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N —
Introduction

In kernel methods, learned functions take the form
:Za,k(X,XI ZO[, ’)>H

for training points x;.
@ Advantage: can work with infinite feature spaces.

@ Disadvantage: need to store all the training points.
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N —
Introduction

In kernel methods, learned functions take the form
:Za,k(X,XI ZO[, ’)>H

for training points x;.
@ Advantage: can work with infinite feature spaces.

@ Disadvantage: need to store all the training points.

Ways to get around this:
© Throw points away (incomplete Cholesky, sparse methods,...)

@ This paper: finite random feature spaces
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Method 1: Fourier space

Bochner's theorem: a continous kernel k(x —y) on R is positive definite

iff
k(x—y) = / p(w)e™ Y dw
Rd

for a probability measure p(w) (actually a finite non-negative Borel measure: prob.
measure with appropriate normalization)
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Method 1: Fourier space

Bochner's theorem: a continous kernel k(x —y) on R is positive definite

iff
k(x—y) = / p(w)e™ Y dw
Rd

for a probability measure p(w) (actually a finite non-negative Borel measure: prob.

measure with appropriate normalization)

Define ¢, := e *. Then

fhxmy) = £ [(e7%) ()]
=E,(cos(w' (x —y))) + iEy(sin(w (x —y))).

=0
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Method 1: Fourier space

Because k(x —y) is real and p(w) is real, can replace this with cosine
features:

2, b(X) = V2cos (wa + b)

where b uniform on [0, 27)

Then
k(x —y) = Eup [20,6(%) 20,6(Y)]
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Method 1: Fourier space

Because k(x —y) is real and p(w) is real, can replace this with cosine
features:

2, b(X) = V2cos (wa + b)

where b uniform on [0, 27)

Then
k(X - y) = Ew,b [Zw,b(x)zw,b()')]
Proof:

2cos(w' x4 b)cos(w 'y + b) = cos(w ' (x +y) + 2b) + cos(w ' (x — y))

expectation zero
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Method 1: Fourier space

Generate D random features to decrease variance. Then

k(x—y)~ 5 Zzw ()29, (y).
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Method 1: Fourier space

Claim 1 (Uniform convergence of Fourier features). Let M be a compact subs
Then, for the mappin, ed in Algorithm 1, we have
{Vt decre e  BrEmne” e A
2

eter diam( ol
:| < o8 <0'p diam(M)) exp (7

Generate D random features

Pr| s (8 o) Kix gl = :
=y
k(x—y 2, b(x)zw p(Y):
where 0’2 = DE lw] is the second moment of the Fourier transfc
ther, SUp, yem |z(£c)’z(y) — k(y,x)] < € with any constant probal
o, diam(M)
Convergence result: Q( log ===~ )
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Method 2: randomly shifted grid

Figure: Kernel kpat(x — y) = max (0, 1-— M)

o
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Method 2: randomly shifted grid

Figure: Randomly shifted grid. u ~ 4(0, §)
Probability of x, y falling in the same bin
Pr(s =9 6) = kue(x —y) %= {X‘“J.
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Method 2: randomly shifted grid

As before, take distributions over features to get more advanced kernels:
k(Xv.y) = / khat(x,y; 5)P(5)d5
0

Given a kernel, how to compute p(9)?
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-
Method 2: randomly shifted grid

As before, take distributions over features to get more advanced kernels:

k(x,y) = /OOO knat (X, y; 8)p(0)do.

Given a kernel, how to compute p(9)?

k([x = yl) = k(A)

Take 2nd derivative wrt A:
2k p(a)

— = plA)=A

da? A
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-
Method 2: randomly shifted grid

Example:
kiap = exp (= |x — y[) = exp(=A)

then p(d) = dexp(—0) (Gamma distribution).
Note: for a Gaussian, p(d) not a valid prob. density.
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Method 2: randomly shifted grid

Example:
kiap = exp (= |x — y[) = exp(=A)

then p(d) = dexp(—0) (Gamma distribution).
Note: for a Gaussian, p(d) not a valid prob. density.

Reduce variance by averaging over P independent grids (u, ¢).
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Method 2: randomly shifted grid

Example:
kap = exp (= |x — y|) = exp (—A)

then p(d) = dexp(—0) (Gamma distribution).
Note: for a Gaussian, p(d) not a valid prob. density.

Reduce variance by averaging over P independent grids (u, ).

Multiple dimensions: use independent grids in each dimension, and
m
k(x—y) = [ km(x™ = y™).
k=1

The feature is an m-dimensional binary tensor with a single one at

coordinate [ Lxl(g;lulj L%J ]
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Method 2: randomly shifted grid

In practice: use a hash of the binary vector as a feature map.

Convergence result:
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N —
Results

Interpretation: for data where interpolation is needed, use Fourier kernels.
For data where “memorization” is needed, use binning features.

Caveat: the Gaussian kernel was used for Fourier+LS, the Laplace for
Binning+LS
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