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Rubik’s on the Torus
Jeremy Alm, Michael Gramelspacher, and Theodore Rice

Abstract. Rubik’s Slide is an electronic puzzle in the same style as other puzzles in the Ru-
bik’s family. It will be of interest to puzzle enthusiasts as well as to teachers and students of
mathematics. This paper analyzes the puzzle using tools from group theory and graph the-
ory. We discuss solution heuristics and model game-play using group theory. We briefly give
results concerning solutions requiring a minimal number of moves.

1. INTRODUCTION. Rubik’s Slide1 is a new electronic game that will be of interest
to many mathematicians and teachers of mathematics. The flat display is a 3× 3 grid
of square lights that is reminiscent of both the original Rubik’s Cube and the classic
15-slide-number puzzle. Rubik’s Slide is much more accessible than the Rubik’s Cube
and is much richer than the 15-puzzle. Indeed, this puzzle lends itself to analysis using
group-theoretic and graph-theoretic techniques which should be accessible to students
who have taken a semester of abstract algebra; their instructors might find useful ideas
here—even a vehicle, in the Rubik’s Slide, for introducing group theory in the first
place. (The interested reader may wish to consult David Joyner’s Adventures in Group
Theory [4] for exposition on the Rubik’s Cube and the 15-puzzle.)

The goal of the game is for the player to transform a given initial state into a given
final state using a set of allowed moves. At the beginning of play, a puzzle consisting
of an initial state and final state is generated randomly. The player is shown the initial
state on the display: some of the squares are illuminated in red or blue. The press of
a button displays the final state. The number of squares of each color varies with each
particular puzzle, but the total number of illuminated squares will not exceed six.

The allowed moves are a shift by one space, either up, down, left, or right, and
a rotation of the border squares by one space, either clockwise or counterclockwise.
The 3× 3 grid is topologically equivalent to a torus, so when the squares shift to the
right, the rightmost column wraps around to the left, and so on. Note that these moves
are quite different from the moves on the Rubik’s Cube; on the Rubik’s Slide, there
is but one face. To make a move, the player manipulates the display relative to the
base of the device. For example, for a clockwise rotation, the player twists the display
clockwise against the base. Let us consider an illustration. Applying a shift of one
space to the right,

becomes ;

applying a shift of one space down,

becomes ;

http://dx.doi.org/10.4169/amer.math.monthly.120.02.150
MSC: Primary 00A08, Secondary 20B99; 05C90

1www.rubiksslide.com. There is a tutorial available on the web site.
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and applying a rotation of one space clockwise,

becomes .

Players can choose from three levels of difficulty: easy, medium, and hard. What
distinguishes the easy mode from the others is that rotation is by two spaces, not one—
one “twist” of the display rotates the grid of squares by 90◦. This significantly reduces
the difficulty of puzzles. As we will show in Section 3, puzzles in the easy mode really
are much easier to solve than those in the other modes.

In the medium mode, only one color—sometimes red, sometimes blue—is used in
any given puzzle. In the hard mode, both red and blue squares may appear in a puzzle,
making that mode’s puzzles potentially more challenging. In Sections 5 and 6, we give
strategies for solving all medium-mode and some hard-mode puzzles.

The reader may wish to try a sample (hard-mode) puzzle to experiment with the
game. A solution is given at the end of the paper.

Initial State Final State

One advantage of the Rubik’s Slide is that it is electronic—while there are count-
less Rubik’s Cubes stored away in boxes, hopelessly scrambled and never to be solved
by their owners, Rubik’s Slide can simply be reset by a frustrated player. Also, since
the display is two-dimensional, it can be represented easily on a chalkboard. The sizes
of the various state spaces are manageable, and the moves can be represented as per-
mutations in S9, the symmetric group on nine letters. The third author has introduced
some of these concepts in his classes, including classes for non-majors, and his stu-
dents have responded with enthusiasm. We hope that the Rubik’s Slide will enliven
abstract algebra classes everywhere.

2. SET-UP. We begin by defining permutations in S9, using cycle notation, that rep-
resent the six allowed moves in the game. Let ε denote the identity permutation. We
label the squares in the 3× 3 grid as follows:

1 2 3

4 5 6

7 8 9

.

