On the Equivalence between Quadrature Rules and Random Features

Francis Bach

Arthur Gretton's notes

October 23, 2015

Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature

October 23, 2015

What the paper is about

The paper has two parts:

- Approximating functions by random Fourier features is similar to Herding (and more generally, quadrature).
- A non-uniform sampling distribution can improve performance of both methods.

What the paper is about

The paper has two parts:

- Approximating functions by random Fourier features is similar to Herding (and more generally, quadrature).
- A non-uniform sampling distribution can improve performance of both methods.

Outline of this talk:

- Approximate RKHS functions by random Fourier features (review)
- Introduce what's meant by quadrature (approximating integrals)
- Show the quadrature problem is not, in fact, equivalent
- Probably not covered: the non-uniform sampling distribution

Function approximation by random Fourier features

Reminder: Fourier representation of RKHS. Kernel

$$k(x,y)=k(x-y),$$

Fourier series representation of k, for $\mu_{\ell} \geq 0$,

$$egin{aligned} k(x-y) &= \sum_{\ell=0}^\infty 2 \hat{k}_\ell \left[\cos(\ell x) \cos(\ell y) + \sin(\ell x) \sin(\ell y)
ight] \ &= \sum_{\ell=0}^\infty \mu_\ell arphi(\ell, x) arphi(\ell, y) \end{aligned}$$

E.g. "Gaussian-like" kernel:

$$k(x-y) = \frac{1}{2\pi}\vartheta\left(\frac{(x-y)}{2\pi},\frac{\imath\sigma^2}{2\pi}\right), \qquad \mu_{\ell} = \frac{1}{\pi}\exp\left(-2\sigma^2\left\lfloor I/2\right\rfloor^2\right)$$

 ϑ is the Jacobi theta function, close to Gaussian when σ^2 sufficiently narrower than $[-\pi,\pi]$. Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature October 23, 2015 3 / 11

Function approximation by random Fourier features

Functions are in RKHS iff they can be written wrt a function $g \in L_2(\mu)$,

$$f(x) = \sum_{\ell=0}^{\infty} \underbrace{[\sqrt{\mu_\ell} g_\ell]}_{f_\ell} \underbrace{[\sqrt{\mu_\ell} \varphi(\ell, x)]}_{\phi_\ell(x)} \qquad \sum_{\ell=0}^{\infty} \mu_\ell g_\ell^2 < \infty$$

- 3

(人間) トイヨト イヨト

Function approximation by random Fourier features

Functions are in RKHS iff they can be written wrt a function $g \in L_2(\mu)$,

$$f(x) = \sum_{\ell=0}^{\infty} \underbrace{[\sqrt{\mu_{\ell}} g_{\ell}][\sqrt{\mu_{\ell}} \varphi(\ell, x)]}_{f_{\ell}} \qquad \sum_{\ell=0}^{\infty} \mu_{\ell} g_{\ell}^2 < \infty$$

Approximate the function f, for $v_i \in \mathbb{N}$ and $\alpha_i \in \mathbb{R}$,

$$\hat{f} = \sum_{i=1}^{n} \alpha_i \varphi(\mathbf{v}_i, \cdot) \in \widehat{\mathcal{F}}.$$

Error is (for some reference measure ρ)

Francis Ba

$$\left\| \hat{f} - f \right\|_{L_{2}(\rho)} = \left\| \sum_{i=1}^{n} \alpha_{i} \varphi(\mathbf{v}_{i}, \mathbf{x}) - \sum_{\ell=0}^{\infty} \mu_{\ell} g_{\ell} \varphi(\ell, \mathbf{x}) \right\|_{L_{2}(\rho)}.$$
Simplest case: $\mathbf{v}_{\ell} \stackrel{\text{i.i.d.}}{\sim} \mu$ and $\alpha_{\ell} = n^{-1} g(\mathbf{v}_{\ell})$. Then $\mathbb{E} \left\| \hat{f} - f \right\|_{L_{2}(\rho)}^{2} \leq n^{-1} C.$
Can we do better?

ancis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature

October 23, 2015

4/11

Quadrature definition

What is quadrature? Approximate the integral $\int_{\mathcal{X}} h(x)g(x)d\rho(x)$ via

$$\sum_{i=1}^{n} \alpha_i h(x_i) - \int_{\mathcal{X}} h(x) g(x) d\rho(x)$$

for $\alpha \in \mathbb{R}^n$ and $x_1, \ldots, x_n \in \mathcal{X}$, and $h \in \mathcal{F}$ an RKHS function, ρ a prob. measure, for some

$$g \in L_2(\mathcal{X}).$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Quadrature definition

