

Identifiability and Unmixing of Latent Parse Trees

Daniel Hsu, Sham Kakade, Percy Liang

NIPS 2012

Jan Gasthaus

Tea talk January 8th, 2013

Parsing

Generative parsing models define joint distributions P_θ(**x**, z) over sentences **x** and their *structure z*.

- Generative parsing models define joint distributions P_θ(**x**, z) over sentences **x** and their *structure z*.
- Can we identify θ given only sentences (but *not* their structure, i.e. without supervision)?

- Generative parsing models define joint distributions P_θ(**x**, z) over sentences **x** and their *structure z*.
- Can we identify θ given only sentences (but *not* their structure, i.e. without supervision)?
- The paper has two parts:
 - Identifiability of several models (PCFGs not identifiable!)

- Generative parsing models define joint distributions P_θ(**x**, z) over sentences **x** and their *structure z*.
- Can we identify θ given only sentences (but *not* their structure, i.e. without supervision)?
- The paper has two parts:
 - Identifiability of several models (PCFGs not identifiable!)
 - Parameter recovery: unmixing (for restricted PCFGs)

Big Picture

Big Picture

Standard approach (maximum likelihood): Estimator: $\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log \mathbb{P}_{\theta}(x)$ Intractable, EM algorithm gets stuck in local optima [Lari & Young, 1990]

Our strategy (**method of moments**): Moment function: $\phi(x) \in \mathbb{R}^m$ (e.g., $\phi_{12}(x) = x_1 x_2^\top \in \mathbb{R}^{d \times d}$) Estimator: $\hat{\theta}$ such that $\mathbb{E}_{\hat{\theta}}[\phi(x)] = \frac{1}{n} \sum_{i=1}^n \phi(x^{(i)})$

PCFG model

For L = 3 words:

Parameters $\theta = (\pi, B, O)$:

Initial $\pi \in \mathbb{R}^k$: probability of initial state

Binary productions $B \in \mathbb{R}^{k^2 \times k}$: probability of children given parent state Emissions $O \in \mathbb{R}^{d \times k}$: probability of word given state Latent parse tree $z = (\text{Topology}(z), \text{latent states } \{s_{[i:j]}\})$ $\mathbb{P}_{\theta}(x, z) = |\text{Topologies }|^{-1}\pi^{\top}s_{[0:L]} \prod_{[i:m], [m:j]} (s_{[i:m]} \otimes_k s_{[m:j]})^{\top} Bs_{[i:j]} \prod_i x_i^{\top} Os_{[i-1:i]}$

Assumption: uniform distribution over binary branching trees

Dependency Grammars

$$\mathbb{P}_{\theta}(\mathbf{x}, z) = |\operatorname{Topologies}|^{-1} \pi^{\top} x_{\operatorname{Root}(z)} \prod_{(i,j) \in z} x_j^{\top} A_{\operatorname{dir}(i,j)} x_i$$

Definition (global identifiability): model family $\Theta \subset [0, 1]^p$ is identifiable from a moment function $\phi(x)$ if $S_{\Theta}(\theta_0) = \{\theta \in \Theta : \mathbb{E}_{\theta}[\phi(x)] = \mathbb{E}_{\theta_0}[\phi(x)]\}$ is finite for almost every $\theta_0 \in \Theta$; that is: given moments $\mathbb{E}_{\theta}[\phi(x)]$, possible to recover parameters θ up to a finite equivalence class (e.g., permutation of states)?

• $S_{\Theta}(\theta_0)$ defined by moment constraints

$$h_{ heta_0}(heta)=\mu(heta)-\mu(heta_0)=\mathsf{0}$$

• Rows of Jacobian of h_{θ_0} are directions of constraint violation

• $S_{\Theta}(\theta_0)$ defined by moment constraints

$$h_{ heta_0}(heta)=\mu(heta)-\mu(heta_0)=\mathsf{0}$$

• Rows of Jacobian of h_{θ_0} are directions of constraint violation

General identifiability checker:

1. Choose a single $\tilde{\theta} \in \Theta$ uniformly at random.

². Compute Jacobian matrix $J(\tilde{\theta}) = \frac{\partial \mathbb{E}_{\theta}[\phi(x)]}{\partial \theta}\Big|_{\theta = \tilde{\theta}} \in \mathbb{R}^{m \times p}$.