We define h (for horizontal) to be the permutation (1 2 3)(4 5 6)(7 8 9) in S9.
Clearly, h shifts each of the numbered squares one space to the right. The action of
this move on the numbered squares is depicted below:

1 2 3

4 5 6

7 8 9

h
7−→

3 1 2

6 4 5

9 7 8

.
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Similarly, we define v to be the permutation (1 4 7)(2 5 8)(3 6 9).

1 2 3

4 5 6

7 8 9

h
7−→

7 8 9

1 2 3

4 5 6

.

Finally, we define c to be (1 2 3 6 9 8 7 4), a clockwise rotation of the outer squares.

1 2 3

4 5 6

7 8 9

h
7−→

4 1 2

7 5 3

8 9 6

.

Throughout the rest of this paper, we will use the term move to refer to any of h,
h−1, v, v−1, c, c−1. (Naturally, when discussing easy-mode play, the term move will
refer to any of h, h−1, v, v−1, c2, c−2.) An element of S9 that is a product of these, such
as h−1vc3, will be called a sequence of moves.

For ease of reading, we adopt the convention of multiplying permutations from left
to right, though this differs from the practice found in many standard texts, such as [2].

We focus for now on the medium and hard modes of the game. A natural question
arises: Which subgroup of S9 is generated by the moves h, v, and c? We begin with
some lemmas.

Lemma 1. The subgroup 〈h, v〉 generated by h and v is Abelian and of order 9.

Proof. By inspection, hv = (1 5 9)(2 6 7)(3 4 8) = vh. Since h3
= v3

= ε, 〈h, v〉 =
{hiv j

: i, j = 0, 1, 2}. A quick check of cycle structures reveals that all such hiv j are
distinct.

A second lemma may be proven computationally.

Lemma 2. c3h = (1 4)(2 7 3 9 5 6 8) and (c3h)7 = (1 4).

Theorem 3. The group 〈h, v, c〉 contains every transposition in S9; hence 〈h, v, c〉 =
S9.

Proof. To transpose two squares, x and y, repeatedly apply h or v to move x to Position
5; call this sequence of moves σ . Then use an appropriate power of c to rotate y around
to Position 2; call this sequence of moves τ . Now apply h−1; this places x in Position
4 and y in Position 1. Swap x and y by applying (c3h)7, then apply hτ−1σ−1. The
resulting product of moves, στh−1(c3h)7hτ−1σ−1, equals the transposition (x y).

Thus, every medium- or hard-mode puzzle is solvable, even in the hypothetical
situation in which every square is a different color. In fact we have this theorem, which
follows from the easily-verifiable fact that v = c2h2c−2.

Theorem 4. Any puzzle may be solved using only c and h and their inverses.

This reminds the authors of the fact that the standard 3× 3× 3 Rubik’s Cube may
be solved without using the bottom face. See David Benson’s nice proof of this fact on
page 768 in [1].

In the following sections, we focus more explicitly on puzzles in the game’s easy,
medium, and hard modes.
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3. THE EASY MODE. Recall that the easy-mode puzzle moves are c2, h, v and their
inverses.

Definition 5. Two puzzle states are said to be easy-equivalent if they are reachable
from one another by a sequence of moves from 〈c2, h, v〉. The equivalence classes
resulting from this equivalence relation are called easy-mode families.

In the easy mode, there are several varieties of puzzles.2 The first puzzle that comes
up when the easy mode is activated usually contains a single colored square in its
initial (and hence in its final) state. This is trivial to solve, and can be done in two or
fewer moves from {h±1, v±1

}. A simple interesting case is when a puzzle’s initial state
contains exactly one red and one blue square. There are 72 such states, which comprise
two easy-mode families, each of size 36. To prove that in this case there are at least
two easy-mode families, we show that the states

and

are not easy-equivalent. To see this, recall that we can view the face as being on a torus
so that, for instance, squares in Positions 2 and 8 share an edge. Any easy-mode move
will preserve the property of two squares sharing an edge. In the state on the left, the
red and blue squares share an edge; in the state on the right, they do not. It is tedious
but straightforward to check that each of these two states lies in an easy-mode family
of size 36. Hence there are exactly two easy-mode families in this case.

