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What the paper is about

The paper has two parts:
1 Approximating functions by random Fourier features is similar to

Herding (and more generally, quadrature).
2 A non-uniform sampling distribution can improve performance of both

methods.

Outline of this talk:
Approximate RKHS functions by random Fourier features (review)
Introduce what’s meant by quadrature (approximating integrals)
Show the quadrature problem is not, in fact, equivalent
Probably not covered: the non-uniform sampling distribution
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Function approximation by random Fourier features

Reminder: Fourier representation of RKHS. Kernel

k(x , y) = k(x − y),

Fourier series representation of k , for µ` ≥ 0,

k(x − y) =
∞∑
`=0

2k̂` [cos(`x) cos(`y) + sin(`x) sin(`y)]

=
∞∑
`=0

µ`ϕ(`, x)ϕ(`, y)

E.g. “Gaussian-like” kernel:

k(x − y) =
1
2π
ϑ

(
(x − y)

2π
,
ıσ2

2π

)
, µ` =

1
π
exp
(
−2σ2 bl/2c2

)
.

ϑ is the Jacobi theta function, close to Gaussian when σ2 sufficiently narrower than [−π, π].
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Function approximation by random Fourier features

Functions are in RKHS iff they can be written wrt a function g ∈ L2(µ),

f (x) =
∞∑
`=0

[
√
µ`g`]︸ ︷︷ ︸
f`

[
√
µ`ϕ(`, x)]︸ ︷︷ ︸
φ`(x)

∞∑
`=0

µ`g2
` <∞

Approximate the function f , for vi ∈ N and αi ∈ R,

f̂ =
n∑

i=1

αiϕ(vi , ·) ∈ F̂ .

Error is (for some reference measure ρ)∥∥∥f̂ − f
∥∥∥

L2(ρ)
=

∥∥∥∥∥
n∑

i=1

αiϕ(vi , x)−
∞∑
`=0

µ`g`ϕ(`, x)

∥∥∥∥∥
L2(ρ)

.

Simplest case: v`
i.i.d.∼ µ and α` = n−1g(v`). Then E

∥∥∥f̂ − f
∥∥∥2

L2(ρ)
≤ n−1C .

Can we do better?
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Quadrature definition

What is quadrature? Approximate the integral
´
X h(x)g(x)dρ(x) via

n∑
i=1

αih(xi )−
ˆ
X

h(x)g(x)dρ(x)

for α ∈ Rn and x1, . . . , xn ∈ X , and h ∈ F an RKHS function, ρ a prob.
measure, for some

g ∈ L2(X ).

KEY POINT: for RKHS, approximating the integral can be done by
approximating a function. For ‖h‖F ≤ 1,∣∣∣∣∣

n∑
i=1

αih(xi )−
ˆ
X

h(x)g(x)dρ(x)

∣∣∣∣∣ =
∣∣∣∣∣
〈

h,
n∑

i=1

αik(xi , ·)−
ˆ
X

k(x , ·)g(x)dρ(x)

〉
F

∣∣∣∣∣
≤

∥∥∥∥∥
n∑

i=1

αik(xi , ·)−
ˆ
X

k(x , ·)g(x)dρ(x)

∥∥∥∥∥
F

.

When g(x) = 1 this is Herding, since µρ =
´
X k(x , ·)dρ(x).
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Quadrature definition

To implement quadrature, approximate the function
ˆ
X

k(x , ·)g(x)dρ(x) ∈ F

by the function
n∑

i=1

αik(xi , ·) ∈ F

Ensure the error small in RKHS norm.
1 Can we make this look like the random Fourier feature loss? (in a

manner of speaking, after a math detour)

2 Simplest case: xi
i.i.d.∼ ρ and αi = n−1g(xi ). Then

E
∥∥∑n

i=1 αik(xi , ·)−
´
X k(x , ·)g(x)dρ(x)

∥∥
F ≤ n−1C . Can we do

better?
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RKHS in terms of eigenfunctions of integral operator

