
Take-home message

1. Always use a good quality tea

2. Always use freshly drawn water (stale water is stale tea)

3. Remember to warm the tea pot

4. Measure the right amount of tea for the amount of water in
the pot

5. Water must reach boiling point

6. Let the tea brew for 3–5 minutes before serving

Let every cup you make be a cup that cheers!



Tea talk #XI
February 13, 2014



Playing Atari 2600 games

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . , K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a, ⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

Pong



Playing Atari 2600 games

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . , K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a, ⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

Breakout



Playing Atari 2600 games

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . , K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a, ⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

Space Invaders



Playing Atari 2600 games

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . , K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a, ⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

Seaquest



Playing Atari 2600 games

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . , K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a, ⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

Beam Rider



Playing atari games with deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller

Deep Learning workshop @NIPS, 2013



Playing atari games with deep RL

I first deep learning model to successfully learn control policies
directly from high-D sensory input using RL

I input: raw pixels,
output: value function estimating future reward

I same architecture and learning algorithm for every game

I outperform all previous approaches on 6 (out of 7) games,
surpasses a human expert on 3 of them.



Methods

I convolutional network that takes states as input
and produces values of actions Q(s, a) as an output;

I states st : a stack of 4 raw screen frames (84x84, at 3-bit);

I actions at : move right, left, shoot, etc. (4 to 18)

I rewards rt : changes in game score clipped to (-1, 1)

I ε-greedy stochastic gradient Q-learning

I experience replay (up to 106 frames)



Learning

Discounted return:

Rt = rt +
T−t∑

τ=1

γτ rt+τ

Optimal value

Q∗(s, a) = max
π

E[Rt |st = s, at = a, π]

Bellman equation

Q∗(s, a) = E[r + γmax
a′

Q∗(s ′, a′)|s, a]s′

Q-learning

Qi+1(s, a) = E[r + γmax
a′

Qi (s
′, a′)|s, a]s′



Learning

Q-learning

Qi+1(s, a) = E[r + γmax
a′

Qi (s
′, a′)|s, a]s′

Function approximator

Q∗(s, a) ∼ Q(s, a; θ)

Loss function

Li = E[(yi − Q(s, a; θi ))2|s]a

Gradient descent

∇θiLi (θi ) = E[(r + γmax
a′

Qi (s
′, a′)− Q(s, a; θi ))∇θiQ(s, a; θi )]a,s′



Deep Learning

Gradient descent

∇θiLi (θi ) = E[(r + γmax
a′

Qi (s
′, a′)− Q(s, a; θi ))∇θiQ(s, a; θi )]a,s′

I Replace expectations by samples: ’stochastic gradient descent’

I Resample samples: ’experience replay’

et = (st , at , rt , at+1)

I ε-greedy: allow for some randomness
(annealed from 100% to 1% over the first million frames)

I Frame skipping (4, or 3)



Deep Architecture

1. convolves 16 8x8 filters with stride 4 with the input image
+ a rectifier nonlinearity

2. convolves 32 4x4 filters with stride 2
+ a rectifier nonlinearity.

3. fully-connected layer of 256 rectifier units

4. fully-connected linear layer with a single output for each valid
action



Methods

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do

Initialise sequence s1 = {x1} and preprocessed sequenced �1 = �(s1)
for t = 1, T do

With probability ✏ select a random action at

otherwise select at = maxa Q⇤(�(st), a; ✓)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess �t+1 = �(st+1)
Store transition (�t, at, rt, �t+1) in D
Sample random minibatch of transitions (�j , aj , rj , �j+1) from D
Set yj =

⇢
rj for terminal �j+1

rj + � maxa0 Q(�j+1, a
0; ✓) for non-terminal �j+1

Perform a gradient descent step on (yj � Q(�j , aj ; ✓))
2 according to equation 3

end for
end for

Second, learning directly from consecutive samples is inefficient, due to the strong correlations
between the samples; randomizing the samples breaks these correlations and therefore reduces the
variance of the updates. Third, when learning on-policy the current parameters determine the next
data sample that the parameters are trained on. For example, if the maximizing action is to move left
then the training samples will be dominated by samples from the left-hand side; if the maximizing
action then switches to the right then the training distribution will also switch. It is easy to see how
unwanted feedback loops may arise and the parameters could get stuck in a poor local minimum, or
even diverge catastrophically [25]. By using experience replay the behavior distribution is averaged
over many of its previous states, smoothing out learning and avoiding oscillations or divergence in
the parameters. Note that when learning by experience replay, it is necessary to learn off-policy
(because our current parameters are different to those used to generate the sample), which motivates
the choice of Q-learning.

In practice, our algorithm only stores the last N experience tuples in the replay memory, and samples
uniformly at random from D when performing updates. This approach is in some respects limited
since the memory buffer does not differentiate important transitions and always overwrites with
recent transitions due to the finite memory size N . Similarly, the uniform sampling gives equal
importance to all transitions in the replay memory. A more sophisticated sampling strategy might
emphasize transitions from which we can learn the most, similar to prioritized sweeping [17].

4.1 Preprocessing and Model Architecture

Working directly with raw Atari frames, which are 210⇥ 160 pixel images with a 128 color palette,
can be computationally demanding, so we apply a basic preprocessing step aimed at reducing the
input dimensionality. The raw frames are preprocessed by first converting their RGB representation
to gray-scale and down-sampling it to a 110⇥84 image. The final input representation is obtained by
cropping an 84 ⇥ 84 region of the image that roughly captures the playing area. The final cropping
stage is only required because we use the GPU implementation of 2D convolutions from [11], which
expects square inputs. For the experiments in this paper, the function � from algorithm 1 applies this
preprocessing to the last 4 frames of a history and stacks them to produce the input to the Q-function.

There are several possible ways of parameterizing Q using a neural network. Since Q maps history-
action pairs to scalar estimates of their Q-value, the history and the action have been used as inputs
to the neural network by some previous approaches [20, 12]. The main drawback of this type
of architecture is that a separate forward pass is required to compute the Q-value of each action,
resulting in a cost that scales linearly with the number of actions. We instead use an architecture
in which there is a separate output unit for each possible action, and only the state representation is
an input to the neural network. The outputs correspond to the predicted Q-values of the individual
action for the input state. The main advantage of this type of architecture is the ability to compute
Q-values for all possible actions in a given state with only a single forward pass through the network.

5



Results

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 �20.4 157 110 179
Sarsa [3] 996 5.2 129 �19 614 665 271
Contingency [4] 1743 6 159 �17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 �16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion
This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.

References

[1] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning (ICML 1995), pages
30–37. Morgan Kaufmann, 1995.

[2] Marc Bellemare, Joel Veness, and Michael Bowling. Sketch-based linear value function ap-
proximation. In Advances in Neural Information Processing Systems 25, pages 2222–2230,
2012.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[4] Marc G Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness
using atari 2600 games. In AAAI, 2012.

[5] Marc G. Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively fac-
tored environments. In Proceedings of the Thirtieth International Conference on Machine
Learning (ICML 2013), pages 1211–1219, 2013.

8