By the same reasoning, we can see that

and

are not easy-equivalent. These states, however, each lie in easy-mode families of size
36
2 = 18.

The following theorem, along with its proof, provides powerful tools for analysis
of easy-mode puzzles.

Theorem 6. No easy-mode family contains more than 36 states, and every easy-mode
puzzle can be solved in four or fewer moves.

Proof. Let σ ∈ 〈c2, h, v〉. Then there are integers k,m, n with −1 ≤ k ≤ 2, −1 ≤
m ≤ 1, −1 ≤ n ≤ 1, so that σ = (c2)khmvn . To see this, note that σ can be converted
into the form (c2)khmvn using the following easily-verified relations, along with the
fact that h and v commute:

c2h = v2c2,

c2h2
= vc2,

c2v = hc2,

c2v2
= h2c2,

c−2h = vc−2,

2To the best of our knowledge, the Rubik’s Slide never gives the user an unsolvable easy-mode puzzle.
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c−2h2
= v2c−2,

c−2v = h2c−2,

c−2v2
= hc−2.

Hence, σ is equivalent to a sequence of moves that uses at most two rotations, at most
one horizontal shift, and at most one vertical shift. Given any initial state, therefore,
any state in its easy-mode family can be reached using one of the 36 sequences of
moves of the form (c2)khmvn .

Because the form (c2)khmvn ,−1 ≤ k ≤ 2,−1 ≤ m, n ≤ 1 is so useful, we will call
it the canonical form of the permutation σ . The power of the canonical form will be
illustrated in Section 4, where it will be used to describe the relationship between two
states, without any need to specify how many red and blue squares are present.

4. THE STATE-SPACE GRAPH. We associate with each easy-mode family a
graph, whose vertices are labeled with the states in the family, and in which two
vertices are connected by an edge if one is obtained by applying a single legal move
(c2, h, v or one of their inverses) to the other. (The edges may be viewed as undirected,
since every legal move is invertible.) We call this graph the state-space graph of the
family.

Theorem 7. Let G be the state-space graph for any easy-mode family of size 36. Then
G admits a Hamilton cycle, that is, a cycle that contains each vertex of G exactly once.

Proof. Choose any vertex V0. For any other vertex V , there exists a sequence of legal
moves that transform V0 into V . This sequence of legal moves has a unique canonical
form. Label V with that canonical form. (Thus V0 gets the label ε.) Let k1 and k2 be
integers, with 0 ≤ k1 < k2 ≤ 35. It is tedious but straightforward to check that for the
following word,

w = hc−2c−2h−1c2c2c2v−1v−1h−1vvc−2c−2c−2hc2c2

h−1c−2c−2vc2h−1c−2c−2vvc−2c−2c−2hc2c2h−1v,

the product of the first k1 terms has a different canonical form than the product of the
first k2. Let w0 = ε, w1 = h, w2 = hc−2, and so on up to w36 = w. For each i , wi

corresponds to a vertex in G, so we may consider the sequence {wi } as a sequence of
vertices. Since each wi+1 is one legal move from wi , those two vertices are adjacent.
Thus the sequence {wi }

35
i=0 is a path that visits each vertex once and only once. Since

w0 = w36, {wi }
36
i=0 is a Hamilton cycle.

For an illustration of the Hamilton cycle, see Figure 1, in which straight lines rep-
resent either h or h−1, dotted lines represent either c2 or c−2, and wavy lines represent
v or v−1. The heads on the arrows represent one direction in which the cycle can be
traversed.

The Hamilton cycle allows us readily to solve any puzzle in the easy mode by
simply following the cycle until the final state is reached. If we had memorized the
sequence of moves above, we could even solve any easy-mode puzzle blindfolded!
We note that in the case of puzzles situated in smaller easy-mode families, while the
sequence above may not give a Hamilton cycle, it will still visit each vertex at least
once and hence will still solve any puzzle.
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h

ε

v–1

hv–1

c2 h

c–4vc–2 h–1

c2hv h–1v–1 c2 hv–1

c2 v c2h–1

c–2 c4 c–2h c4v–1

c2v h–1 c2v–1 vh c2h–1v h–1v c2h–1v–1

c–2v–1 c4h–1 c–2v c4h c–2hv–1 c4h–1v–1 c–2hv c4hv–1

c–2h–1v–1 c4h–1v c–2h–1v c4hv

Figure 1. Hamilton cycle

5. THE MEDIUM MODE. Now we consider solutions to medium-mode puzzles.
We remind the reader that in this mode only one color—either red or blue—is used in
any given puzzle, but that we may use the move c (not just c2, as in the easy mode).

