Identifiability and Unmixing of Latent Parse Trees

Daniel Hsu, Sham Kakade, Percy Liang

NIPS 2012

Jan Gasthaus

Tea talk January 8th, 2013

Parsing

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

Big Picture

- Generative parsing models define joint distributions $P_{\theta}(\mathbf{x}, z)$ over sentences \mathbf{x} and their structure z.

Big Picture

- Generative parsing models define joint distributions $P_{\theta}(\mathbf{x}, z)$ over sentences \mathbf{x} and their structure z.
- Can we identify θ given only sentences (but not their structure, i.e. without supervision)?

Big Picture

- Generative parsing models define joint distributions $P_{\theta}(\mathbf{x}, z)$ over sentences \mathbf{x} and their structure z.
- Can we identify θ given only sentences (but not their structure, i.e. without supervision)?
- The paper has two parts:
© Identifiabilty of several models (PCFGs not identifiable!)

Big Picture

- Generative parsing models define joint distributions $P_{\theta}(\mathbf{x}, z)$ over sentences \mathbf{x} and their structure z.
- Can we identify θ given only sentences (but not their structure, i.e. without supervision)?
- The paper has two parts:
(1) Identifiabilty of several models (PCFGs not identifiable!)
(2) Parameter recovery: unmixing (for restricted PCFGs)

Big Picture

the lady
sang
Gatsby likes Bayesians

Big Picture

EICL

The dog barked $\quad \Rightarrow$

Big Picture

The dog barked $\quad \Rightarrow$

or

Standard approach (maximum likelihood):
Estimator: $\hat{\theta}=\arg \max _{\theta} \sum_{i=1}^{n} \log \mathbb{P}_{\theta}(x)$
Intractable, EM algorithm gets stuck in local optima [Lari \& Young, 1990]
Our strategy (method of moments):
Moment function: $\phi(x) \in \mathbb{R}^{m}$ (e.g., $\phi_{12}(x)=x_{1} x_{2}^{\top} \in \mathbb{R}^{d \times d}$)
Estimator: $\hat{\theta}$ such that $\mathbb{E}_{\hat{\theta}}[\phi(x)]=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x^{(i)}\right)$

PCFG model

For $L=3$ words:

Topology $(z)=1$

Topology $(z)=2$

Parameters $\theta=(\pi, B, O)$:
Initial $\pi \in \mathbb{R}^{k}$: probability of initial state
Binary productions $B \in \mathbb{R}^{k^{2} \times k}$: probability of children given parent state
Emissions $O \in \mathbb{R}^{d \times k}$: probability of word given state
Latent parse tree $z=\left(\right.$ Topology (z), latent states $\left.\left\{s_{[i: j]}\right\}\right)$
$\mathbb{P}_{\theta}(x, z)=\mid$ Topologies $\left.\right|^{-1} \pi^{\top} s_{[0: L]} \prod_{[i: m],[m: j]}\left(s_{[i: m]} \otimes_{k} s_{[m: j]}\right)^{\top} B s_{[i: j]} \prod_{i} x_{i}^{\top} O s_{[i-1: i]}$
Assumption: uniform distribution over binary branching trees

Dependency Grammars

Topology $(z)=1$
Topology $(z)=5$
Topology $(z)=2$
x_{1}
$x_{1} A$
x_{1}, x_{2}
Topology $(z)=4$

$$
\mathbb{P}_{\theta}(\mathbf{x}, z)=\mid \text { Topologies }\left.\right|^{-1} \pi^{\top} x_{\operatorname{Root}(z)} \prod_{(i, j) \in z} x_{j}^{\top} A_{\operatorname{dir}(i, j)} x_{i}
$$

Identifiability

IICL

Definition (global identifiability): model family $\Theta \subset[0,1]^{p}$ is identifiable from a moment function $\phi(x)$ if $S_{\Theta}\left(\theta_{0}\right)=\left\{\theta \in \Theta: \mathbb{E}_{\theta}[\phi(x)]=\mathbb{E}_{\theta_{0}}[\phi(x)]\right\}$ is finite for almost every $\theta_{0} \in \Theta$; that is: given moments $\mathbb{E}_{\theta}[\phi(x)]$, possible to recover parameters θ up to a finite equivalence class (e.g., permutation of states)?
Θ

Identifiability

 IICL- $S_{\Theta}\left(\theta_{0}\right)$ defined by moment constraints

$$
h_{\theta_{0}}(\theta)=\mu(\theta)-\mu\left(\theta_{0}\right)=0
$$

- Rows of Jacobian of $h_{\theta_{0}}$ are directions of constraint violation

Identifiability

- $S_{\Theta}\left(\theta_{0}\right)$ defined by moment constraints

$$
h_{\theta_{0}}(\theta)=\mu(\theta)-\mu\left(\theta_{0}\right)=0
$$

- Rows of Jacobian of $h_{\theta_{0}}$ are directions of constraint violation

General identifiability checker:

1. Choose a single $\tilde{\theta} \in \Theta$ uniformly at random.
2. Compute Jacobian matrix $J(\tilde{\theta})=\left.\frac{\partial \mathbb{E}_{\theta}[\phi(x)]}{\partial \theta}\right|_{\theta=\tilde{\theta}} \in \mathbb{R}^{m \times p}$.
3. Return identifiable iff $J(\tilde{\theta})$ is full rank.

