Take-home message

N

o

Always use a good quality tea
Always use freshly drawn water (stale water is stale tea)
Remember to warm the tea pot

Measure the right amount of tea for the amount of water in
the pot

Water must reach boiling point

6. Let the tea brew for 3-5 minutes before serving

Let every cup you make be a cup that cheers!

)

Tea talk #XI
February 13, 2014

Playing Atari 2600 games

Pong

Playing Atari 2600 games

Breakout

Playing Atari 2600 games

L

= =
=~ =
s s

.,

Space Invaders

Playing Atari 2600 games

Seaquest

Playing Atari 2600 games

(AR B
BECTORE 1D 1

Beam Rider

Playing atari games with deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
loannis Antonoglou, Daan Wierstra, Martin Riedmiller

Deep Learning workshop @NIPS, 2013

Playing atari games with deep RL

first deep learning model to successfully learn control policies
directly from high-D sensory input using RL

input: raw pixels,
output: value function estimating future reward

same architecture and learning algorithm for every game

outperform all previous approaches on 6 (out of 7) games,
surpasses a human expert on 3 of them.

Methods

convolutional network that takes states as input
and produces values of actions Q(s, a) as an output;

states s;: a stack of 4 raw screen frames (84x84, at 3-bit);
actions a;: move right, left, shoot, etc. (4 to 18)

rewards ry: changes in game score clipped to (-1, 1)

e-greedy stochastic gradient Q-learning

experience replay (up to 10° frames)

Learning

Discounted return:

T—t
Re =re + Z Y regr

=1

Optimal value

Q*(s,a) = m;xxIE[Rt|st =s,ar = a, 7|
Bellman equation

Q*(s,a) =E[r +7 max Q*(s',)]s, als
Q-learning

Qi+1(57 a) = E[I’ + mE/’X Qi(sl7 a/)’57 a]s’
a

Learning

Q-learning
Qis1(s,2) = Elr + 7 max Qi(s', 2)ls, ol
Function approximator
Q*(s,a) ~ Q(s, a;0)
Loss function
Li = El(yi — Q(s, a:0:))°|sla
Gradient descent

Vo,Li(6) = E[(r + 7 max Qi(s', ') — Q(s, 3 6,)) V6, Q(s, 3 6))]s

Deep Learning

Gradient descent

Vo.Li(6;) = E[(r +~ max Qi(s',d') — Q(s, 3,6,))V0;Q(s, a; 0;)]as

» Replace expectations by samples: 'stochastic gradient descent’

» Resample samples: 'experience replay’
€t = (5t7 ag, I't, 3t+1)

> c-greedy: allow for some randomness
(annealed from 100% to 1% over the first million frames)

» Frame skipping (4, or 3)

Deep Architecture

. convolves 16 8x8 filters with stride 4 with the input image
+ a rectifier nonlinearity

. convolves 32 4x4 filters with stride 2
+ a rectifier nonlinearity.

. fully-connected layer of 256 rectifier units

4. fully-connected linear layer with a single output for each valid

action

Methods

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢1 = ¢(s1)
fort =1,7 do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s:), a; 6)
Execute action a; in emulator and observe reward r; and image x4
Set 8141 = 8¢, ag, T¢+1 and preprocess dry1 = G(St41)
Store transition (¢, ag, ¢, ¢¢+1) in D
Sample random minibatch of transitions (¢;, a;, 75, ¢j4+1) from D
Sety; = { T for terminal ¢, 1
7 rj +ymaxae Q(djp1,0’;6) for non-terminal ¢, 41
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

Results

B. Rider | Breakout | Enduro | Pong | Q%*bert | Seaquest | S.Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 28010 3690
HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an e-greedy policy with e = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with e = 0.05.