What is quadrature? Approximate the integral $\int_{\mathcal{X}} h(x)g(x)d\rho(x)$ via

$$\sum_{i=1}^{n} \alpha_i h(x_i) - \int_{\mathcal{X}} h(x) g(x) d\rho(x)$$

for $\alpha \in \mathbb{R}^n$ and $x_1, \ldots, x_n \in \mathcal{X}$, and $h \in \mathcal{F}$ an RKHS function, ρ a prob. measure, for some

$$g \in L_2(\mathcal{X}).$$

KEY POINT: for RKHS, approximating the integral can be done by approximating a function. For $\|h\|_{\mathcal{F}} \leq 1$,

$$\left|\sum_{i=1}^{n} \alpha_{i} h(x_{i}) - \int_{\mathcal{X}} h(x) g(x) d\rho(x)\right| = \left|\left\langle h, \sum_{i=1}^{n} \alpha_{i} k(x_{i}, \cdot) - \int_{\mathcal{X}} k(x, \cdot) g(x) d\rho(x)\right\rangle_{\mathcal{F}}\right|$$

$$\leq \left\|\sum_{i=1}^{n} \alpha_{i} k(x_{i}, \cdot) - \int_{\mathcal{X}} k(x, \cdot) g(x) d\rho(x)\right\|_{\mathcal{F}}.$$

5 / 11

When g(x) = 1 this is Herding, since $\mu_{\rho} = \int_{\mathcal{X}} k(x, \cdot) d\rho(x)$. October 23, 2015

Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature

Quadrature definition

To implement quadrature, approximate the function

$$\int_{\mathcal{X}} k(x,\cdot)g(x)d\rho(x) \in \mathcal{F}$$

by the function

$$\sum_{i=1}^n \alpha_i k(x_i, \cdot) \in \mathcal{F}$$

Ensure the error small in RKHS norm.

- Can we make this look like the random Fourier feature loss? (in a manner of speaking, after a math detour)
- Simplest case: $x_i \stackrel{\text{i.i.d.}}{\sim} \rho$ and $\alpha_i = n^{-1}g(x_i)$. Then $\mathbb{E} \left\| \sum_{i=1}^n \alpha_i k(x_i, \cdot) - \int_{\mathcal{X}} k(x, \cdot) g(x) d\rho(x) \right\|_{\mathcal{F}} \le n^{-1}C$. Can we do better?

October 23, 2015 6 / 11

$$egin{aligned} \mathsf{Gaussian} \,\, \mathsf{kernel}, \,\, k(x,y) &= \exp\left(-rac{\|x-y\|^2}{2\sigma^2}
ight), \ &\lambda_k \,\, \propto \,\, b^k \,\,\, b < 1 \ &e_k(x) \,\,\, \propto \,\,\, \exp(-(c-a)x^2) H_k(x\sqrt{2c}) \end{aligned}$$

a, b, c are functions of σ , and H_k is kth order Hermite polynomial.

,

Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature October 23, 2015 7 / 11

Define an integral operator with the kernel k and probability distribution ρ :

$$T_k f : L_2(
ho) o L_2(
ho)$$

 $f \mapsto \int k(x,t) f(t) d
ho(t)$

The eigenfunctions of the kernel with respect to some measure ρ are

$$\lambda_i e_i(x) = \int k(x,t) e_i(t) d\rho(t) = T_k e_i$$

We can prove $\sum_i \lambda_i < \infty$ and $\lambda_i \ge 0$ (normalizable).

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i e_i(x) e_i(x'), \qquad \int_{\mathcal{X}} e_i(x) e_j(x) d\rho(x) = \begin{cases} 1 & i=j \\ 0 & i\neq j. \end{cases}$$

Under certain conditions (e.g Mercer's) this sum is guaranteed to converge absolutely and uniformly (whatever the x and x').

October 23, 2015

Define the RKHS using the eigenfunctions:

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i e_i(x) e_i(x') = \left\langle \phi(x), \phi(x') \right\rangle_{\mathcal{F}}$$

Infinite dimensional feature map: $\phi(x) = \begin{bmatrix} \dots & \sqrt{\lambda_i}e_i(x) & \dots \end{bmatrix} \in \ell_2.$ RKHS function: $\forall \{f_i\}_{i=1}^{\infty} \in \ell_2.$

$$f(x) = \sum_{i=1}^{\infty} f_i \phi_i(x) = \sum_{i=1}^{\infty} f_i \sqrt{\lambda_i} e_i(x)$$

Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature October 23, 2015

Define the RKHS using the eigenfunctions:

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i e_i(x) e_i(x') = \left\langle \phi(x), \phi(x') \right\rangle_{\mathcal{F}}$$

Infinite dimensional feature map: $\phi(x) = \begin{bmatrix} \dots & \sqrt{\lambda_i}e_i(x) & \dots \end{bmatrix} \in \ell_2.$ RKHS function: $\forall \{f_i\}_{i=1}^{\infty} \in \ell_2.$

$$f(x) = \sum_{i=1}^{\infty} f_i \phi_i(x) = \sum_{i=1}^{\infty} f_i \sqrt{\lambda_i} e_i(x)$$

For this to work, the dot product in $\mathcal F$ must be

$$\langle f,g \rangle_{\mathcal{F}} = \sum_{i=1}^{\infty} f_i g_i = \left\langle T_k^{-1/2} f, T_k^{-1/2} g, \right\rangle_{L_2(\rho)}$$

In other words $||f||_{\mathcal{F}}^2 = \sum_i f_i^2 = ||T_k^{-1/2}f||_{L_2(\rho)}^2$.

Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature

Start with a function $g \in L_2(\rho)$, expanded in terms of the basis $e_i(x)$,

$$g = \sum_{i=1}^{\infty} \langle g, e_i
angle_{L_2(
ho)} e_i.$$

Then obtain a function $f \in \mathcal{F}$ via

$$f(x) = T_k^{1/2}g = \sum_{i=1}^{\infty} \underbrace{\langle g, e_i \rangle_{L_2(\rho)}}_{f_i} \sqrt{\lambda_i} e_i(x).$$

since $\sum_{i=1}^{\infty} \langle g, e_i \rangle_{L_2(\rho)}^2 = \|g\|_{L_2(\rho)}^2 < \infty$.

Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature

Start with a function $g \in L_2(\rho)$, expanded in terms of the basis $e_i(x)$,

$$g = \sum_{i=1}^{\infty} \langle g, e_i
angle_{L_2(
ho)} e_i.$$

Then obtain a function $f \in \mathcal{F}$ via

$$f(x) = T_k^{1/2}g = \sum_{i=1}^{\infty} \underbrace{\langle g, e_i \rangle_{L_2(\rho)}}_{f_i} \sqrt{\lambda_i} e_i(x).$$

since $\sum_{i=1}^{\infty} \langle g, e_i \rangle_{L_2(\rho)}^2 = \|g\|_{L_2(\rho)}^2 < \infty$. Also possible for the kernel:

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i e_i(x) e_i(x') = T_k^{1/2} \left(\sum_{i=1}^{\infty} \sqrt{\lambda_i} e_i(x) e_i(x') \right) = T_k^{1/2} \psi(x,x').$$

Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature

October 23, 2015

The final result

We can write the function approximation as a loss in $L_2(\rho)$:

$$\begin{split} & \left\|\sum_{i=1}^{n} \alpha_{i} k(x_{i}, \cdot) - \int_{\mathcal{X}} k(x, \cdot) g(x) d\rho(x)\right\|_{\mathcal{F}} \\ &= \left\|\sum_{i=1}^{n} \alpha_{i} T_{k}^{1/2} \psi(x_{i}, \cdot) - \int_{\mathcal{X}} T_{k}^{1/2} \psi(x, \cdot) g(x) d\rho(x)\right\|_{\mathcal{F}} \\ &= \left\|\sum_{i=1}^{n} \alpha_{i} \psi(x_{i}, \cdot) - \int_{\mathcal{X}} \psi(x, \cdot) g(x) d\rho(x)\right\|_{L_{2}(\rho)}. \end{split}$$

Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature October 23, 2015 11 / 11

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - のへで

The final result

We can write the function approximation as a loss in $L_2(\rho)$:

$$\begin{split} & \left\|\sum_{i=1}^{n} \alpha_{i} k(x_{i}, \cdot) - \int_{\mathcal{X}} k(x, \cdot) g(x) d\rho(x)\right\|_{\mathcal{F}} \\ &= \left\|\sum_{i=1}^{n} \alpha_{i} T_{k}^{1/2} \psi(x_{i}, \cdot) - \int_{\mathcal{X}} T_{k}^{1/2} \psi(x, \cdot) g(x) d\rho(x)\right\|_{\mathcal{F}} \\ &= \left\|\sum_{i=1}^{n} \alpha_{i} \psi(x_{i}, \cdot) - \int_{\mathcal{X}} \psi(x, \cdot) g(x) d\rho(x)\right\|_{L_{2}(\rho)}. \end{split}$$

Reminder: random Fourier problem was

$$\left\|\hat{f}-f\right\|_{L_{2}(\rho)}=\left\|\sum_{i=1}^{n}\alpha_{i}\varphi(\mathbf{v}_{i},\cdot)-\sum_{\ell=0}^{\infty}\mu_{\ell}g_{\ell}\varphi(\ell,\mathbf{x})\right\|_{L_{2}(\rho)}$$

Main difference: spatial vs frequency decomposition,

Francis Bach (Arthur Gretton's notes) On the Equivalence between Quadrature

= + = + = • • • •