Theorem: identifiability checker is correct with probability 1.
Significance:
Test random point (cheap, local information) \Rightarrow identifable? (global property)
Intuition: space is nice because moments are polynomials of parameters
Result: PCFG is not identifiable from any moments $\phi(x)$ and $L \leq 5$.

Identifiability

| Model \backslash Observation function | ϕ_{12} | $\phi_{* *}$ | $\phi_{123 e_{1}}$ | ϕ_{123} | $\phi_{* * * e_{1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |$\phi_{* * *}$.

Figure 2: Local identifiability of parsing models. These findings are given by CheckIdentifiability have the semantics from Theorem 1. These were checked for $d \in$ $\{2,3, \ldots, 8\}, k \in\{2, \ldots, d\}$ (applies only for PCFG models), $L \in\{2,3, \ldots, 9\}$.

$$
\begin{array}{rlr}
\phi_{12}(\mathbf{x}) \stackrel{\text { def }}{=} x_{1} \otimes x_{2} & \phi_{* *}(\mathbf{x}) \stackrel{\text { def }}{=}\left(x_{i} \otimes x_{j}: i, j \in[L]\right) \\
\phi_{123}(\mathbf{x}) \stackrel{\text { def }}{=} x_{1} \otimes x_{2} \otimes x_{3} & \phi_{* * *}(\mathbf{x}) \stackrel{\text { def }}{=}\left(x_{i} \otimes x_{j} \otimes x_{k}: i, j, k \in[L]\right) \\
\phi_{123 \eta}(\mathbf{x}) \stackrel{\text { def }}{=}\left(x_{1} \otimes x_{2}\right)\left(\eta^{\top} x_{3}\right) & \phi_{* * * \eta}(\mathbf{x}) \stackrel{\text { def }}{=}\left(\left(x_{i} \otimes x_{j}\right)\left(\eta^{\top} x_{k}\right): i, j, k \in[L]\right) \\
\phi_{\text {all }}(\mathbf{x}) \stackrel{\text { def }}{=} x_{1} \otimes \cdots \otimes x_{L} &
\end{array}
$$

Unmixing

Known tree structure (for $L=3$ words):

$$
\Psi_{2 ; \eta}=\mathbb{E}\left[x_{1}\left(x_{2}^{\top} \eta\right) x_{3}^{\top} \mid \text { Topology }(z)=2\right]=\underbrace{O T}_{M_{1}} \underbrace{\operatorname{diag}\left(T^{\top} O^{\top} \eta\right)}_{D} \underbrace{T^{\top} \operatorname{diag}(\pi) T^{\top} O^{\top}}_{M_{2}^{\top}}
$$

Compute $\Psi_{2 ; \eta}$ for two different η, apply Decompose to recover $M_{1}=O T$. Apply simple matrix algebra to extract all parameters $\theta=(\pi, T, O)$.

Unknown tree structure (for $L=3$ words):
Strategy: reduce to the known tree structure case

$$
\underbrace{\left(\begin{array}{l}
\mu_{123 ; \eta} \\
\mu_{132 ; \eta} \\
\mu_{231 ; \eta}
\end{array}\right)}
$$

observed moments $\mu_{* ; \eta}$
$=\underbrace{\left(\begin{array}{ccc}0.5 I & 0.5 I & 0 \\ 0 & 0.5 I & 0.5 I \\ 0.5 I & 0 & 0.5 I\end{array}\right)}$
mixing matrix M

compound parameters $\Psi_{* ; \eta}$

Unmixing

IICL

Unmixing

Unknown tree structure (general case):
moments
$\mu_{* ; \eta}$$\Rightarrow \begin{aligned} & \text { Solve } \\ & \text { linear } \\ & \text { system }\end{aligned} \Rightarrow \begin{gathered}\text { compound } \\ \text { parameters } \\ \Psi_{* ; \eta}=M^{\dagger} \mu_{* ; \eta}\end{gathered} \Rightarrow$ Decompose $\Rightarrow \begin{gathered}\text { parameters } \\ \theta\end{gathered}$
Proposition (unmixing):
If e_{j} in row space of M, can recover $\Psi_{j ; \eta}$.
Call base algorithm on $\Psi_{j ; \eta}$ to recover θ.
All operations involve low-order matrix computations.
Sample complexity n is polynomial in k, d, L and spectral properties of T, O.
Result: for restricted PCFG, e_{2} in row space of M for all L.

Results

Restricted PCFG Restricted PCFG

PCFG

(different $T_{\text {left }}, T_{\text {right }}$ transitions)
identifiable identifiable
non-identifiable
hopeless
Dependency parsing models:

Result: identifiable, unmixing works for restricted version

Conclusions

Related work on spectral methods:
HMMs [Hsu/Kakade/Zhang 2009]
Latent tree models with known structure [Parikh/Song/Xing 2011]
Unknown fixed structure [Anandkumar/Chaudhuri/Hsu/Kakade/Song/Zhang 2011]
PCFGs with known tree structure [Cohen/Stratos/Collins/Foster/Ungar 2012]
Recover parameters for HMMs [Anandkumar/Hsu/Kakade 2012]
This work: recover parameters, unknown random structure
Two contributions:

- Identifiability checker: easy method to see if model family identifiable
- Unmixing technique: consistent parameter recovery with random structures

