Humans Can Discriminate More than 1 Trillion Olfactory Stimuli

C. Bushdid, M. O. Magnasco, L. B. Vosshall, A. Keller

March 27, 2014

BBC news coverage

- We thought nose can detect about 10,000 different odours.
- But no! It can do a trillion! (probably an underestimate, they say)
- Human nose outperforms the eye and the ear in terms of the number of stimuli it can distinguish between.

How to estimate the number of discriminable stimuli?

How to estimate the number of discriminable stimuli?

Sphere packing

Outline

Background

Experiment

A tale of ten thousand odours

"Humans are able to discriminate about 10^{4} odours."

A tale of ten thousand odours

Crocker-Henderson smell classification (1927):
4 odour qualities $\times 9$-point scale $=6561$
fragrant
0-8
acid
burnt
caprilic ("goatiness")

A tale of ten thousand odours

$6561 \sim 10,000$

Other classifications

Hans Henning "smell prism":
Flowery
Foul
Fruity
Spicy
Burnt
Resinous

Zwaardemaker (1895)
Ethereal
Aromatic
Fragrant
Ambrosiac
Alliaceous
Empyreumatic
Hiccine
Foul
Nauseous

$$
\left(2^{6}=64 ; 10^{6}\right)
$$

$r^{9}\left(512 ; 10^{9}\right)$

Other classifications

Non-negative matrix factorisation (Castor et al., 2013):

Fragrant
Woody/resinous
Fruity (non-citrus)
Chemical
Minty/peppermint
Sweet
Popcorn
Lemon
Pungent
Decayed

$r^{10}\left(1024 ; 10^{10}\right)$

Outline

Background

Experiment

血而

Bushdid and all approach

- Take 128 molecules (well spaced in perceptual and physicochemical space)
- Mix them (10, 20, 30)
- Give 3 vials at different dilutions.

Find odd-one-out.

- Can't test all-against-all, so do math

Sphere packing

Outline

Background

Experiment

Math

血II

Sphere packing

$\mathcal{A}^{G} G A T S B Y$

Sphere packing

Assumption:
all that matters is the overlap between the mixtures.
Resolution:
D - difference linen (highest number of components differing in the "same" percept)

Number of all mixtures: $V=\binom{128}{N}$
Number in a ball of radius R: $v=\sum_{n=0}^{R}\binom{N}{n}\binom{128-N}{n}$
$R=D / 2$
Number of stimuli : V/v

E

Colors

allowing discrimination

But...

$$
\begin{gathered}
V_{n}(R)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} R^{n} \\
V_{2 k}(R)=\frac{\pi^{k}}{k!} R^{2 k}
\end{gathered}
$$

so it's taking little space in a cube $R^{2 k} \ldots$

Take-home message

- We have a new urban legend: 10,000 replaced by 1000,000,000,000
- Forgot to mention (in the main text), it's an "upper bound"...
- And if we take more molecules, we get even more!
- Comparison with other senses truly unfair...
- Some math to be done again.

Better estimate of similarity?

Estimates of dimensionality

Input:

- perceptual features (Dravniek's atlas, 146 verbal descriptors)
- physicochemical features (now up to 1600)

Method:

- Statistical dimensionality reduction
[Koulakov AA, Enikolopov AG, Rinberg D (2009) The structure of human olfactory space. arXiv.
Madany Mamlouk A, Chee-Ruiter C, Hofmann UG, Bower JM (2003)
Quantifying olfactory perception: mapping olfactory perception space by using multidimensional scaling and self-organizing maps. Neurocomputing.]

Non-negative matrix factorisation (Castor et al., 2013)

Thank you!

\square Trillion $=10^{12}$
\square Titilion $=10^{18}$
dexatser
IIIIII

