data set, FOVs had much lower ellipticity 
(<0.61) and the majority of waves had velocity much less than 1,000 µm/s (aver-
aging approximately 250 µm/s). Thus, for realistic ellipticity and wave velocity, 
we are able to detect waves traveling in all directions and the asymmetries in 
propagation direction that we observe are not due to an inability to detect certain 
wave trajectories.

To determine the contribution of wave-like responses to noise correlations in 
the naive group, we calculated correlations using only trials with linear waves and 
compared these to correlations on trials with the same stimuli, but without waves. 
Only stimuli that evoked at least two waves were included in this analysis.

longitudinal two-photon calcium imaging. Kits were implanted with a  
custom-designed headplate at P24–25. The headplate design accommodates 
an 8-mm-diameter coverslip (World Precision Instruments) held in place by a  
stainless steel retaining ring (McMaster Carr) that fits securely underneath a 
lip in the headplate, securing the coverslip in place and providing mild pressure 
(Fig. 5a). The headplate also features a protruding tab allowing the headplate 
to be clamped in a custom-built animal holder during surgery and imaging. 
The imaging chamber was designed to allow ready and repeated access to  
the cortex to remove any tissue or neomembrane58 that may regrow over the 
imaging field.

During surgery, animals were anesthetized as above, except that animals were 
intubated and ventilated mechanically. Respiration parameters were adjusted  
to maintain end-tidal CO2 at 35–40 mm Hg. During some portions of the  
surgery (durotomy and microinjection), animals were mildly hyperventilated 
to ~30 mm Hg to reduce edema. The skull overlying visual cortex was exposed, 
and a thin layer of cyanoacrylate (Vetbond, 3M) was applied and allowed to dry. 
The headplate was then positioned in place and attached to the skull with dental 
cement (C&B Metabond, Parkell Inc.). Once the cement had dried, a second layer 
of black cement (OrthoJet, Lang Dental mixed with powdered pigment: iron 
oxide, Dick Blick Art Supply) was applied. A craniotomy (~5 mm diameter) was 
performed over visual cortex and dura was carefully removed. In two animals 
(F1317 and F1319), AAV expressing GCaMP3 was injected as above. In two  
more experiments (F1473 and F1509) conducted after the release of GCaMP6, 
AAV1.Syn.GCaMP6s.WPRE.SV40 (ref. 57, obtained from University of 
Pennsylvania Vector Core) was injected in place of GCaMP3. Following the 
injection, warm agarose (2% in ACSF with Baytril (0.45 mg/mL)) was applied to 
the cortex and a glass coverslip was quickly inserted. The coverslip was secured 
with a retaining ring coated in silicone polymer (Kwik-Kast, World Precision 
Instruments) to seal the chamber. Following surgery, animals were recovered 
from anesthesia and returned to their home cages.

Approximately 1 week after this surgery, animals were returned to the imaging 
room, anesthesia was induced with ketamine, atropine was administered and 
anesthesia was maintained with isoflurane as above. Animals were intubated and 
ventilated, and an IV catheter was placed in the cephalic vein. In some imaging 
sessions, it was not possible to catheterize the cephalic vein; in these cases an IP 
catheter was inserted. If necessary, the chamber was opened under aseptic condi-
tions, any regrown tissue or neomembrane was removed, agarose and a coverslip 
were reapplied and the chamber was resealed. This was usually necessary about 
1–2 weeks after implantation and could typically be performed without causing 
apparent damage to the underlying cortex. In approximately half of the imag-
ing sessions, the chamber remained optically clear and no tissue regrowth was 
apparent. Immediately before imaging, animals were paralyzed with vecuronium 
bromide (0.1 mg/kg/h in lactated Ringer’s).

Two-photon imaging was performed as above and lasted approximately 3 h, 
containing approximately 45 min of visual stimulation. Imaging sessions were 
kept as short as possible to minimize the potential for inducing training effects, 
which can be observed in young ferrets following 4–6 h of continuous exposure 
to moving stimuli17. The imaged field of view could be approximately identified 
on the basis of surface blood vessel patterns, and two-photon z-stacks were taken 
from the cortical surface through the imaging plane to aid alignment. Following 
imaging, vecuronium was stopped and paralysis was antagonized with neostig-
mine (0.06 mg/kg), delivered with atropine (0.2 mg/kg). Isoflurane was discontin-
ued, and animals were removed from the ventilator once spontaneous respiration 
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was observed. Sessions were repeated every 2–3 d until imaging quality degraded 
or the imaging FOV could not be conclusively identified. 

Alignment of images across sessions was performed with an affine transform 
and data were analyzed as above. Only neurons that were visible and could be con-
clusively identified across all imaging sessions were included in this analysis.

To identify neurons with stable and reversing direction preferences, a boot-
strapping analysis was performed as described by Li et al17. Neurons with less 
than a 10% likelihood of reversing preference were considered stable and neurons 
with >90% likelihood of reversing were considered reversing neurons. Neurons in 
which the initial direction preference was highly uncertain17 (uncertainty > 10%)  
but became certain (uncertainty < 10%) by the final session were classified as 
having initially lacked a preferred direction but developed one over sessions. To 
compare average tuning curves across neurons, curves were aligned on the basis 
of the preferred direction on the final imaging session.

