
Public-key Cryptography with RSA

Wittawat Jitkrittum
wittawat@gatsby.ucl.ac.uk

Gatsby Tea Talk

18 Nov 2014

1/13

wittawat@gatsby.ucl.ac.uk


Overview

Symmetric key cryptography uses same
secret key for encryption and decryption.

• Need to agree in advance upon which
key to use.

• Need a secure channel to exchange key.

Public key cryptography uses one public
key for encryption and private key for
decryption.

Public key available to anyone.

Private key known only to the owner

Can use private key to encrypt as well.
Equivalent to a digital signature.

Public-key cryptography.
(image from Wikipedia)

2/13



RSA Cryptosystem

Ron Rivest, Adi Shamir, and Leonard Adleman first published RSA
in 1977.

Assume B wants to send a message m (integer) to A.

A has key pair: (public key, private key) = (e, d) and pre-chosen n.

RSA relies on
F (m,k) = mk mod n

B encrypts with public key e:

c = F (m, e) = me mod n

A decrypts with private key d:

m = F (c, d) = cd mod n

x mod y = remainder of x/y. For example, 12 mod 5 = 2.

Need to find e, d, n that work.
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Divisibility

gcd(x, y): greatest common divisor of x and y.

• gcd(8, 12) = 4
• gcd(5, 9) = 1

An integer p > 1 is a prime iff its divisors are 1 and p.

• Prime: 2, 11, 23
• Not prime: 6, 10

Arbitrary integers x and y are said to be relatively prime or coprime
iff gcd(x, y) = 1.

• Examples: (5, 9), (8, 15)
• Does not mean x and y are prime.
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Modular Arithmetic

x mod n := remainder when x is divided by n e.g., 12
mod 5 = 2.

• n is called modulus.

x, y are congruent modulo n if (x mod n) = (y mod n), written
as

x ≡ y (mod n)

• Examples: 3 ≡ 5 (mod 2).

(mod n) operator maps all integers into set
Zn = {0, 1, . . . , (n− 1)}.

Modular arithmetic performs arithmetic operations within confines
of Zn.

5/13



Properties of Modular Arithmetic

(x+ y) mod n = [(x mod n) + (y mod n)] mod n

(x− y) mod n = [(x mod n)− (y mod n)] mod n

(x× y) mod n = [(x mod n)× (y mod n)] mod n

x is multiplicative inverse of y if x× y ≡ 1 (mod n). Denoted by
x−1.

• Example: 3× 4 ≡ 1 (mod 11).
• Not all integers have a multiplicative inverse.
• 2−1 does not exist under (mod 4) because 2× y − 1 is not divisible

by 4.

Lemma

The multiplicative inverse of y (modulo n) exists iff y and n are
relatively prime.
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Euler’s Totient Function

Define Euler’s totient function φ(n) :=
number of integers in {1, 2, . . . , n− 1}
relatively prime to n.

i.e., number of x < n such that
gcd(x, n) = 1

φ(1) = 1

For prime p, φ(p) = p− 1

For primes p and q,
φ(pq) = (p − 1)(q − 1)

(image from Wikipedia)
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RSA Key Generation

Generate public key e, private key d, and n.

1 Large Prime Number Generation. Generate large primes p and
q. Can be done with Rabin-Miller primality test (probabilistic test).

2 Modulus. Set n = pq.

3 Totient. Compute φ(n) = (p − 1)(q − 1).

4 Public key e. Pick a prime e in [3, φ(n)) that is relatively prime to
φ(n) i.e., gcd(e, φ(n)) = 1.

5 Private key d. By the lemma, the multiplicative inverse of e exists
(modulo φ(n)). Can be determined with the Extended Euclidean
Algorithm. Set it to d.

Observations

We have ed ≡ 1 (mod φ(n)) by design.

Imply ed = kφ(n) + 1 for some positive integer k.
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Useful Theorems

For proving correctness of RSA,

Fermat’s Little Theorem

If p is prime, for m relatively prime to p, it holds that mp−1 ≡ 1
(mod p).

Example: 25−1 = 16 ≡ 1 (mod 5)

Chinese Remainder Theorem

Let p and q be relatively prime. If a ≡ m (mod p) and a ≡ m (mod q),
then a ≡ m (mod pq).

Example: 22 ≡ 2 (mod 5) and 22 ≡ 2 (mod 4).
⇒ 22 ≡ 2 (mod 5 · 4).
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Known So Far

Fermat’s Little Theorem

If p is prime, for m relatively prime to p, it holds that mp−1 ≡ 1
(mod p).

Chinese Remainder Theorem

Let p and q be relatively prime. If a ≡ m (mod p) and a ≡ m (mod q),
then a ≡ m (mod pq).

Known

1 [(x mod p)× (y mod p)] mod p = (x× y) mod p

2 n = pq.

3 φ(n) = (p− 1)(q − 1)

4 ed ≡ 1 (mod φ(n)) by design. So, ed = kφ(n) + 1 for some k.

5 Encrypt with public key e by c = me mod n.

6 Decrypt with private key d by m = cd mod n.
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RSA Algorithm and Correctness

Encrypt with public key e by c = me mod n.
Decrypt with private key d by m = cd mod n.

Proof of Correctness. Need to show m = cd mod n.

Suffices to show m ≡ cd (mod p) and m ≡ cd (mod q). Then use
Chinese remainder theorem to get m ≡ cd (mod n).
cd (mod p) = (me (mod n))d (mod p) = med

(mod p) = mkφ(n)+1 (mod p) = mk(p−1)(q−1)+1 (mod p).

med (mod p) = m ·mk(p−1)(q−1) (mod p)

= m ·
(

mp−1
)k(q−1)

(mod p)

(modular arithmetic) = m ·
(

mp−1 (mod p)
)k(q−1)

(mod p)

(Fermat’s little theorem) = m · (1)k(q−1) (mod p)

= m (mod p)
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Security

Public: n, e (public key), c (cipher text)
Secret: p, q (factors of n), φ(n), d (private key)

Mathematical attacks:

1 Factor n into n = pq.
2 Determine φ(n) directly without n = pq. Can use it to find

d = e−1 modulo φ(n).
3 Determine d (private key) directly from n, e. As hard as (1).

Comments:

Factoring n is considered fastest (still difficult). Used as measure of
RSA security.
http://en.wikipedia.org/wiki/RSA_Factoring_Challenge

For factorizing n = pq, best published asymptotic running time is
the general number field sieve (GNFS) algorithm:

O
(

exp
(

(

64
9 b

)1/3
(log b)2/3

))

for b-bit number.

(See Integer factorization, Wikipedia)
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More on RSA

In 1994, Peter Shor showed that a quantum computer (exists ?)
would be able to factor n in polynomial time.

As of 2010, the largest factored RSA number was 768 bits long
(232 decimal digits).

• State-of-the-art distributed implementation took around 1500 CPU
years.

Practical RSA keys: 1024 to 2048 bits.

Practical uses

For exchanging a symmetric key

Digital signature. Encrypt a message with one’s private key.
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Related Theorems

Euler’s Theorem 1

For every x and n that are relatively prime, xφ(n) ≡ 1 (mod n).

Euler’s Theorem 2

For every positive integers x and n, xφ(n)+1 ≡ x (mod n)

Fermat’s Little Theorem 2

Let x be a positive integer. If p is prime, then xp ≡ x (mod p)

Example: 35 = 243 ≡ 3 (mod 5)
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