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» Fit them to the data set
» Compare them using some model selection criterion and

pick the best
@ Mainly a computational problem; Proposed solution:

» Pick a rich class of models: matrix decomposition models

» Fit more complex models re-using computations from simple
ones

» Approximate model selection criterion

» Greedy heuristic for exploring the space of structure
exploiting compositionality
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In A Nutshell 4

@ Grammar for generative models for matrix factorization

» Express models as algebraic expressions such as MG + G
» Devise CFG that generates these expressions with rules like
G—->GG+G

@ Search over model structures greedily by applying the
production rules and using an approximate lower bound on
model score

@ Initialize sampling in model by using a specialized algorithm
for each production rule
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Components

1. Gaussian (G). Entries are independent Gaussians: 3. Bernoulli (B). Entries are independent Bernoullis:
u;; ~ Gaussian(0, )\;1)\7._1). m; ~ Beta(a, b) ui; ~ Bernoulli(;).
This is our most generic component prior, and gives a This is useful for binary latent feature models.

way of deferring or ignoring structure. !
4. Integration matrix (C). Entries below the diagonal
2. Multinomial (M). Rows are independent multinomi- are deterministically 1:
als, with one 1 and the rest 0’s:

Uiy = Li>j.
7 ~ Dirichlet(a) u; ~ Multinomial(r).
This is useful for modeling temporal structure, as mul-
This is useful for clustering models, where u; deter- tiplying by this matrix has the effect of cumulatively
mines the cluster assignment for the i** row. summing the rows. (Mnemonic: C for “cumulative.”)
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Grammar #

low-rank approximation G — GG+ G (1)
clustering G — MG+ G|GMT +G (2

M- MG+ G (3)

linear dynamics G — CG + G |GCT + @ 4)
sparsity G — exp(G)o G (5)

binary factors G — BG + G |GBT + G (6)

B —- BG+ G (7)

M — B )
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Models

(exp(GG + G) 0 G)G + G
(MG + G) (G[\[T +G)+G dependent gaussian scale mixture

Bayesian clustered tensor factorization (c.g. Karklin andfewlckh 2005)

(Sutskever et al., 2009) B(GBT LG+ G
binary matrix factorization (exp(G) o G)G +G

(Meeds et al., 2006) sparse coding
\ * (e.g. Olshausen and Field, 1996)

MGMT +G)+ G - y
(e.g. Kemp et al., 2006) binary features  low-rank approxinmtion/(
(Griffiths and (Salakhutdinov and
- \ Ghahramani, 2005) Mnih, 2008)

MG+G CG+G

] random walk
clustering /
\ G

no structure
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Inference: Individual Models

@ Initialize state using one-shot algorithm for each rule
application

@ Latent dimensionality is determined during initialization
using BNP

@ Then run simple Gibbs sampler (no details provided ...)
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Initialization

1. Low rank. To apply the rule G — GG+ G, we fit the 3. Binary factors. To apply the rule G — BG + G or

probabilistic matrix factorization (Salakhutdinov and
Mnih, 2008) model using block Gibbs sampling over
the two factors. While PMF assumes a fixed latent
dimension, we choose the dimension automatically by
placing a Poisson prior on the dimension and moving
between states of differing dimension using reversible
jump MCMC (Green, 1995).

. Clustering. To apply the clustering rule to rows:
G — MG + G, or to columns: G — GMT + G,
we perform collapsed Gibbs sampling over the cluster
assignments in a Dirichlet process mixture model.

G — GBT + G, we perform accelerated collapsed
Gibbs sampling (Doshi-Velez and Ghahramani, 2009)
over the binary variables in a linear-Gaussian In-
dian Buffet Process (Griffiths and Ghahramani, 2005)
model, using split-merge proposals (Meeds et al.,
2006) to escape local modes.

. Markov chains. The rule G — CG + G is equiv-

alent to estimating the state of a random walk given
noisy observations, which is done using Rauch-Tung-
Striebel (RTS) smoothing.
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Scoring Candidate Structures

@ Criterion used: predictive likelihood of held-out rows and
columns
» Marginal likelihood not feasible
» MSE not selective enough
@ Use a (stochastic) lower bound on predictive likelihood,
computed using a variational approximation combined with
annealed importance sampling (this is about as much detalil
as is in the paper .. .)
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Search Over Structures

@ Greedy search following grammar
@ Startwith G
@ Expand using all possible rules
@ Fit & score models
© Keep top K models
Q@ Goto?2
@ Assumes that good simple models will lead to good more
complex models when refined

@ Assumption seems to be warranted: K = 3 yields the same
results as K = 1 in experiments
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Results on Synthetic Data

— Increasing noise —»

0% =0.1 s =1 o2 =3 o2 =10
Tow-rank GG+ G GG+ G GG+ G oG
clustering MG + G MG + G MG+ G MG+ G
binary latent features BG+G)G+G BG+G BG+G BG+G

co-clustering

binary matrix factorization
BCTF

sparse coding

dependent GSM

random walk

linear dynamical system

M(GMT + &)+ G
O(BG+ G)(GBT +G)+ G
(MG + {J)((,’(\[T +G)+ G
(exp(G) 0o Q)G + G

7)o G)G + G

C
(CG+ GG+ G

MGMT +G)+ G
(BG+G)B" + G
(MG + GYGMT +G) + G ¢
(exp(G) o G)G + G
D(exp(G) 0 G)G + G
CG+G C
(CG+ )G+ G

M(GEMT +G)+ G
@GG + G

(exp(G) 0 G)G + G

exp(G) 0 G)G + G
G+ G
(CC+a)G+ G

MT + G

GG+ G
[ Je
®BG + G
oG

@BG + G

Table 1: The structures learned from 200 x 200 matrices generated from various distributions, with signal variance 1 and noise variance
o“. Incorrect structures are marked with a 1, 2, or 3, depending how many decisions would need to be changed to find the correct
structure. We observe that our approach typically finds the correct answer in low noise settings and backs off to simpler models in high

noise settings.
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Results on Real Data !

