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Big Picture &

@ Generative parsing models define joint distributions Py(x, z)
over sentences X and their structure z.
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Big Picture &

@ Generative parsing models define joint distributions Py(x, z)
over sentences x and their structure z.

@ Can we identify 6 given only sentences (but not their
structure, i.e. without supervision)?

@ The paper has two parts:

@ Identifiabilty of several models (PCFGs not identifiable!)
@ Parameter recovery: unmixing (for restricted PCFGs)
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Big Picture &
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Standard approach (maximum likelihood):
Estimator: ¢ = arg maxg S logPy(x)
Intractable, EM algorithm gets stuck in local optima [Lari & Young, 1990]

Our strategy (method of moments):
Moment function: ¢(z) € R™ (e.g., ¢1a(x) = 212 € R¥*?)
n

Estimator: ¢ such that Ej[o(x)] = £ 37 o)

n
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PCFG model &

For L = 3 words:

Topology(z) =1 Topology(z) = 2
Parameters ¢ = (7, B, O):
Initial 7 € R¥: probability of initial state

Binary productions B € R¥ **: probability of children given parent state
Emissions O € RY**: probability of word given state
Latent parse tree z = (Topology(2), latent states {s[;.;})

TS0 H (S(ism) @k Simej)) | BSisj) HLU;,TQS’[(:A:@
[i:m],[m:7] i
Assumption: uniform distribution over binary branching trees

Py (2, z) = | Topologies
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Dependency Grammars
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|dentifiability £

Definition (global identifiability): model family © C [0, 1]” is identifiable
from a moment function ¢(z) if Sg(fy) = {0 € © : Ey[o(2)] = Eg, [¢(2)]} is finite
for almost every 6y € ©; that is: given moments Ey[¢(x)], possible to recover
parameters 6 up to a finite equivalence class (e.g., permutation of states)?

©
o e, [z
goﬁ/ﬁ/ Y o [(;3(1‘)}
-
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|dentifiability £

@ So(bp) defined by moment constraints

he, (6) = 1(0) — p(6o) = 0

@ Rows of Jacobian of hy, are directions of constraint violation
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|dentifiability £

@ So(bp) defined by moment constraints

he, (6) = 1(0) — p(6o) = 0
@ Rows of Jacobian of hy, are directions of constraint violation

General identifiability checker:
L. Choose a single 6 € © uniformly at random.

L)]E(; ()(1‘

2. Compute Jacobian matrix .J 0) = e Rmxrp,

o=
3. Return identifiable iff J(0) is full rank.

Theorem: identifiability checker is correct with probability 1.

Significance:
Test random point (cheap, local information) = identifable? (global property)
Intuition: space is nice because moments are polynomials of parameters

Result: PCFG is not identifiable from any moments ¢(z) and L < 5.
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|dentifiability

Model \ Observation function | ¢12 \ Brx | 1236, \ b123 \ Disne, | Den
PCFG No, even from ¢,y for L € {3,4,5}
PCFG-1/ PCFG-IE No | Yesiff L > 4 | Yesiff L > 3
DEP-I No Yesiff L > 3
DEP-IE / DEP-IES Yesiff L > 3
Figure 2: Local identifiability of parsing models. These findings are given by
CHECKIDENTIFIABILITY have the semantics from Theorem 1. These were checked for d €
{2.3...., 8hke{2..., d} (applies only for PCFG models), L € {2,3,...,9}.
012(X) def ] ® I Dys(X) def (,1', Rwjii,jE [L])
d123(x) et T Qoo ® Iy (’)***(X) def (,1', R @y : i,J. k€ [L)
0123n(x) déf (-"1 ® -1'2)(71T-"3) O***U(X) d:ﬂf ((g('z ® -f'j)(7/'T-"k) A k€ [L)

def _ _
Panl(X) = 01 @ --- @ wp
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Known tree structure (for L = 3 words):
Wy, = E[xi (2 n)zq | Topology(z) = 2] = OT diag(TTOTn) T diag(m)TTOT

My D :\[;’

Compute Wq,, for two different 7, apply Decompose to recover My = OT'.
Apply simple matrix algebra to extract all parameters § = (7,7, 0).

Unknown tree structure (for L = 3 words):
Strategy: reduce to the known tree structure case

J135 0.5 0.5 0 U,
/”,?’;2:7} = 0 0.5I 0.51 \112177
/12;“:,] 0.57 0 0.57 \Ilg:,]
observed moments fi.y mixing matrix M compound parameters W,
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Unmixing

Unknown tree structure (general case):

moments

Hox:m

Solve
linear
system

=

Proposition (unmixing):
If e; in row space of M, can recover V..

Call base algorithm on W

compoun d
parameters
W*nyzzﬂftﬂ*m

jin to recover 0.

=

Decompose

All operations involve low-order matrix computations.
Sample complexity n is polynomial in k, d, L and spectral properties of T', O.

Result: for restricted PCFG, e in row space of M for all L.

7]’)?11‘?1]]](‘“‘1‘5

0

13/15



Restricted PCFG Restricted PCFG PCFG
(different Tiest, Tright transitions)

identifiable identifiable non-identifiable
unmixing ? hopeless
Dependency parsing models:

O\o AL LR

T()p()l()“\ =1 Topology Topology(z) = 3
Result: identifiable, unnnmng works for restricted version
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Conclusions

Related work on spectral methods:
HMMs [Hsu/Kakade/Zhang 2009]
Latent tree models with known structure [Parikh/Song/Xing 2011]
Unknown fixed structure [Anandkumar/Chaudhuri/Hsu/Kakade/Song/Zhang 2011]
PCFGs with known tree structure [Cohen/Stratos/Collins/Foster/Ungar 2012]
Recover parameters for HMMs [Anandkumar/Hsu/Kakade 2012]
This work: recover parameters, unknown random structure
Two contributions:
e [dentifiability checker: easy method to see if model family identifiable

e Unmixing technique: consistent parameter recovery with random structures
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