Gaussian kernel, k(x , y) = exp
(
−‖x−y‖2

2σ2

)
,

λk ∝ bk b < 1
ek(x) ∝ exp(−(c − a)x2)Hk(x

√
2c),

a, b, c are functions of σ, and Hk is kth order Hermite polynomial.

e
1
(x)

e
2
(x)

e
3
(x)

k(x , x ′) =
∞∑
i=1

λiei (x)ei (x ′)
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RKHS in terms of eigenfunctions of integral operator

Define an integral operator with the kernel k and probability distribution ρ:

Tk f :L2(ρ)→ L2(ρ)

f 7→
ˆ

k(x , t)f (t)dρ(t)

The eigenfunctions of the kernel with respect to some measure ρ are

λiei (x) =
ˆ

k(x , t)ei (t)dρ(t) = Tkei

We can prove
∑

i λi <∞ and λi ≥ 0 (normalizable).

k(x , x ′) =
∞∑
i=1

λiei (x)ei (x ′),
ˆ
X

ei (x)ej(x)dρ(x) =

{
1 i = j
0 i 6= j .

Under certain conditions (e.g Mercer’s) this sum is guaranteed to converge
absolutely and uniformly (whatever the x and x ′).
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RKHS in terms of eigenfunctions of integral operator

Define the RKHS using the eigenfunctions:

k(x , x ′) =
∞∑
i=1

λiei (x)ei (x ′) =
〈
φ(x), φ(x ′)

〉
F

Infinite dimensional feature map: φ(x) =
[
. . .

√
λiei (x) . . .

]
∈ `2.

RKHS function: ∀ {fi}∞i=1 ∈ `2.

f (x) =
∞∑
i=1

fiφi (x) =
∞∑
i=1

fi
√
λiei (x)

For this to work, the dot product in F must be

〈f , g〉F =
∞∑
i=1

figi =
〈
T−1/2k f ,T−1/2k g ,

〉
L2(ρ)

In other words ‖f ‖2F =
∑

i f
2
i =

∥∥∥T−1/2k f
∥∥∥2

L2(ρ)
.
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RKHS in terms of eigenfunctions of integral operator

Start with a function g ∈ L2(ρ), expanded in terms of the basis ei (x),

g =
∞∑
i=1

〈g , ei 〉L2(ρ)
ei .

Then obtain a function f ∈ F via

f (x) = T 1/2
k g =

∞∑
i=1

〈g , ei 〉L2(ρ)︸ ︷︷ ︸
fi

√
λiei (x).

since
∑∞

i=1 〈g , ei 〉2L2(ρ)
= ‖g‖2L2(ρ)

<∞.

Also possible for the kernel:

k(x , x ′) =
∞∑
i=1

λiei (x)ei (x ′) = T 1/2
k

( ∞∑
i=1

√
λiei (x)ei (x ′)

)
= T 1/2

k ψ(x , x ′).
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The final result

We can write the function approximation as a loss in L2(ρ):∥∥∥∥∥
n∑

i=1

αik(xi , ·)−
ˆ
X

k(x , ·)g(x)dρ(x)

∥∥∥∥∥
F

=

∥∥∥∥∥
n∑

i=1

αiT
1/2
k ψ(xi , ·)−

ˆ
X

T 1/2
k ψ(x , ·)g(x)dρ(x)

∥∥∥∥∥
F

=

∥∥∥∥∥
n∑

i=1

αiψ(xi , ·)−
ˆ
X
ψ(x , ·)g(x)dρ(x)

∥∥∥∥∥
L2(ρ)

.

Reminder: random Fourier problem was∥∥∥f̂ − f
∥∥∥

L2(ρ)
=

∥∥∥∥∥
n∑

i=1

αiϕ(vi , ·)−
∞∑
`=0

µ`g`ϕ(`, x)

∥∥∥∥∥
L2(ρ)

.

Main difference: spatial vs frequency decomposition.
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