ogB data and analysis. Data from Li et al.17 were analyzed for changes in noise 
correlations as described above. Briefly, in these experiments animals were 
imaged shortly following eye opening after bulk-loading the calcium indicator 
OGB1 (full methods available in ref. 17). Direction tuning curves were mea-
sured both before and after 4–6 h of motion training. Motion training consisted 
of repeated presentations of a grating drifting in a single orientation (the two 
directions of motion were interleaved). Another group of animals received flash 
training, in which a static grating stimulus was shown. As a control, a third 
group of animals received no training and viewed a static gray screen during 
the entire training period. To ensure continuity within the studied population, 
we have restricted analysis to neurons that could be conclusively identified  
both before and after motion training and that were visually responsive  
throughout the experiment. We assessed responsiveness by computing the signal-
to-noise ratio: the size of response to the preferred direction relative to size of 
fluctuations during unstimulated periods of each cell. We restrict our analysis 
to a subpopulation of cells for which the distribution of signal-to-noise ratio 
did not change significantly over the training period. In this way, we insure  
that a net change in cell responsiveness did not underlie the change in mean 
correlation in the population.

discrimination analysis. For a given set of neurons, we defined discriminability 
to be 1 minus the normalized overlap between the population response distribu-
tions using a Gaussian approximation, which captured the observed responses 
well (Supplementary Fig. 9). More concretely, consider a set of N neurons with 
ri,t being the response of N neurons at trial t = 1 … Nt to stimulus i = 1 … NS. We 
computed ri , the sample mean response to stimulus i, as

r ri
t

Nt
i t=

=
∑

1
,

Covariance was assumed to be stimulus-independent and computed over all eight 
stimuli after subtracting stimulus means:

C
N Nt S

i t i i t it
Nt

i
NS= − −== ∑∑1

11 ( )( ), ,r r r r T

With the covariance matrix C and mean responses to stimuli i and j, the discrimi-
nability of stimulus pair {i,j} is

D i j
I C

I C
i j( , )

({ , }, )
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= −

〈 〉 〈 〉
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r r
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+
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where Ioverlap is the integrated product of the stimulus-dependent response  
distributions:
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(8)(8)

(9)(9)

(10)(10)

(11)(11)

Here we assumed a multivariate Gaussian distribution of cell responses with 
covariance C. Equation (11) reduces to

D i j Ci j
T

i j( , ) exp ( ) ( )= − − − −





−1 1
4

1r r r r

Large overlap yields a small discriminability. If the stimulus means ri  are equal, 
the discriminability is 0. No overlap yields perfect discriminability (1).

To compute the shuffled discriminability, we computed the covariance matrix 
from trial-shuffled responses. Means ri  were unchanged. The measure of dis-
criminability used here is related to the sensitivity index d′ (ref. 59). For a subset 
of the data, we computed discriminability using a low-rank approximation of the 
noise covariance matrix, which was obtained from the singular value decomposi-
tion (SVD) of the noise covariance matrix. Results were consistent with the full 
covariance matrix discriminability. In longitudinally imaged animals, discrimi-
nability was only assessed for neurons in which the stimulus orientation evoking 
the largest response did not change across sessions.

Variance and covariance exchange across data sets. To disentangle the effects 
of a shift in mean and a shift in variance over development, we computed 
direction discriminability for two hybrid cell sets: the first was composed by 
using the average activities (direction selectivities) from the naive data set but 
taking the variances from the immature set, and the second combined the 
variances of the naive set with the averages of the immature set. Since cells 
from the two data sets were not identical (typically from different animals), 
we assigned cell pairs across sets by matching the rank of their average activity 
or variance, respectively.

Specifically, we computed discriminability by drawing mean responses from 
a population of cells in naive animals and variances from populations of cells in 
immature animals. Mean responses were rank-matched to variance in the fol-
lowing manner. We drew from the available naive (N = 1,159 cells) and immature  
(N = 763 cells) populations equal-sized subsets of N = 700 cells. For each cell 
in the naive population, we computed the rank of the mean response to the 
preferred direction and the rank of the variance. This was repeated for the imma-
ture population. We then assigned cell pairs across sets to be rank-matched. For 
instance, if a cell in the naive population had mean response with rank m, it was 
matched with the variance of the cell in the immature population that had mean 
response with rank m. This gives the set of ‘cells’ with naive means and immature 
variances. For the reverse, naive variances with immature means, we took the 
nth-rank variance from the naive population and matched it with the mean 
response corresponding to the nth-rank variance in the immature population. 
This method ensures that the statistical relationship between mean activity and 
its variance is preserved.

The method for exchanging variance and covariance among subsets of  
cells is a two-step process: first, to match each group of cells from the naive set  
to a group of cells from the immature set, and second, to determine the cell-
by-cell matching between each pair of groups. To construct groups of cells, we  
rank-matched as described above on the basis of the highest group-average 
response and the determinant of the covariance matrix. Within each group 
of N cells, we used rank matching based on the N mean responses to the  
preferred direction and on the N individual-cell variances. Effectively, this 
reorders the rows and columns of the covariance matrix. At this stage, we  
can compute discriminability with naive means and immature variance  
and covariance. To separate covariance and variance, we computed the cor-
relation matrix rij from the (immature) covariance matrix (Cij) using immature 
single-cell variances ( si

I )

r
C

ij
ij

i
I

j
I=

s s

and transformed this back to a covariance matrix using the individual cell  
variances from the naive data set ( si

N ):

 ′ =C rij ij i
N

j
Ns s

The matrix ′Cij  was used to compute discriminability with immature correlation 
structure and naive mean and variance.

(12)(12)

(13)(13)

(14)(14)
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In the training data set, we had the same populations of cells, so rank  
matching was not required to match pre- and post-training covariance and means. 
Variance and covariance were separated as described above, by first converting to 
a correlation matrix and then using pre-training single-cell variance to compute 
the covariance matrix from the correlation matrix.

A Supplementary Methods checklist is available.
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