Level 1 Level 2 Level 3
Motion capture ~ CG + G C(GG+G)+G —
Image patches GG+ G (exp(G) o G) G+ G (exp(GG+G)oG)G+ G
20 Questions MG+ G MGG+ G)+G —
Senate votes GM”' +G (MG +G)M* +G —
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Results on Real Data

1. Miscellaneous. key. chain, powder. aspirin, umbrella, quarter. cord, sungla: toothbrush, brush

2. Clothing. coat, dress, pants, shirt, skirt, backpack. tshirt. quilt, carpet, pillow, clothing. slipper, uniform
3. Artificial foods. pizza, soup. meat, breakfast, stew, lunch, gum, bread, fries, coffee. meatballs. yoke

4. Machines. bell. telephone, watch, typewriter. lock. channel, tuba, phone. . ipod, flute, aquarium

5. Natural foods. carrot, celery, corn, lettuce. artichoke. pickle, walnut. mushroom, beet. acorn

6. Buildings. apartment, barn, church, house, chapel, store, library, camp, school. sky
7. Printed things. card. notebook. ticket, note. napkin, money, journal, menu, letter,
8. Body parts. arm, eye, fool, hand, i ip. teeth, toe
9. Containers. bottle. allon. pan. straw, bi
10. Outdoor place: .
11. Tools. knife. chisel. hammer. plies
12. Stuff. speck, gravel, soil. tear, bubble, slush,
13. Furniture. bed. chair. desk. dresser. table. s
14. Liquids. wax, honey, pint, disinfectant, gas, drink, milk, water, cola, paste, lemonade, lotion
Structural features. bumper. cast. fence. billboard. guardrail. axle, deck. dumpster. windshield
16. Non-solid things. surf. fire, lightning, sky, steam, cloud, dance, wind, breeze, tornado, sunshine
17. Transportation. airplane. car. train. truck. jet. sedan, submarine. jeep. boat, tractor. rocket

18. Herbi . horse, lamb, camel, pig, hog, calf. elephant, cattle, giraffe, yak, goat

19. Internal organs. rib, lung, vein, stomach, heart, brain, smile. blood, lap, nerve, lips, wink

20. Carnivores. bear, walrus, shark, crocodile, dolphin, hippo. gorilla, hyena. rhinocerous

iper
mail, bible
ebrow, feet, hair, thigh
lipboard. carton
planet, pond, lawn, ocean

AL HET TR

Figure 3: (left) The 20 largest clusters discovered by our Level 2 model M (GG + G) + G for the 20 Questions dataset. Each line
gives our interpretation, followed by random items from the cluster. (right) Visualizations of the Level 1 representation MG + G
and the Level 2 representation M (GG + &) + G. Rows = entities, columns = questions. 250 rows and 150 columns were selected at
random from the original matrix. Rows and columns are sorted first by cluster, then by the highest variance dimension of the low-rank
representation (if applicable). Clusters were sorted by the same dimension as well. Blue = cluster boundaries.

13/15



Results on Real Data

(@) tevel 1: GMT 4+ & (b) Level2: (MG + HMT + @ (C) Level 3: (MG + G)(GMT +G) + G

Figure 4: Visualization of the representations learned from the Senate voting data. Rows = Senators, columns = votes. 200 columns were
selected at random from the original matrix. Black = yes, white = no, gray = absence. Blue = cluster boundaries. Rows and columns are
sorted first by cluster (if applicable), then by the highest variance dimension of the low-rank representation (if applicable). Clusters are
sorted by the same dimension as well. The models in the sequence increasingly reflect the polarization of the Senate.
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Computing Predictive Likelihood

First, by expanding out the products in the expression, we
can write the decomposition uniquely in the form

X=UVit 4 UpVo + B, M

where E is an i.i.d. Gaussian “noise” matrix and the U;’s
are any of the following: (1) a component matrix G, M,
or B, (2) some number of C's followed by G, (3) a Gaus-
sian scale mixture. The held-out row x can therefore be
represented as:

T = \*"11 Uy + -+ V,f'u” +e. 2)

The predictive likelihood is given by:

px|Xo) = /p(U“. V|Xo)pulUo)p(xlu, V) dUo du dV
3)

where Up is shorthand for (Uoy, ..., Uo,) and u is short-
hand for (uq,.... Uy ).

In order to evaluate this integral, we generate samples from
the posterior p(Up, V| X) using the techniques described
in Section 4, and compute the sample average of

Pprea() 2 /p(u\(,"o)p(,’z:\u. V) du 4)
If the term U; is a Markov chain, the predictive distribu-

tion p(u;|Uo) can be computed using Rauch-Tung-Striebel
smoothing; in the other cases, u and Uy are related only
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