Odor Representations in Olfactory Cortex: Distributed Rate Coding and Decorrelated Population Activity

Keiji Miura, Zachary F. Mainen, and Naoshige Uchida

Tea talk #V June 29, 2012

Population coding in the primary olfactory cortex (rat)

- Input: Diverse and reliable temporal patterns
- Output: Rate coding

Different odour coding in olfactory cortex as opposed to olfactory bulb

Near zero noise-correlations among neurons

Population coding in the primary olfactory cortex (rat)

- Input: Diverse and reliable temporal patterns
- Output: Rate coding

Different odour coding in olfactory cortex as opposed to olfactory bulb

Near zero noise-correlations among neurons

Population coding in the primary olfactory cortex (rat)

- Input: Diverse and reliable temporal patterns
- Output: Rate coding

Different odour coding in olfactory cortex as opposed to olfactory bulb

Near zero noise-correlations among neurons

Population coding in the primary olfactory cortex (rat)

- Input: Diverse and reliable temporal patterns
- Output: Rate coding

Different odour coding in olfactory cortex as opposed to olfactory bulb

Near zero noise-correlations among neurons

Experiment: Where?

 $Olfactory \ Epithelium \Rightarrow Olfactory \ Bulb \Rightarrow anterior \ Piriform \ Cortex$

Experiment: Where?

 $Olfactory \ Epithelium \Rightarrow Olfactory \ Bulb \Rightarrow anterior \ Piriform \ Cortex$

Experiment: How?

- Chronically implanted multielectrodes,
 6 tetrodes moving independently
- ▶ 1-2 weeks, 3 + 5 rats (pooled), 179 neurons
- Temperature sensor in the nostril records sniffing

Experiment: What?

Figure 1. Odor Mixture Categorization Task and Behavioral Performance

- Odour categorisation (6 odours, left/right)
- ► Decision: Self-paced (1-2 sniffs) or Delayed (3-4 sniffs)

Spiking response vs sniffing

Figure 2. Sniffing of Odors Triggers Transient Spike Bursts Tightly Locked to Inhalation Onset

- ▶ Sniffing: active sampling of the world (~ 7 Hz rhythm)
- Short bursts locked (somewhat) to sniffing

Most efficient coding of odours?

Figure 4. Rapid and Accurate Readout of Odor Information Based on Spike Counts in First Sniff

Neurons better than their animal

Figure 5. Information Conveyed by the Spike Counts in the Burst Activity Can Account for the Speed and Accuracy of Odor Discrimination

Neurons better than their animal

Noise correlations (The lack of)

Figure 6. Near-Zero Noise Correlations in aPC

Noise correlations before sniff

 Correlations between similarly tuned neurons increase before odour onset.

Wrap-up

- Different mechanism for odour coding in the anterior piriform cortex as opposed to olfactory bulb, but...
 - ► Some improvement in decoding with finer time bins
 - They introduced noise in latency and peak-timing codes
- Noise correlations among similarly-tuned neurons increase during anticipation, curbed when stimulus arrives

Thank you!

