Public-key Cryptography with RSA

Wittawat Jitkrittum
wittawat@gatsby.ucl.ac.uk

Gatsby Tea Talk

18 Nov 2014

Overview

■ Symmetric key cryptography uses same secret key for encryption and decryption.

- Need to agree in advance upon which key to use.
- Need a secure channel to exchange key.

■ Public key cryptography uses one public key for encryption and private key for decryption.
■ Public key available to anyone.

- Private key known only to the owner

■ Can use private key to encrypt as well. Equivalent to a digital signature.

Public-key cryptography. (image from Wikipedia)

RSA Cryptosystem

■ Ron Rivest, Adi Shamir, and Leonard Adleman first published RSA in 1977.

- Assume B wants to send a message m (integer) to A.

■ A has key pair: (public key, private key) $=(e, d)$ and pre-chosen n.

- RSA relies on

$$
F(m, k)=m^{k} \bmod n
$$

B encrypts with public key e :

$$
c=F(m, e)=m^{e} \bmod n
$$

A decrypts with private key d :

$$
m=F(c, d)=c^{d} \bmod n
$$

■ $x \bmod y=$ remainder of x / y. For example, $12 \bmod 5=2$.
■ Need to find e, d, n that work.

Divisibility

$\square \operatorname{gcd}(x, y):$ greatest common divisor of x and y.

- $\operatorname{gcd}(8,12)=4$
- $\operatorname{gcd}(5,9)=1$

■ An integer $p>1$ is a prime iff its divisors are 1 and p.

- Prime: 2, 11, 23
- Not prime: 6,10

■ Arbitrary integers x and y are said to be relatively prime or coprime iff $\operatorname{gcd}(x, y)=1$.

- Examples: $(5,9),(8,15)$
- Does not mean x and y are prime.

Modular Arithmetic

■ $x \bmod n:=$ remainder when x is divided by n e.g., 12 $\bmod 5=2$.

- n is called modulus.

■ x, y are congruent modulo n if $(x \bmod n)=(y \bmod n)$, written as

$$
x \equiv y(\bmod n)
$$

- Examples: $3 \equiv 5(\bmod 2)$.
- $(\bmod n)$ operator maps all integers into set $Z_{n}=\{0,1, \ldots,(n-1)\}$.
■ Modular arithmetic performs arithmetic operations within confines of Z_{n}.

Properties of Modular Arithmetic

$$
\begin{aligned}
(x+y) \bmod n & =[(x \bmod n)+(y \bmod n)] \bmod n \\
(x-y) \bmod n & =[(x \bmod n)-(y \bmod n)] \bmod n \\
(x \times y) \bmod n & =[(x \bmod n) \times(y \bmod n)] \bmod n
\end{aligned}
$$

■ x is multiplicative inverse of y if $x \times y \equiv 1(\bmod n)$. Denoted by x^{-1}.

- Example: $3 \times 4 \equiv 1(\bmod 11)$.
- Not all integers have a multiplicative inverse.
- 2^{-1} does not exist under $(\bmod 4)$ because $2 \times y-1$ is not divisible by 4 .

Lemma

The multiplicative inverse of y (modulo n) exists iff y and n are relatively prime.

Euler's Totient Function

Define Euler's totient function $\phi(n):=$ number of integers in $\{1,2, \ldots, n-1\}$ relatively prime to n.

- i.e., number of $x<n$ such that $\operatorname{gcd}(x, n)=1$
- $\phi(1)=1$

■ For prime $p, \phi(p)=p-1$

- For primes p and q,

$$
\phi(p q)=(p-1)(q-1)
$$

(image from Wikipedia)

RSA Key Generation

Generate public key e, private key d, and n.
1 Large Prime Number Generation. Generate large primes p and q. Can be done with Rabin-Miller primality test (probabilistic test).
2 Modulus. Set $n=p q$.
3 Totient. Compute $\phi(n)=(p-1)(q-1)$.
4 Public key e. Pick a prime e in $[3, \phi(n))$ that is relatively prime to $\phi(n)$ i.e., $\operatorname{gcd}(e, \phi(n))=1$.
5 Private key d. By the lemma, the multiplicative inverse of e exists (modulo $\phi(n)$). Can be determined with the Extended Euclidean Algorithm. Set it to d.

Observations
■ We have $e d \equiv 1(\bmod \phi(n))$ by design.
■ Imply $e d=k \phi(n)+1$ for some positive integer k.

Useful Theorems

For proving correctness of RSA,

Fermat's Little Theorem

If p is prime, for m relatively prime to p, it holds that $m^{p-1} \equiv 1$ $(\bmod p)$.

