

Humans Can Discriminate More than 1 Trillion Olfactory Stimuli

C. Bushdid, M. O. Magnasco, L. B. Vosshall, A. Keller

March 27, 2014

тѕвү

BBC news coverage

- ▶ We thought nose can detect about 10,000 different odours.
- But no! It can do a trillion! (probably an underestimate, they say)
- Human nose outperforms the eye and the ear in terms of the number of stimuli it can distinguish between.

How to estimate the number of discriminable stimuli?

How to estimate the number of discriminable stimuli?

Sphere packing

Outline

Background

Experiment

Math

A tale of ten thousand odours

"Humans are able to discriminate about 10⁴ odours."

A tale of ten thousand odours

Crocker-Henderson smell classification (1927):

4 odour qualities \times 9-point scale = 6561 fragrant 0-8 acid burnt caprilic ("goatiness")

A tale of ten thousand odours

$6561 \sim 10{,}000$

Other classifications

Hans Henning "smell prism":

Flowery Foul Fruity Spicy Burnt Resinous Zwaardemaker (1895)

Ethereal Aromatic Fragrant Ambrosiac Alliaceous Empyreumatic Hiccine Foul Nauseous

 r^9 (512; 10⁹)

Other classifications

Non-negative matrix factorisation (Castor et al., 2013):

Fragrant Woody/resinous Fruity (non-citrus) Chemical Minty/peppermint Sweet Popcorn Lemon Pungent Decayed

Outline

Background

Experiment

Math

Bushdid and all approach

- Take 128 molecules (well spaced in perceptual and physicochemical space)
- ▶ Mix them (10, 20, 30)
- Give 3 vials at different dilutions.
 Find odd-one-out.

 \blacktriangleright Can't test all-against-all, so do math

Sphere packing

Α Component in A and B Component only in A Component only in B 10 components 20 components 30 components Mixture A Mixture в % mixture 25 96.67 66.67 33.33 90 60 30 0 95 75 50 0 0 overlap **B** 100 80 60 60 % Course --. -0000-.... . ٠ . 000000 -.... . 20 ... ----- Median Subjects who can discriminate Subjects who cannot discriminate . ē С 100 ÷ 80 60 % coursect : • -................ :: ::: • • • • • • • • • • : . . -. 20 : Median
 Discriminable mixture
 Non-discriminable mixture . . .

Outline

Background

Experiment

Math

Sphere packing

Assumption:

all that matters is the overlap between the mixtures.

Resolution:

D — difference linen (highest number of components differing in the "same" percept)

Number of all mixtures:
$$V = \begin{pmatrix} 128 \\ N \end{pmatrix}$$

Number in a ball of radius R: $v = \sum_{n=0}^{R} \binom{N}{n} \binom{128 - N}{n}$
 $R = D/2$

Number of stimuli : V/v

But...

$$V_n(R) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}R^n$$

$$V_{2k}(R) = \frac{\pi^k}{k!} R^{2k}$$

so it's taking little space in a cube R^{2k} ...

Take-home message

► We have a new urban legend: 10,000 replaced by 1000,000,000,000

- ► Forgot to mention (in the main text), it's an "upper bound"...
- And if we take more molecules, we get even more!
- Comparison with other senses truly unfair...
- Some math to be done again.

Better estimate of similarity?

Estimates of dimensionality

Input:

- ▶ perceptual features (Dravniek's atlas, 146 verbal descriptors)
- ▶ physicochemical features (now up to 1600)

Method:

Statistical dimensionality reduction

[Koulakov AA, Enikolopov AG, Rinberg D (2009) The structure of human olfactory space. arXiv.

Madany Mamlouk A, Chee-Ruiter C, Hofmann UG, Bower JM (2003) Quantifying olfactory perception: mapping olfactory perception space by using multidimensional scaling and self-organizing maps. Neurocomputing.] Non-negative matrix factorisation (Castor et al., 2013)

GATSBY

Thank you!