If just one or two squares are colored, the resulting puzzles are not difficult to solve;
the solutions to such puzzles are left to the reader! If three (respectively, four) squares
are colored, consider all possible such states with the center square colored. Call any
two such states equivalent if one can be reached from another by a power of c, i.e., by
a rotation.

There are four such equivalence classes in the case of three colored squares, and
seven equivalence classes in the case of four colored squares. We construct diagrams
with representatives of these classes as vertices, and call them respectively the “Wheel
of 4” and the “Wheel of 7.” See Figure 2 and Figure 3.

h–1ch–1

c–1v–1cv

v–1chc–1h–1c–1v

chc–1h–1

v–1hch–1

Figure 2. The Wheel of 4
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c–1v–1c–1h

hvc

vcvh

v–1ch h–1c–1v–1h

h–1vc–1v
hc–1h

cv–1h

c–2hc–1

c–1v–1ch

v–1h–1cv

c–1v–1ch

c–1vc–1vh–1

c–1v–1c–1hc

ch–1c hc–1h–1

c–1v–1c–1h

vc–1v

h–1v–1chc–1c–1v–1ch–1

h–1v–1c–1v–1

Figure 3. The Wheel of 7

The edges of the diagrams are labeled with sequences of moves that change one
state to another. These diagrams will be crutches for us to lean on. Our strategy, then,
is as follows:

Given an initial state S0 and a final state Sω, we want to find a path from S0 to Sω

through the Wheel of 4 (respectively, Wheel of 7). We will label the intermediate states
S1, S2, . . . , Sω−1.

(1) If necessary, shift S0 by h or v so that the middle square is occupied. (We call
the resulting state S1.)

(2) Use a power of c to match S1 to a state on the Wheel. (We call the resulting
state S2.)

(3) On paper, recording moves, shift Sω so that the middle square is occupied, if
necessary. (We call the resulting state Sω−1.)

(4) On paper, recording moves, use a power of c to match Sω−1 to a state on the
Wheel. (We call the resulting state Sω−2.)

(5) Use the Wheel to move S2 to Sω−2.
(6) Move Sω−2 to Sω by reversing all the steps recorded in Steps (3) and (4).

We illustrate our strategy in Figure 4. The reader should note that this solution is
not unique. A different square could be placed at the center in Step (1) or Step (3),
resulting in different Wheel states being attained in Step (4).

6. HARD MODE. Now we consider solutions to hard-mode puzzles. Again, we
leave puzzles with one or two colored squares to the reader to solve. We also leave
to the reader puzzles with four or more colored squares, since our “cheat-sheet” meth-
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To solve the following medium mode puzzle,

Initial State Final State

,

use the following steps:

,Step (1)

h

Step (2) Step (5) Step (6)

where Steps (3) and (4) are

.
Step (3) Step (4)

c4 c2h–1

h–1ch–1c4

h–1ch–1

Figure 4. The strategy exemplified

ods would be too cumbersome in those cases. Theorem 3 does provide some help,
however. (See the comments at the end of this section.)

Suppose that three squares are colored, two blue and one red. Our strategy is this:
Pretend for the moment that we are color-blind, and “solve” the puzzle using the
medium-mode strategy, ignoring the difference in colors. Then, shedding our color-
blindness, we are in one of two situations. Either we got lucky, and the puzzle is
solved, or the red square needs to be switched with one of the blue squares. In the
latter case, we switch the red and blue squares as follows.

1. Using h and v, shift the blue square that does not need to be switched with red
into the center, recording moves on paper.

2. Recording moves, rotate using c until the current state matches one in what
we’ve called the hard-mode chart (see Figure 5).