■ Example: $2^{5-1}=16 \equiv 1(\bmod 5)$
Chinese Remainder Theorem
Let p and q be relatively prime. If $a \equiv m(\bmod p)$ and $a \equiv m(\bmod q)$, then $a \equiv m(\bmod p q)$.

■ Example: $22 \equiv 2(\bmod 5)$ and $22 \equiv 2(\bmod 4)$. $\Rightarrow 22 \equiv 2(\bmod 5 \cdot 4)$.

Known So Far

Fermat's Little Theorem

If p is prime, for m relatively prime to p, it holds that $m^{p-1} \equiv 1$ $(\bmod p)$.

Chinese Remainder Theorem
Let p and q be relatively prime. If $a \equiv m(\bmod p)$ and $a \equiv m(\bmod q)$, then $a \equiv m(\bmod p q)$.

Known
$1[(x \bmod p) \times(y \bmod p)] \bmod p=(x \times y) \bmod p$
$2 n=p q$.
$3 \phi(n)=(p-1)(q-1)$
$4 e d \equiv 1(\bmod \phi(n))$ by design. So, $e d=k \phi(n)+1$ for some k.
5 Encrypt with public key e by $c=m^{e} \bmod n$.
6 Decrypt with private key d by $m=c^{d} \bmod n$.

RSA Algorithm and Correctness

■ Encrypt with public key e by $c=m^{e} \bmod n$.
■ Decrypt with private key d by $m=c^{d} \bmod n$.

Proof of Correctness. Need to show $m=c^{d} \bmod n$.

■ Suffices to show $m \equiv c^{d}(\bmod p)$ and $m \equiv c^{d}(\bmod q)$. Then use Chinese remainder theorem to get $m \equiv c^{d}(\bmod n)$.

- $c^{d}(\bmod p)=\left(m^{e}(\bmod n)\right)^{d}(\bmod p)=m^{e d}$

$$
(\bmod p)=m^{k \phi(n)+1}(\bmod p)=m^{k(p-1)(q-1)+1}(\bmod p)
$$

$$
m^{e d}(\bmod p)=m \cdot m^{k(p-1)(q-1)}(\bmod p)
$$

$$
=m \cdot\left(m^{p-1}\right)^{k(q-1)}(\bmod p)
$$

$($ modular arithmetic $)=m \cdot\left(m^{p-1}(\bmod p)\right)^{k(q-1)}(\bmod p)$
(Fermat's little theorem) $=m \cdot(1)^{k(q-1)}(\bmod p)$

$$
=m(\bmod p) \quad \square
$$

Security

■ Public: n, e (public key), c (cipher text)

- Secret: p, q (factors of n), $\phi(n), d$ (private key)

Mathematical attacks:
1 Factor n into $n=p q$.
2 Determine $\phi(n)$ directly without $n=p q$. Can use it to find $d=e^{-1}$ modulo $\phi(n)$.
3 Determine d (private key) directly from n, e. As hard as (1).
Comments:
■ Factoring n is considered fastest (still difficult). Used as measure of RSA security.
■ http://en.wikipedia.org/wiki/RSA_Factoring_Challenge
■ For factorizing $n=p q$, best published asymptotic running time is the general number field sieve (GNFS) algorithm:
$O\left(\exp \left(\left(\frac{64}{9} b\right)^{1 / 3}(\log b)^{2 / 3}\right)\right)$ for b-bit number.
(See Integer factorization, Wikipedia)

More on RSA

■ In 1994, Peter Shor showed that a quantum computer (exists ?) would be able to factor n in polynomial time.
■ As of 2010, the largest factored RSA number was 768 bits long (232 decimal digits).

- State-of-the-art distributed implementation took around 1500 CPU years.

■ Practical RSA keys: 1024 to 2048 bits.
Practical uses
■ For exchanging a symmetric key
■ Digital signature. Encrypt a message with one's private key.

Related Theorems

Euler's Theorem 1
For every x and n that are relatively prime, $x^{\phi(n)} \equiv 1(\bmod n)$.
Euler's Theorem 2
For every positive integers x and $n, x^{\phi(n)+1} \equiv x(\bmod n)$
Fermat's Little Theorem 2
Let x be a positive integer. If p is prime, then $x^{p} \equiv x(\bmod p)$

■ Example: $3^{5}=243 \equiv 3(\bmod 5)$

References I

■ http://doctrina.org/How-RSA-Works-With-Examples.html
http://doctrina.org/Why-RSA-Works-Three-Fundamental-Ques
■ http://ict.siit.tu.ac.th/~steven/css322/
■ http://en.wikipedia.org/wiki/Integer_factorization
http://www.cse.cuhk.edu.hk/~taoyf/course/bmeg3120/notes/r