3. Return identifiable iff $J(\tilde{\theta})$ is full rank.

Theorem: identifiability checker is correct with probability 1.

Significance:

Test random point (cheap, local information) \Rightarrow identifable? (global property) Intuition: space is nice because moments are polynomials of parameters

Result: PCFG is not identifiable from any moments $\phi(x)$ and $L \leq 5$.

Model \setminus Observation function	ϕ_{12}	ϕ_{**}	ϕ_{123e_1}	ϕ_{123}	ϕ_{***e_1}	ϕ_{***}
PCFG	No, even from ϕ_{all} for $L \in \{3, 4, 5\}$					
PCFG-I / PCFG-IE	No	Yes iff $L \ge 4$	Yes iff $L \ge 3$			
DEP-I	No	Yes iff $L \ge 3$				
DEP-IE / DEP-IES	Yes iff $L \ge 3$					

Figure 2: Local identifiability of parsing models. These findings are given by CHECKIDENTIFIABILITY have the semantics from Theorem 1. These were checked for $d \in \{2, 3, ..., 8\}, k \in \{2, ..., d\}$ (applies only for PCFG models), $L \in \{2, 3, ..., 9\}$.

$$\phi_{12}(\mathbf{x}) \stackrel{\text{def}}{=} x_1 \otimes x_2 \qquad \phi_{**}(\mathbf{x}) \stackrel{\text{def}}{=} \left(x_i \otimes x_j : i, j \in [L]\right)$$

$$\phi_{123}(\mathbf{x}) \stackrel{\text{def}}{=} x_1 \otimes x_2 \otimes x_3 \qquad \phi_{***}(\mathbf{x}) \stackrel{\text{def}}{=} \left(x_i \otimes x_j \otimes x_k : i, j, k \in [L]\right)$$

$$\phi_{123\eta}(\mathbf{x}) \stackrel{\text{def}}{=} (x_1 \otimes x_2)(\eta^\top x_3) \qquad \phi_{***\eta}(\mathbf{x}) \stackrel{\text{def}}{=} \left((x_i \otimes x_j)(\eta^\top x_k) : i, j, k \in [L]\right)$$

$$\phi_{\text{all}}(\mathbf{x}) \stackrel{\text{def}}{=} x_1 \otimes \cdots \otimes x_L$$

Unmixing

≜UCL

Known tree structure (for L = 3 words): $\Psi_{2;\eta} = \mathbb{E}[x_1(x_2^{\top}\eta)x_3^{\top} | \text{Topology}(z) = 2] = \underbrace{OT}_{M_1} \underbrace{\operatorname{diag}(T^{\top}O^{\top}\eta)}_{D} \underbrace{T^{\top}\operatorname{diag}(\pi)T^{\top}O^{\top}}_{M_2^{\top}}$ Compute $\Psi_{2;\eta}$ for two different η , apply Decompose to recover $M_1 = OT$.

Apply simple matrix algebra to extract all parameters $\theta = (\pi, T, O)$.

Unknown tree structure (for L = 3 words):

Strategy: reduce to the known tree structure case

Unmixing

Unmixing

≜UCL

Unknown tree structure (general case):

Proposition (unmixing):

If e_j in row space of M, can recover $\Psi_{j;\eta}$.

Call base algorithm on $\Psi_{j;\eta}$ to recover θ .

All operations involve low-order matrix computations.

Sample complexity n is polynomial in k, d, L and spectral properties of T, O.

Result: for restricted PCFG, e_2 in row space of M for all L.

Results

Result: identifiable, unmixing works for restricted version

≜UCL

Related work on spectral methods:

- $\mathbf{HMMs} \ [\mathrm{Hsu}/\mathrm{Kakade}/\mathrm{Zhang} \ 2009]$
- Latent tree models with known structure [Parikh/Song/Xing 2011]
- Unknown fixed structure [Anandkumar/Chaudhuri/Hsu/Kakade/Song/Zhang 2011]
- PCFGs with known tree structure [Cohen/Stratos/Collins/Foster/Ungar 2012]
- Recover parameters for HMMs [Anandkumar/Hsu/Kakade 2012]
- This work: recover parameters, unknown random structure
- Two contributions:
 - Identifiability checker: easy method to see if model family identifiable
 - Unmixing technique: consistent parameter recovery with random structures