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Introduction

In kernel methods, learned functions take the form

f (x) =
∑

i

αik(x , xi ) =
∑

i

αi 〈φ(x), φ(xi )〉H

for training points xi .

1 Advantage: can work with infinite feature spaces.

2 Disadvantage: need to store all the training points.
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∑
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αi 〈φ(x), φ(xi )〉H

for training points xi .

1 Advantage: can work with infinite feature spaces.

2 Disadvantage: need to store all the training points.

Ways to get around this:

1 Throw points away (incomplete Cholesky, sparse methods,...)

2 This paper: finite random feature spaces
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Method 1: Fourier space

Bochner’s theorem: a continous kernel k(x − y) on ℜd is positive definite
iff

k(x − y) =

ˆ

ℜd

p(ω)e iω⊤(x−y)dω

for a probability measure p(ω) (actually a finite non-negative Borel measure: prob.
measure with appropriate normalization)
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Bochner’s theorem: a continous kernel k(x − y) on ℜd is positive definite
iff

k(x − y) =

ˆ

ℜd

p(ω)e iω⊤(x−y)dω

for a probability measure p(ω) (actually a finite non-negative Borel measure: prob.
measure with appropriate normalization)

Define ζω := e iω⊤
x. Then

k(x − y) = Eω

[(

e iω⊤
x

)(

e iω⊤
y

)∗]

= Eω(cos(ω
⊤(x − y))) + iEω(sin(ω

⊤(x − y)))
︸ ︷︷ ︸

=0

.
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Method 1: Fourier space

Because k(x − y) is real and p(ω) is real, can replace this with cosine
features:

zω,b(x) =
√

2cos
(

ω⊤x + b
)

where b uniform on [0, 2π)

Then
k(x − y) = Eω,b

[
zω,b(x)zω,b(y)

]
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Because k(x − y) is real and p(ω) is real, can replace this with cosine
features:

zω,b(x) =
√

2cos
(

ω⊤x + b
)

where b uniform on [0, 2π)

Then
k(x − y) = Eω,b

[
zω,b(x)zω,b(y)

]

Proof:

2 cos(ω⊤x + b) cos(ω⊤y + b) = cos(ω⊤(x + y) + 2b)
︸ ︷︷ ︸

expectation zero

+ cos(ω⊤(x − y))
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Method 1: Fourier space

Generate D random features to decrease variance. Then

k(x − y) ≈ 1

D

D∑

j=1

z
(j)
ω,b(x)z

(j)
ω,b(y).
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ω,b(y).

Convergence result:
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Method 2: randomly shifted grid

Figure: Kernel khat(x − y) = max
(

0, 1 − |x−y |
δ

)

.
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Method 2: randomly shifted grid

Figure: Randomly shifted grid. u ∼ U(0, δ).

Probability of x , y falling in the same bin:

Pr
u
(x̂ = ŷ | δ) = khat(x − y) x̂ =

⌊
x − u

δ

⌋

.
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Method 2: randomly shifted grid

As before, take distributions over features to get more advanced kernels:

k(x , y) =

ˆ

∞

0
khat(x , y ; δ)p(δ)dδ.

Given a kernel, how to compute p(δ)?
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Method 2: randomly shifted grid

As before, take distributions over features to get more advanced kernels:

k(x , y) =

ˆ

∞

0
khat(x , y ; δ)p(δ)dδ.

Given a kernel, how to compute p(δ)?

k(|x − y |) =: k(∆)

=

ˆ

∞

0
max

(

0, 1 − ∆

δ

)

p(δ)dδ

=

ˆ

∞

∆
p(δ)dδ −∆

ˆ

∞

∆

p(δ)

δ
dδ.

Take 2nd derivative wrt ∆:

d2k

d∆2
=

p(∆)

∆
=⇒ p(∆) = ∆

d2k

d∆2
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Method 2: randomly shifted grid

Example:
klap = exp (− |x − y |) = exp (−∆)

then p(δ) = δ exp(−δ) (Gamma distribution).
Note: for a Gaussian, p(δ) not a valid prob. density.
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then p(δ) = δ exp(−δ) (Gamma distribution).
Note: for a Gaussian, p(δ) not a valid prob. density.

Reduce variance by averaging over P independent grids (u, δ).
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Method 2: randomly shifted grid

Example:
klap = exp (− |x − y |) = exp (−∆)

then p(δ) = δ exp(−δ) (Gamma distribution).
Note: for a Gaussian, p(δ) not a valid prob. density.

Reduce variance by averaging over P independent grids (u, δ).

Multiple dimensions: use independent grids in each dimension, and

k(x− y) =

m∏

k=1

km(x
m − ym).

The feature is an m-dimensional binary tensor with a single one at

coordinate
[ ⌊

x1−u1
δ1

⌋

. . .
⌊

xm−um

δm

⌋ ]
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Method 2: randomly shifted grid

In practice: use a hash of the binary vector as a feature map.

Convergence result:

Rahimi, Recht ((NIPS 2007)) Random features for large-scale kernel machines October 23, 2012 10 / 11



Results

Interpretation: for data where interpolation is needed, use Fourier kernels.
For data where “memorization” is needed, use binning features.
Caveat: the Gaussian kernel was used for Fourier+LS, the Laplace for
Binning+LS
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