3. Execute the sequence of moves indicated in the hard-mode chart.

4. Reverse all the moves done in Steps (1) and (2).

Some final comments are in order. It may be that some players find that these strate-
gies “take the fun out” of playing. We do not disagree. Such players are encouraged
to play without using the strategies; when one gets stuck, one can always return to the
strategies for help. We wish to note that all three authors have frequently encountered
the situation that, when playing without resorting to the strategies, the puzzle was al-
most solved, save that a red square needed to be swapped with a blue square. The proof
of Theorem 3 is in essence an algorithm for swapping two squares while leaving all
others fixed, and is quite handy in such situations. The use of this algorithm also gives
us an alternative to using the hard-mode chart, though it would require using a much
larger number of moves.

7. MINIMAL-MOVE SOLUTIONS. Given a puzzle P , there must be some solu-
tion of P requiring a minimal number of moves; denote this minimal number by µ(P).
We call µ(P) the length of P . It is easy to see that any medium-mode puzzle having
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hc–1v–1c–1v–1

c–1h

hv

c–1c–1v–1hc–1

Figure 5. Hard-mode chart

just one colored square can be solved in two or fewer moves. Having two colored
squares in the medium mode, it turns out that all such puzzles can solved in five or
fewer moves; furthermore, there are puzzles that require five moves. In Table 1, we
give all such color combinations for medium- and hard-mode puzzles and the corre-
sponding maximum value for µ(P) as P ranges over all such puzzles.

Table 1. Maxima for µ(P)

Color combination maxµ(P)

(1 Red, 0 Blue) 2
(1 Red, 1 Blue) 5
(2 Red, 0 Blue) 4
(2 Red, 1 Blue) 6
(2 Red, 2 Blue) 8
(3 Red, 0 Blue) 5
(3 Red, 1 Blue) 7
(3 Red, 2 Blue) 9
(3 Red, 3 Blue) 9
(4 Red, 0 Blue) 7
(4 Red, 1 Blue) 8

The data in Table 1 were generated using the GRAPE package [6] for GAP [3] and
creating a medium- or hard-mode state-space graph, where the edges are labeled c, h,
or v.

These data remind the authors of the fact that the Rubik’s Cube can be solved in
twenty moves, regardless of its initial state.3 In [5], Tomas Rokicki discusses an al-
gorithm that solves the Rubik’s Cube in twenty-two or fewer moves, regardless of its
initial state. The reader is invited to look for a natural algorithm for solving Rubik’s
Slide puzzles in a minimal number of moves.

3This result is published online at http://www.cube20.org, but it has yet to appear in a peer-reviewed
journal.
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8. PROBLEMS AND QUESTIONS. We conclude with a list of problems that could
be given to undergraduates. The first three might be appropriate as exercises in an ab-
stract algebra class; the final three are more exploratory and might be more appropriate
for an undergraduate research project. We offer these merely as a starting point, and
encourage the reader to invent some questions of her own.

1. Given a state S, such as

,

that is invariant under v, show that its easy-mode family has size at most 12.
2. Prove that the size of any easy-mode family must be a divisor of 36.
3. Design an easy-mode puzzle that is solvable in four moves but not in three, and

prove this is the case.
4. Do any of the smaller easy-mode families admit Hamilton cycles?
5. The state

lies in a medium-mode family of size 36. Does the state-space graph of this
family admit a Hamilton cycle?

6. The vertices of any state-space graph can be partitioned into easy-mode fami-
lies, with the h-edges and v-edges lying within families and the c-edges going
between families. (A move of c takes you from one easy-mode family to an-
other.) Can the existence of a Hamilton cycle within easy-mode families be used
to construct a Hamilton cycle for a hard-mode state-space graph? (This is admit-
tedly a much more difficult question, one to which the authors do not know the
answer.)

ACKNOWLEDGMENTS. We thank one of the referees for his/her extensive and helpful comments, which
resulted in a significant improvement of the paper.

Solution to sample puzzle. The puzzle may be solved using the move sequence
h−1cv, as illustrated below:

h–1 c v

We note that this is a solution of minimal length, and was not found using the
methods given in Section 6.
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