

Learning with Marginalized Corrupted Features

L. van der Maaten, M. Chen, S. Tyree, K. Weinberger

ICML 2013

Jan Gasthaus

Tea talk April 11, 2013

UC

≜UCL

^AUCL

≜UCL

UC

^AUCL

≜UCL

≜UCL

Secret 4: lots of jittering, mirroring, and color perturbation of the original images generated on the fly to increase the size of the training set

Yann LeCun on Google+ about Alex Krizhevsky's ImageNet results

• Old idea: create artificial additional training data by corrupting it with "noise"

- Old idea: create artificial additional training data by corrupting it with "noise"
- One easy way to incorporate domain knowledge (e.g. possible transformations)

- Old idea: create artificial additional training data by corrupting it with "noise"
- One easy way to incorporate domain knowledge (e.g. possible transformations)
- But: additional training data \implies additional computation
- Idea: Corrupt with known ExpFam noise and integrate it out

• Explicit corruption: Take training set $D = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$ and corrupt it *M* times

$$\mathcal{L}(\tilde{D},\Theta) = \sum_{n=1}^{N} \frac{1}{M} \sum_{m=1}^{M} L(\tilde{\mathbf{x}}_{nm}, \mathbf{y}_{n}, \Theta)$$

with $\mathbf{x}_{nm} \sim p(\tilde{\mathbf{x}}_{nm} | \mathbf{x}_n)$.

Implicit corruption: Minimize the expected value of the loss under p(x̃_n|x_n):

$$\mathcal{L}(D,\Theta) = \sum_{n=1}^{N} \mathbb{E} \left[L(\tilde{\mathbf{x}}_n, y_n, \Theta) \right]_{\rho(\tilde{\mathbf{x}}_n | \mathbf{x}_n)}$$

i.e. replace the empirical average with the expectation.

• This is so obvious that it must have been done before

• This is so obvious that it must have been done before

 Vicinal Risk Minimization, Chapelle, Weston, Bottou, & Vapnik, NIPS 2000

$$R_{vic}(f) = \int \ell(f(\mathbf{x}), y) \, dP_{est}(\mathbf{x}, y) = \frac{1}{n} \sum_{i=1}^{n} \int \ell(f(\mathbf{x}), y_i) dP_{\mathbf{x}_i}(\mathbf{x})$$

• This is so obvious that it must have been done before

 Vicinal Risk Minimization, Chapelle, Weston, Bottou, & Vapnik, NIPS 2000

$$R_{vic}(f) = \int \ell(f(\mathbf{x}), y) \, dP_{est}(\mathbf{x}, y) = \frac{1}{n} \sum_{i=1}^{n} \int \ell(f(\mathbf{x}), y_i) dP_{\mathbf{x}_i}(\mathbf{x})$$

 Explicitly only consider the case of Gaussian noise distributions

Quadratic Loss

≜UCL

Quadratic loss. Assuming² a label variable $y \in \{-1, +1\}$, the expected value of the quadratic loss under corrupting distribution $p(\tilde{\mathbf{x}}|\mathbf{x})$ is given by:

$$\mathcal{L}(\mathcal{D}; \mathbf{w}) = \sum_{n=1}^{N} \mathbb{E} \left[\left(\mathbf{w}^{\mathrm{T}} \tilde{\mathbf{x}}_{n} - y_{n} \right)^{2} \right]_{p(\tilde{\mathbf{x}}_{n} | \mathbf{x}_{n})}$$
$$= \mathbf{w}^{\mathrm{T}} \left(\sum_{n=1}^{N} \mathbb{E} [\tilde{\mathbf{x}}_{n}] \mathbb{E} [\tilde{\mathbf{x}}_{n}]^{\mathrm{T}} + V[\tilde{\mathbf{x}}_{n}] \right) \mathbf{w}$$
$$- 2 \left(\sum_{n=1}^{N} y_{n} \mathbb{E} [\tilde{\mathbf{x}}_{n}] \right)^{\mathrm{T}} \mathbf{w} + N, \quad (3)$$
$$\mathbf{w}^{*} = \left(\sum_{n=1}^{N} \mathbb{E} [\tilde{\mathbf{x}}_{n}] \mathbb{E} [\tilde{\mathbf{x}}_{n}]^{\mathrm{T}} + V[\tilde{\mathbf{x}}_{n}] \right)^{-1} \left(\sum_{n=1}^{N} y_{n} \mathbb{E} [\tilde{\mathbf{x}}_{n}] \right)$$

Distribution	PDF	$\mathbb{E}[\tilde{x}_{nd}]_{p(\tilde{x}_{nd} x_{nd})}$	$V[ilde{x}_{nd}]_{p(ilde{x}_{nd} x_{nd})}$
Blankout noise	$p(\tilde{x}_{nd} = 0) = q_d$ $p(\tilde{x}_{nd} = \frac{1}{1-q_d} x_{nd}) = 1 - q_d$	x _{nd}	$\frac{q_d}{1-q_d}x_{nd}^2$
Gaussian noise	$p(\tilde{x}_{nd} x_{nd}) = \mathcal{N}(\tilde{x}_{nd} x_{nd}, \sigma^2)$	x_{nd}	σ^2
Laplace noise	$p(\tilde{x}_{nd} x_{nd}) = Lap(\tilde{x}_{nd} x_{nd},\lambda)$	x _{nd}	$2\lambda^2$
Poisson noise	$p(\tilde{x}_{nd} x_{nd}) = Poisson(\tilde{x}_{nd} x_{nd})$	x _{nd}	x_{nd}

Exponential loss. The expected value of the exponential loss under corruption model $p(\tilde{\mathbf{x}}|\mathbf{x})$ is:

$$\mathcal{L}(\mathcal{D}; \mathbf{w}) = \sum_{n=1}^{N} \mathbb{E} \left[e^{-y_n \mathbf{w}^{\mathrm{T}} \tilde{\mathbf{x}}_n} \right]_{p(\tilde{\mathbf{x}}_n | \mathbf{x}_n)}$$
$$= \sum_{n=1}^{N} \prod_{d=1}^{D} \mathbb{E} \left[e^{-y_n w_d \tilde{x}_{nd}} \right]_{p(\tilde{x}_{nd} | x_{nd})}, \qquad (4)$$

Logistic loss. In the case of the logistic loss, the solution to (2) cannot be computed in closed form. Instead, we derive an upper bound, which can be minimized as a surrogate loss:

$$\mathcal{L}(\mathcal{D}; \mathbf{w}) = \sum_{n=1}^{N} \mathbb{E} \left[\log \left(1 + e^{-y_n \mathbf{w}^{\mathrm{T}} \tilde{\mathbf{x}}_n} \right) \right]_{p(\tilde{\mathbf{x}}_n | \mathbf{x}_n)}$$
$$\leq \sum_{n=1}^{N} \log \left(1 + \prod_{d=1}^{D} \mathbb{E} \left[e^{-y_n w_d \tilde{x}_{nd}} \right]_{p(\tilde{x}_{nd} | x_{nd})} \right).$$
(5)

Distribution	$\mathbb{E}[\exp(-y_n w_d ilde{x}_{nd})]_{p(ilde{x}_{nd} x_{nd})}$
Blankout noise	$q_d + (1 - q_d) \exp(-y_n w_d \frac{1}{1 - q_d} x_{nd})$
Gaussian noise	$\exp(-y_n w_d x_{nd} + \frac{1}{2}\sigma^2 y_n^2 w_d^2)$
Laplace noise	$(1 - \lambda^2 y_n^2 w_d^2)^{-1} \exp(-y_n w_d x_{nd})$
Poisson noise	$\exp(x_{nd}(\exp(-y_n w_d) - 1))$

	Quadr.	Expon.	Logist.
No MCF	32.6%	39.7%	32.5%
Poisson MCF	29.1%	39.5%	30.0%
Blankout MCF	32.3%	37.9%	29.4%

Table 3. Classification errors obtained on the CIFAR-10 data set with MCF classifiers trained on simple spatial-pyramid bag-of-visual-words features.

17/17